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1  |  INTRODUC TION

Carbon dioxide  (CO2) is an odorless, tasteless, and colorless gas 
that affects humans’ physiological conditions.1 The average indoor 
CO2 concentration typically ranges from 600 to 1000  ppm (parts 

per million)2,3 although it could often reach over 4500 ppm by oc-
cupation with insufficient ventilation.4–6 Prolonged passive expo-
sure to elevated CO2 concentrations could have adverse effects on 
human health. Therefore, common indoor air quality standards have 
been defined as an acceptable concentration and duration of CO2 
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Abstract
Environmental carbon dioxide (CO2) could affect various mental and physiological activ-
ities in humans, but its effect on daytime sleepiness is still controversial. In a randomized 
and counterbalanced crossover study with twelve healthy volunteers, we applied a 
combinational approach using classical frequentist and Bayesian statistics to analyze 
the CO2 exposure effect on daytime sleepiness and electroencephalogram (EEG) sig-
nals. Subjective sleepiness was measured by the Japanese Karolinska Sleepiness Scale 
(KSS-J) by recording EEG during CO2 exposure at different concentrations: Normal (C), 
4000 ppm (Moderately High: MH), and 40 000 ppm (high: H). The daytime sleepiness 
was significantly affected by the exposure time but not the CO2 condition in the classical 
statistics. On the other hand, the Bayesian paired t-test revealed that the CO2 exposure 
at the MH condition might induce daytime sleepiness at the 40-min point compared 
with the C condition. By contrast, EEG was significantly affected by a short exposure 
to the H condition but not exposure time. The Bayesian analysis of EEG was primarily 
consistent with results by the classical statistics but showed different credible levels in 
the Bayes’ factor. Our result suggested that the EEG may not be suitable to detect objec-
tive sleepiness induced by CO2 exposure because the EEG signal was highly sensitive to 
environmental CO2 concentration. Our study would be helpful for researchers to revisit 
whether EEG is applicable as a judgment indicator of objective sleepiness.
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exposure in an average range of 800–1000 ppm for 8–24 h by inter-
national agencies. Several standards were proposed as the optimal 
indoor space CO2 concentration. More specifically, ≤1000 ppm by 
the Ministry of Health Labor and Welfare (MHLW, Japan)7; ≤0.10% 
(2000 mg/m3) by Administration of Quality Supervision Inspection 
and Quarantine (AQSIQ, China Standard CS GB/T17094-1997)8; 
≤800 ppm (excellent class/non-residential) by the Hong Kong Special 
Administrative Region (HKSAR, China)9; ≤1000 ppm by Department 
of Occupational Safety and Health (DOSH, Malaysia)10; ≤1000 ppm 
by Guideline development for evaluation and management of of-
fice air quality (II) by Korea Occupational Safety and Health Agency 
(KOSHA)11; ≤1000  ppm by Singapore Institute of Environmental 
Epidemiology (SAIQG)12; and <550 ppm (good indoor air quality) by 
The Finnish Society of Indoor Air Quality and Climate (FiSIAQ).13

Exposure to CO2 could result in various mental and physio-
logical changes in humans, even at relatively low concentrations. 
When the environmental CO2 concentration reaches in the range of 
1000–4000 ppm, people start feeling uncomfortable14,15 and show 
changes in sleepiness, heart rate variation, headaches symptoms,16 
and declined cognitive capacities.15,17 However, the relationship 
between CO2 concentration and exposure time on daytime sleepi-
ness, which critically reduces office workers’ work efficiency, is still 
controversial. The earliest study by Vehviläinen et al. reported CO2 
at around 3000  ppm resulted in changes in heart rate variability 
with increased sleepiness.16 By contrast, Bloch - Salisbury et al.18 
reported no association between CO2 inhalation and cognitive per-
formance or alertness. In the past few years, moreover, researchers 
hold different views on whether carbon dioxide causes cognitive 
decline and induces daytime sleepiness.19 A possible reason for 
the discrepancy is that daytime sleepiness was mainly measured 
by Karolinska Sleepiness  Scale (KSS) or Stanford Sleepiness  Scale 
scores, which indicate subjective sleepiness, resulting in consider-
able variation among the participants.

Electroencephalogram (EEG) has often been used as a valid indi-
cator to detect objective sleepiness in the physiological approach.20 
In the eyes-open condition, increased powers in the low-frequency 
bands such as delta (1–3 Hz), theta (4–7 Hz), and alpha (8–13 Hz), 
especially increased alpha and theta bands, are thought to be a sign 
for sleepiness.21,22 However, environmental CO2  has been rarely 
considered a source of the factors causing physiological artifacts in 
most previous studies,23–25 even though the low concentration of 
CO2 could affect the physiological parameters, including EEG sig-
nals.15,26 Recently, Snow et al. have attempted to analyze EEG signals 
as an objective indication of sleepiness, but their report still showed 
a discrepancy in the relationship between sleepiness and CO2.27 
In their study, “participants who had slept less the previous night 
appeared more susceptible to becoming sleepier as a result of the 
increased CO2,” but no significant correlation between the levels of 
sleepiness (self-reported sleepiness) and CO2 exposure was found, 
although the significant correlations between hours of sleep in the 
previous night and EEG signals were observed.27

Collectively, the relationship between CO2 concentration and 
daytime sleepiness induction or EEG signals is still controversial. 

Therefore, this study aimed to analyze the CO2 exposure effects on 
daytime sleepiness and EEG signal in a well-regulated environment. 
We also used a combined analysis using classical frequentist and 
Bayesian statistics to compensate for each other for a few reasons. 
Since subjective sleepiness could highly depend on the mental and 
physiological conditions of the participants resulting in a consider-
able variation among participants, it is often difficult to estimate an 
appropriate sample size required for classical statistics in advance. 
Bayesian statistics allows to inclusion of additional data as Bayesian 
updating, which is usually restricted or not permitted in classical sta-
tistics. While the classical statistical approach often needs a rela-
tively large sample size to obtain enough statistical power if the data 
show a considerable variation among individuals, Bayesian statistics 
accept a relatively small sample size.28,29 Most importantly, classical 
statistics give clear criteria by determining a threshold of the p-value 
(p < 0.05 is generally used), but it does not tell confidence of the ob-
tained result. However, the Bayesian statistics would give us a cer-
tain degree of confidence and insight on the p-values by the classical 
analysis even if it indicated no significance in the results because 
the Bayesian statistics uses Bayes’ factor, odds of confidence for the 
alternative hypothesis instead of the p-value.30

Advantages of our combinational approach are as follows: (1) 
Levels of significance and confidence in the null- and alternative hy-
potheses could be obtained simultaneously, allowing a more flexible 
interpretation. (2) Bayesian analysis would provide the effect size 
with credible intervals, estimating a range of effect size. By con-
trast, the classical procedure could give a sole value of effect size. (3) 
Bayesian analysis could provide a level of credibility to the classical 
frequentist analysis, while the classical analysis could give the other 
a clear criterion or standard.

In the present study, subjective sleepiness was measured by the 
KSS-J score with EEG recording during CO2 exposure at different 
concentrations. Our result suggested that the EEG recording may 
not be suitable for the detection of objective sleepiness induced by 
CO2 exposure because the EEG signal is highly sensitive to the level 
of environmental CO2 concentration. Our combinational approach 
would also provide a solution to judge “confidence” in obtained 

Practical Implication

1.	Our study combining Bayesian and conventional sta-
tistics provides a practical procedure to measure the 
degree of the effect of CO2 exposure on daytime sleepi-
ness and EEG signals.

2.	The environmental CO2  level should be considered in 
future studies using EEG measurements because EEG 
signals could be sensitive to environmental CO2 levels.

3.	Our combinational approach would enable researchers 
a more flexible and reasonable interpretation even if 
there is no statistically significant difference in the clas-
sical statistical analysis.
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results. The study presented here would provide a helpful guide for 
researchers to revisit whether EEG is applicable as a judgment indi-
cator of objective sleepiness.

2  |  METHODS

2.1  |  Participants and ethical approval

The sample size was determined according to a previous study by 
Vehviläinen et al.16 using G*Power 3.1.9,31 assuming a type I error 
of 0.05 and power of 0.80. In the study, they used a similar study 
design, in which each participant was exposed to a “Ventilated room” 
and “Non-ventilated room” (i.e., the conditions of CO2 correspond-
ing to “Normal (C)” and “CO2 (Moderately High (MH))” in this study) 
and the subjective sleepiness was measured repeatedly by KSS. The 
sample size in the present study was calculated as 10 using the num-
ber of groups = 2 (C vs. MH) and the number of measurements = 7 
(0–60 min) and assuming a 10% drop-out rate. The 6-minute con-
tinuous exposure to high (H) CO2 conditions was also included as a 
positive control to confirm the CO2 effect on the physiological pa-
rameters. The study protocol was approved by the Research Ethics 
Committee of Tohoku University (Approval No. 2018-1-862), after 
signing informed consent. The exclusion criteria for the study par-
ticipants were to have a history of sleep disorders, neurological, 
cardiovascular, respiratory, or other diseases. After inclusion, all par-
ticipants were asked to avoid coffee (including caffeinated bever-
ages), medication (including sleeping pills or melatonin), and alcohol 
for at least a week before the first visit and through the entire period 
of the experiment.

2.2  |  Experimental procedures

In a randomized and counterbalanced crossover study, participants 
answered the Groningen Sleep Quality Scale (GSQS) questionnaire 
before the measurement. All measurements were performed in an 
isolated meeting room with the dimensions of 7.2 m × 5.9 m (floor 
area) × 2.5 m (high), in which the temperature and humidity were 
regulated by a conventional air conditioner. They were asked to 
sit on a chair in an airtight chamber of a rectangular plastic flame 
(190 × 90 × 90 cm) covered with transparent plastic films, set at the 
center of the meeting room (Figure 1A). The measurement started 
10 min before CO2 exposure. Real-time monitoring of temperature, 
humidity, and environmental CO2 concentration was recorded dur-
ing the experiment (Tables S1 and S2). The information related to 
the device utilized is as follows; a sensor (Testo 174 H—Temperature 
and humidity mini data logger, Testo SE & Co. KGaA, Lenzkirch, 
Germany) with a measurement range from −30°C to +70°C (meas-
urement accuracy ±0.5°C) for temperature and the measurement 
range from 0% to 100% (measurement accuracy ±3%) for humidity 
was used. Noise and illuminance were recorded before and after the 
measurement. A CO2  sensor (SENSEAIR S8 ALARM 5%, Sense air 

Co., Ltd. Tokyo, Japan) was placed underneath the seat board of the 
chair (40.5 cm height). The measurement range of CO2 was between 
0.04% and 5% volume, and measurement accuracy was ±200 ppm 
or ±10% of reading, and a response time of 2  min. The CO2  gas 
(99.99% purity) was injected from a liquid CO2 cylinder manually into 
the airtight chamber until the CO2 concentration monitored at the 
seat level reached the target levels. The constant CO2 concentra-
tion was maintained by temporarily opening the chamber whenever 
the CO2  level exceeds the designated level. The experiment room 
was ventilated with a rate of 0.3 L/s per m2. The CO2 levels at face 
height (115  cm) were also confirmed in CO2 exposure conditions 
(Supplementary Table 25). The CO2 concentration at face height 
(mean ± standard deviation [SD]: 3981 ± 30 ppm; 95% confidence 
interval [CI]: 3964–3999 ppm) was similar to that at measurement 
standard (mean  ±  SD: 4204  ±  61  ppm; 95% CI: 4167–4240  ppm) 
in the MH CO2 condition. In H CO2 condition, CO2 concentration 
(mean ± SD:35 417 ± 2136 ppm; 95% CI: 34 155–36 679 ppm) was 
11% lower than that of the seat level CO2 concentration (mean ± SD: 
39 725 ± 979 ppm; 95% CI: 39 147–40 304 ppm).

The Japanese version of the KSS (KSS-J) questionnaire was 
used to measure subjective sleepiness. The physiological data, in-
cluding heart rate (HR, 3 CH), blood pressure (BP, pre and post), pe-
ripheral oxygen saturation (SpO2, finger clip on the non-dominant 
hand), respiration rate (RR), and end-tidal CO2 (EtCO2, nasal tube), 
was recorded by a bedside monitor (CSM-1000 Series Lifescope G, 
Nippon Electric Co., Ltd., Tokyo, Japan) (Table S3). Participants were 
exposed to three experimental conditions on different days in a ran-
domized order. C and MH of CO2 conditions, for 60 min, while H CO2 
condition consisted of 6 min of sustained exposure due to ethical 
regulations.

2.3  |  Electroencephalography

Electroencephalogram signals were recorded using a portable digital 
8-channel data recorder (Polymate Mini AP108, Miyuki Giken Co., 
Ltd. Tokyo, Japan). EEG electrodes were placed on the scalp accord-
ing to the International 10/20 system using the left earlobe as the 
reference. Participants were instructed to sit on a chair and focus 
their attention on the cross sign in front of them inside the cham-
ber to minimize artifacts derived from body movements in the EEG 
signal. Although we did not assess participants’ comfort level during 
the EEG measurement, based on the feedback from the participants 
in the pilot study, no obvious discomfort sign was observed in the 
participants. Because the transition to sleep led to changes in EEG 
activity in the central32 and posterior regions33 of the brain, data 
from both left and right hemispheres’ central (C3 and C4, respec-
tively) and occipital (O1 and O2, respectively) regions were used for 
further analyses. Before data acquisition, all contact impedance be-
tween electrodes and scalp was kept below 5 kΩ. Although we used 
a sampling rate of 500  Hz, the recordings were down-sampled to 
250 Hz for the simplicity of data processing using the EEGLAB tool-
box of MATLAB (Mathworks, Inc., Natick, MA, USA).
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After using a high-pass filter at 1 Hz, and a low-pass FIR filter at 
45 Hz separately, powerline noise (50–100 Hz) was applied to atten-
uate electrical interference noise with a plugin (CleanLine, v.1.04). 
Finally, the Artifact Subspace Reconstruction toolbox34 was used to 
remove artifacts from EEG data. To extract each frequency domain 
from the preprocessed EEG data for theta- (4–7 Hz) and alpha waves 
(8–13 Hz), the Darbeliai toolbox was used.

2.4  |  Groningen sleep quality scale and Karolinska 
sleepiness scale

Because the previous night's sleep quality may affect daytime 
sleepiness, we needed to exclude the participant who had poor 
sleep quality the previous night and postpone the experiment. We 
assessed the previous night's sleep quality using the GSQS ques-
tionnaire. Since the results always indicated good sleep quality for 
each participant and condition, no experiment was rescheduled. 
Subjective sleepiness level was assessed using the KSS-J.35 We used 
the original scale of KSS-J that included labels on every second step 
(1 = very alert, 3 = alert, 5 = neither alert nor sleepy, 7 = sleepy, but 
no effort to keep awake, and 9 = very sleepy, great effort keeping 

awake, fighting sleep). Participants reported their sleepiness level 
with gestures every 10 min during C and MH CO2 conditions and 
each 1 min during H CO2 conditions, minimizing the interruption of 
the participants’ current state and motion artifacts in the EEG.

2.5  |  Statistical analyses

The normality of all data was checked using the Shapiro-Wilk test. 
We considered two analysis approaches for this study. The JASP 
software (version 0.14.1) was used for both classical and Bayesian sta-
tistical analyses.36 An essential part of Bayesian analysis is to define 
the prior distribution.37 Therefore, in the present study, sample data 
from non-informative priors were assumed to control the posterior 
distribution. To investigate the change in alertness (KSS-J) over time 
during the exposure of the two CO2 conditions, C and MH, a Bayesian 
repeated-measures ANOVA (BANOVA) were performed with a 95% 
credible interval estimated from the posterior distributions. The post-
hoc tests were done with the time points (0–60 min) and conditions 
separately. Additionally, Bayesian paired t-test (Wilcoxon signed-rank) 
in a pre-exposure (C) x post-exposure (MH) was used to compare the 
means of KSS-J score following the main effect was determined. The 

F I G U R E  1 Schematic illustration 
of the experimental procedure. Panel 
A: Participants sat on a chair in an 
airtight chamber (190 × 90 × 90 cm). 
Physiological data were recorded during 
the experiment. Real-time temperature, 
humidity, environmental carbon dioxide 
concentration, illumination, and noise 
were also recorded. Panel B: Time scale 
for experimental procedures. GSQS, 
Groningen Sleep Quality Scale; HR, heart 
rate; BP, blood pressure; SpO2, peripheral 
oxygen saturation; RR, respiratory rate; 
EtCO2, end-tidal carbon dioxide; KSS-J, 
the Japanese version of the Karolinska 
sleepiness scale
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intensity of evidence (BF, Bayes’ factor) in Bayesian's result is assessed 
via Jeffrey's criterion (see Figure S1), which allows us to quickly deter-
mine whether it supports or opposes the hypothesis.

To analyze the EEG signals (α, θ) in all four brain regions (C3, 
C4, O1, and O2) changes during different exposure conditions, 
the mixed-model analysis was performed using JMP Pro software 
(version 15.2.0, SAS Institute Inc., Cary, NC, USA). For comparison 
among three conditions, C, MH, and H, the EEG signals were ana-
lyzed every minute for 6 min. For comparison between C and MH 
CO2 conditions, the EEG signals were analyzed every 10  min for 
60  min. In the classical statistical results, we reported means and 
standard deviation (SD) for continuous variables with normal dis-
tribution, and the significance level was set at p < 0.05. Separated 
BANOVA was performed for the strength of evidence.

3  |  RESULTS

Twelve healthy volunteers were recruited. One participant was ex-
cluded from the final analysis due to the high noise level of the EEG 
signals, and data from 11 participants (7 females; age = 26.6 ± 3.4; h
eight = 161.3 ± 4.2; and weight = 52.5 ± 6.2) were analyzed.

3.1  |  Physiological parameters

Table S3 summarizes the physiological parameters of participants in 
each condition group. We found no statistical differences between 
the groups in the scores of the questionnaires (GSQS and KSS-J) and 
physiological parameters before the experiment (all p > 0.05).

3.2  |  CO2 effect on subjective daytime sleepiness

Figure 2 shows the time course of daytime sleepiness development 
expressed as KSS-J scores under varying CO2 conditions. It appears 
that the level of sleepiness developed earlier by CO2 exposure 

(closed circle) from 0 to 20  min and became highest at 40  min. 
However, repeated measures ANOVA of KSS-J score showed a sig-
nificant main effect of time (F2.9,59 = 11.755, p = 0.001, ηp

2 = 0.37) 
but no interaction between Times  ×  Conditions (F2.9,59  =  0.761, 
p = 0.52, ηp

2 = 0.04). There was no significant difference in the KSS-J 
scores among CO2 conditions (F1,20 = 0.493, p = 0.491, ηp

2 = 0.02). 
The post-hoc analysis revealed KSS-J score at 0 min was significantly 
different from those at 20- to 60-min time points. KSS-J score at 
10 min was also significantly different from those at 30- to 60-min 
time points. There was no significant difference in the KSS-J scores 
among 20–60-min time points, suggesting that the level of daytime 
sleepiness developed after the start of the experiment and reached 
a plateau after 30-min independent of CO2 conditions.

There was no significant difference in the KSS-J scores across 
CO2 conditions when analyzed by the classical or conventional sta-
tistical analysis. Since sleepiness appeared to be developed and time-
dependent, we applied the Bayesian approach to estimate the range 
of distribution probability. We also hypothesized that when the ob-
served level exceeds or undermines the estimated range under vary-
ing CO2 conditions, the CO2 condition should impact the progression 
of daytime sleepiness. A BANOVA showed that time (duration of the 
experiment) was the primary factor related to daytime sleepiness 
development since the Bayes’ factor for the time was the highest. 
The Bayes’ factor for CO2 condition was lower, suggesting that there 
is little evidence that the CO2 exposure overall affected daytime 
sleepiness determined by KSS-J scores (BF10 = 0.448, Table S4). The 
effects analysis also revealed the higher contribution of time and 
a smaller effect of CO2 condition, consistent with the result above 
(BFinclsion = 4.784 × 107, Table S5). The post-hoc comparison among 
different time points revealed that Bayes’ factors at 0 and 10  min 
compared to the other time points were larger, suggesting the level of 
daytime sleepiness (KSS-J score) had shifted after 20 min (Table S6).

On the other hand, a post-hoc comparison of the CO2 condi-
tions only showed a small Bayes’ factor value of less than 1, sug-
gesting a weak contribution of CO2 exposure to daytime sleepiness 
(BF10, U  =  0.405, Table  1). However, the probability distribution of 
normalized KSS-J score difference of control and CO2 conditions 
showed a distinct difference with a slight overlap at the 40-min time 
point (Table 2 and Figure 3). Because the largest difference between 
conditions was observed at the 40 min in the BANOVA, the Bayesian 
paired t-test was applied to compare the mean KSS-J score at 40 min. 
In the Bayesian paired t-test, we used the alternative hypothesis with 

F I G U R E  2 Time course of the KSS-J score in the different 
conditions. Black solid circle (●): Moderately High (MH) CO2 
condition, White hollow circle (○): Normal (C). Error bars indicate a 
95% confidence interval

C
MH

CO2 Conditions

TA B L E  1 Post-hoc comparisons—CO2 conditions

Prior 
odds

Posterior 
odds BF10, U Error%

MH/C 1.000 0.405 0.405 2.919e−6

Note: The posterior odds have been corrected for multiple testing 
by fixing to 0.5 the prior probability that the null hypothesis holds 
across all comparisons (Westfall, Johnson, & Utts, 1997). Individual 
comparisons are based on the default t-test with a Cauchy (0, r = 1/sqrt 
(2)) prior. The "U" in the Bayes factor denotes that it is uncorrected.
Abbreviations: C, Normal; MH, Moderately High.
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a default Cauchy prior for effect size δ that the mean KSS-J score in 
the MH CO2 condition was larger than that of the C CO2 condition 
at 40 min (one-sided Bayesian paired t-test). The alternative hypoth-
esis (H+) showed a larger BF (BF+0 = 2.884) than the null hypothe-
sis (H0), indicating that H+ was 2.884 times more favorable than H0 
(Figure 4). The median of the effect size d in the posterior distribution 
was 0.558, with a 95% credible interval ranging from 0.065 to 1.245.

We also measured the KSS-J score as subjective daytime sleepi-
ness at H CO2 condition. Although a high KSS-J score was observed 
in the 6 min CO2 exposure, we could not conclude the higher KSS-J 
score was caused by the CO2 exposure because of no control condi-
tion. The result is shown in Figure S2.

3.3  |  CO2 effect on EEG signals

We analyzed the EEG in three conditions at different CO2 concentra-
tions. Although C and MH CO2 conditions consisted of 60 min expo-
sure, the first 6 min of each condition were used for further analysis 
to comprehensively represent the effect of different CO2 levels on 
EEG signals (α, θ).

95% credible interval

Variable Level Mean SD Lower Upper

Intercept 4.256 0.364 3.508 4.982

Time points 0 −1.757 0.284 −2.328 −1.193

10 −0.853 0.272 −1.403 −0.319

20 0.257 0.267 −0.289 0.793

30 0.507 0.268 −0.034 1.031

40 0.629 0.271 0.084 1.171

50 0.632 0.269 0.088 1.163

60 0.585 0.270 0.043 1.124

CO2 conditions C −0.160 0.289 −0.773 0.400

MH 0.160 0.289 −0.416 0.765

Time points * 
CO2 sonditions

0 & C 0.008 0.198 −0.388 0.411

0 & MH −0.008 0.198 −0.415 0.384

10 & C 0.102 0.203 −0.302 0.526

10 & MH −0.102 0.203 −0.531 0.298

20 & C −0.059 0.202 −0.477 0.339

20 & MH 0.059 0.202 −0.343 0.472

30 & C 0.082 0.203 −0.321 0.492

30 & MH −0.082 0.203 −0.495 0.318

40 & C −0.274 0.217 −0.751 0.122

40 & MH 0.274 0.217 −0.125 0.747

50 & C 0.010 0.201 −0.401 0.415

50 & MH −0.010 0.201 −0.419 0.397

60 & C 0.130 0.204 −0.266 0.561

60 & MH −0.130 0.204 −0.565 0.262

Abbreviations: C, Normal; MH, Moderately High.

TA B L E  2 Model averaged posterior 
summary

F I G U R E  3 The model-averaged posterior distributions the 
interactions (40-min time point × 2 conditions). Distributions at 
40-min time points showed a slight overlap. The horizontal error 
bars above each density represent 95% credible intervals around 
the median. Dotted line: Normal (C) and Solid line: Moderately High 
(MH) CO2 condition

C
MH
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3.4  |  The analysis of EEG signals by mixed model

Figure  5  summarizes the alpha-band (α, 8–13  Hz) results in three 
conditions for each brain region and time point during the first 6 min. 
Mixed-model on condition, and time revealed a significant main ef-
fect of condition and time at C4 (p = 0.0009) and O2 (p = 0.0021) 
positions, while at C3 (p = 0.0001) and O1 (p = 0.0125) positions 
showed a significant main effect of condition only. However, there 
was no interaction between conditions × times in all four positions 
(all p > 0.05). The post-hoc comparison among different conditions 
revealed that all four brain regions (C3, C4, O1, and O2) showed a 
significant decrease in alpha power at the H CO2 condition compared 
with MH CO2 condition. In contrast, the C3, C4, and O1 regions also 
showed a significant decrease in H CO2 condition compared with 
the C.

Figure 6 summarizes the theta-band (θ, 4–7 Hz) results in three 
conditions for each brain region during 6 min. Mixed-model on con-
dition, and time revealed a significant main effect of condition and 
time at O1 (p = 0.0029) and O2 (p = 0.0002) positions, while at C3 
(p = 0.0001) and C4 (p = 0.0001) positions showed a significant main 
effect of condition only. There was no interaction between condi-
tions × times in all four positions (all p > 0.05). The post-hoc compar-
ison among different conditions revealed that all four brain regions 
(C3, C4, O1, and O2) showed a significant increase in theta power 
at H CO2 condition compared with the C, while the C3, C4, and O1 
regions also showed a significant increase at the H CO2 condition 
comparing with the MH CO2 condition.

On the other hand, no significant differences were found in all 
four brain regions for alpha or theta power between the C and MH 
CO2 conditions, suggesting that EEG activity might be affected by 
higher CO2 exposure in a short duration of the first 6 min.

There was no significant difference between the C and MH CO2 
conditions in the EEG signals during the first 6 min exposure. For 
long-term exposure such as 60 min, however, a significant difference 
in a few regions in the alpha and theta power showed between the 
two conditions (Figures 7 and 8). A significant increase was observed 
in the alpha-band at O1 and O2 regions, while theta-band power 
was significantly decreased at C3, C4, and O1 regions in the MH 
CO2 condition. In this two-condition analysis, the main effect was 
the CO2 condition but not exposure time. This result contrasts with 
the result of daytime sleepiness, in which the exposure time was the 
sole effect on daytime sleepiness.

3.5  |  BANOVA outcomes

To determine the strength of evidence for changes in EEG signals 
in each brain region in each condition, a BANOVA was performed. 
Overall, the results of the Bayesian analysis suggest greater strength 
of evidence that EEG signals were affected by conditions, but not 
time factors, which could support our results by the classical analysis 
(i.e., the main factor of condition).

The analysis of the alpha-band (α, 8–13 Hz) was summarized in 
Tables S7–S10. The Bayes’ factor was significantly higher on C3 po-
sition (BF10 = 772.347) than on the other positions (C4, BF10 = 9.23; 
O1, BF10  =  1.114; and O2, BF10  =  4.114), suggesting there was 
stronger evidence that alpha power under the C3 position is more 
affected by exposure conditions. The post-hoc comparison revealed 
the strength of evidence that alpha power was affected across con-
ditions. Specifically, At the C3 position, there was extreme evidence 
for the C vs. H CO2 condition (BF10, U = 2709.495). Strong evidence 
for MH vs H CO2 condition (BF10, U = 17.21) was found, suggesting 
greater alpha power differences between the C and H CO2 condi-
tions. At the C4 position, there was moderate evidence for the C 
vs. H CO2 condition (BF10, U  =  9.49) and MH vs. H CO2 condition 
(BF10, U = 8.097) were found. At the O1 position, moreover, anec-
dotal evidence for the C vs. H CO2 condition (BF10, U = 1.957) was 
found, suggesting that the H CO2 condition has little effect on alpha 
power at the O1 position. At the O2 position, there was moderate 
evidence for the MH vs. H CO2 condition (BF10, U = 7.859) was found 
(Tables S11–S14). In summary, extreme evidence for a large differ-
ence in alpha power was obtained at the C3 position between the C 
and H CO2 conditions.

The analysis of theta-band (θ, 4–7 Hz) was summarized in Tables 
S15–S18. The Bayes’ factor was extremely higher on C3 position 
(BF10 = 79655.357) than on the other positions (C4, BF10 = 4953.74; 
O1, BF10  =  8.48; O2, and BF10  =  120.028), suggesting there was 
extreme evidence that theta power under the C3 position is more 
affected by exposure conditions. The post-hoc comparison revealed 
the strength of evidence that theta power was affected across 

F I G U R E  4 One-sided Bayesian paired t-test for analysis of 
two groups. The prior and posterior distribution plots for the 
analysis of group mean differences. The dashed line represents 
the prior distribution, and the solid line the posterior distribution. 
The posterior distribution was shifted to the right. Each of the 
distributions has a grey dot at the 0.0 effect size. If the dot on 
the prior distribution is higher than the one on the posterior 
distribution, the Bayes’ factor supported the alternative hypothesis 
(MH CO2 condition >C). The median effect size and 95% credible 
intervals are also shown. The pie chart represented the strength of 
evidence for the H1 (alternative: MH CO2 condition >C, red) and H0 
(null: MH CO2 condition = C, white) hypotheses
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F I G U R E  5 Effect of different levels 
of CO2 exposure on the absolute power 
of alpha (α) at four positions (C3/4, 
Central; O1/2, Occipital). A. The violin 
plot with the median (Heavy dashed lines) 
with 25th and 75th (Light dashed lines) 
percentile. Each black dot represents 
the average EEG signal of all participants 
(n = 11) at each time point (6 min in total). 
*p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001. B. Time course of the 
average EEG signals in each condition. 
Error bars indicate standard deviation (SD)C MH H
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F I G U R E  6 Effect of different levels 
of CO2 exposure on the absolute power 
of theta (θ) at four positions (C3/4, 
Central; O1/2, Occipital). A. The violin 
plot with the median (Heavy dashed lines) 
with 25th and 75th (light dashed lines) 
percentile. Each black dot represents 
the average EEG signal of all participants 
(n = 11) at each time point (6 min in total). 
*p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001. B. Time course of the 
average EEG signals in each condition. 
Error bars indicate standard deviation (SD) C MH H

0

10

20

30

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

C3 position

C MH H
0

10

20

30
A

bs
ol

ut
e 

EE
G

 P
ow

er
,

(
V)

C4 position

C MH H
0

10

20

30

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

O1 position

C MH H
0

10

20

30

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

O2 position

ns

1 2 3 4 5 60

10

20

30

40

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

C3 position

C

MH

H

Exposure time (min)

1 2 3 4 5 60

10

20

30

40

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

C4 position

C

MH

H

Exposure time (min)

1 2 3 4 5 60

10

20

30

40

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

O1 position

C

MH

H

Exposure time (min)

1 2 3 4 5 60

10

20

30

40

A
bs

ol
ut

e 
EE

G
 P

ow
er

,
(

V)

O2 position

Exposure time (min)

C

MH

H

(A) (B)



10 of 16  |     JIN et al.

F I G U R E  7 Effect of long CO2 exposure 
on the absolute power of alpha (α) at four 
positions (C3/4, Central; O1/2, Occipital). 
The violin plot with the median (heavy 
dashed lines) with 25th and 75th (light 
dashed lines) percentile for the absolute 
power of alpha (A). Each black dot 
represents the average EEG signal of all 
subjects (n = 11). *p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001. Time 
course of the average EEG signals for 
the absolute power of alpha (B) in each 
condition. Error bars indicate standard 
deviation (SD)
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F I G U R E  8 Effect of long CO2 exposure 
on the absolute power of theta (θ) at four 
positions (C3/4, Central; O1/2, Occipital). 
The violin plot with the median (heavy 
dashed lines) with 25th and 75th (light 
dashed lines) percentile for the absolute 
power of theta (A). Each black dot 
represents the average EEG signal of all 
participants (n = 11). *p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001. Time 
course of the average EEG signals for 
the absolute power of theta (B) in each 
condition. Error bars indicate standard 
deviation (SD)

(A) (B)
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conditions. Specifically, At the C3 position, there was extreme evi-
dence for the C vs. H CO2 condition (BF10, U = 279.654) and the MH 
vs. H CO2 condition (BF10, U = 26728.333) were found, suggesting 
that greater differences in theta power between the MH and H CO2 
condition. At the C4 position, there was very strong evidence for the 
C vs. H CO2 condition (BF10, U = 82.901), and extreme evidence for 
the MH vs. H CO2 condition (BF10, U = 8956.561) were found. At the 
O1 position, moreover, there was moderate evidence for the C vs. 
H CO2 condition (BF10, U = 3.356) and the MH vs. H CO2 condition 
(BF10, U = 5.379) were found. At the O2 position, there was extreme 
evidence for the C and H CO2 conditions (BF10, U = 507.283) found 
(Tables S19–S22). In summary, the greater differences in theta power 
at the C3 position between the MH and H CO2 condition.

Intriguingly, the post-hoc comparison of the CO2 conditions 
showed a small Bayes’ factor (BF10, U  =  2.933) in the O2 regions 
for theta power only between the C and MH CO2 conditions, sug-
gesting that EEG signal may be affected even at MH CO2 condition 
(Table S22).

In the two-condition analysis, Bayesian analyses indicated an-
ecdotal (alpha-band at O2) or moderate (theta-band at C3 and C4) 
evidence that CO2 exposure affects EEG and strong ~very strong 
evidence that exposure time is not related to the EEG change 
(Table S23), which is consistent with the conclusion by the classical 
statistics.

4  |  DISCUSSION

Our report here is the first study to apply a combinational approach 
to analyze the CO2 effect on daytime sleepiness and EEG signals using 
classical and Bayesian statistics to compensate for each other. This 
novel approach combining the p-value and Bayes’ factor will be more 
helpful to the characterization of the uncertainty in the data. Although 
we did not find statistical differences in participants’ subjective sleepi-
ness across CO2 conditions by the repeated measures ANOVA, the 
results from the Bayesian statistics indicated anecdotal evidence that 
exposure to MH CO2 condition of environmental CO2 induced day-
time sleepiness at 40 min, leading that further analysis will be required 
by focusing daytime sleepiness at 40 min in future studies.

Notably, EEG signals at some channels were affected by MH 
CO2 conditions but not exposure time. Bayesian results were also 
consistent with results from classical statistics with different confi-
dence levels. These findings suggest that the EEG signals may also 
be affected by a low concentration of CO2 unrelated to sleepiness 
development during time. During CO2 exposure thus, it is neces-
sary to revisit the suitability of EEG-derived measures of objective 
sleepiness.

4.1  |  CO2 effect on daytime sleepiness

In the present study, a statistically significant difference was ob-
served in the main effect of time but not CO2 conditions in the 

classical repeated ANOVA consistent with two recent studies,27,38 
indicating that daytime sleepiness developed even under con-
trol normocapnic conditions. A previous study found that CO2 
at around 3000 ppm resulted in changes in heart rate variability 
with increased sleepiness.16 In this previous study, however, it is 
worth noting that participants’ maximum self-reported KSS score 
was 6, and the peak of sleepiness was observed about 2 h (10:00 
am) and 5 h (1:00 pm) after the experiments had started (8–9 am). 
This may suggest that sleepiness might be influenced by the alert-
ness rhythms (i.e., larger alertness fluctuations) and the circadian 
rhythms (i.e., “post-lunch dip”).39,40 Besides, unlike exposure to 
pure CO2, participants’ sleepiness in their experiments may have 
been affected by the confounding effects of bio effluents and 
other pollutants (e.g., volatile organic compounds) within the re-
stricted ventilation room.41

On the other hand, the Bayesian paired t-test in our study re-
vealed that exposure to MH CO2 condition might induce daytime 
sleepiness at 40 min. This result suggests that CO2 exposure may 
cause some degree of daytime sleepiness, but the time effect could 
mask the CO2 impact. Tediousness or fatigue could be another rea-
son to shade the sleepiness induction by CO2 exposure since partic-
ipants had to sit calmly on a chair with no allowance to do anything 
to avoid the artifact of EEG recordings, which possibly have led 
them into tediousness or fatigue even under the control condition. 
Therefore, it is expected that an improved experimental procedure 
excluding the effect of tediousness or fatigue factors may better 
demonstrate the effect of CO2 exposure on the development of 
daytime sleepiness.

4.2  |  CO2 effect on EEG signals

The changes in EEG signals in specific frequency bands (e.g., theta- 
and alpha waves) are widely accepted as one of the valid indicators 
of objective sleepiness judgments.42 However, whether the environ-
mental CO2 could affect the EEG signal as a “sleepiness indicator” 
during the CO2 exposure remained unknown. We tested in this study 
the effects of two CO2 conditions (MH and H) of CO2 exposure on 
EEG signals by both classical and Bayesian statistics.

In our study, the EEG signals were significantly affected by CO2 
condition (C vs. MH) but not exposure time (Table S22), even though 
clear daytime sleepiness was induced depending on exposure time 
in the KSS-J score (Figure 2), suggesting that the significant change 
in EEG signals may not be related to daytime sleepiness. In the previ-
ous report, Snow et al.43 attempted to use an EEG signal to measure 
objective sleepiness and suggested that “Individuals already lacking 
sleep may be more susceptible to the effects of CO2 in enclosed 
spaces” at ~2700  ppm of CO2 concentration. They have found no 
significant difference in EEG signals between normal and high CO2 
conditions by repeated measures ANOVA (4 EEG frequency  ×  4 
electrode regions × 2 EEG recording sessions × 2 CO2 conditions). 
By contrast, a recent study by Zhang et al. also reported that low lev-
els of CO2 exposure (approx. 3500 or 5000 ppm) lead to a significant 
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increase in EEG relative beta-power under 5000  ppm condition 
as well as physiological parameters such as breathing wave ampli-
tude and heart rate variability during MATB (Multi-Attribute Task 
Battery) tasks.44 Considering our results that exposure to MH CO2 
condition affected EEG signals without inducing subjective daytime 
sleepiness, the change of the relative beta-power might be related 
to CO2 exposure but not arousal. In addition, the difference from 
Snow's report may be explained by the threshold in which CO2 level 
affecting EEG signal could be above 4000 ppm. In conclusion, our 
study indicated that EEG measurement could not be a suitable way 
to estimate objective sleepiness during CO2 exposure. EEG signal 
interpretation may result in unfavorable contamination unrelated to 
sleepiness.

A previous study has also indicated that the increased relative 
power of the beta band is associated with arousal and stress.44 The 
mixed model analyzed the relative powers of all four frequency 
bands and found a significant main effect in both CO2 concentration 
(p = 0.0273) and exposure time (p = 0.0104) on the relative delta 
power at position O2. Further analysis by mixed model, however, 
has found main significant effect of time (p = 0.0051) but neither 
condition (p = 0.1404) nor delta wave (p = 0.1776). The relative delta 
wave also did not correlate with the KKS-J score.

In the study, EEG responded in the opposite direction to the 
short exposure to H CO2 condition and long exposure to MH CO2 
condition. Our results in the H CO2 condition, decreased alpha 
power and increased theta power, were consistent with many pre-
vious studies. Exposure to over 50 000 ppm (5%) CO2 caused sig-
nificant EEG changes; reduced gamma, beta, and alpha powers45–47 
and increased power in the delta and theta powers.25,48 These phe-
nomena could reflect physiological effects of hypercapnia and hy-
poxia, respectively, or both.48 It also needs to be noted that EEG 
changes might also be a result of elevated sympathetic nerve activ-
ity. Previous studies have demonstrated that exposure to elevated 
CO2 caused an increase in heart rate and cardiac rhythm in humans 
and animals,1,49,50  suggesting that CO2 is associated with sympa-
thetic activation.51 This view was also consistent with the fact that 
the sympathetic nervous system contributes to the CO2 response.52 
Indeed, heart rate was shown to be increased significantly by inhal-
ing 5% CO2.53,54 We also observed that the heart rate increased sig-
nificantly at the H CO2 condition (71 ± 6 beats/min) compared to 
Normal (C, 68 ± 5 beats/min) and MH CO2 condition (68 ± 5 beats/
min) (Figure S3 and Table S26). On the contrary, there was no signif-
icant difference between C and MH CO2 conditions during longer 
exposure (Figure S4 and Table S27). A human study by Shiraiwa et al, 
reported the theta power of EEG in the frontal area was positively 
linked (r = 0.782) with changes in sympathetic activity during craft 
activities55 in a CO2 non-adjusted condition. This finding is sup-
ported by previous research that the sympathetic activity depends 
on the strength of activation in the anterior cingulate cortex (ACC),56 
and ACC was also thought to play a critical role in theta wave gen-
eration and heart rate changes.57,58 We assume the enhanced theta 
activation in H may be explained by transient sympathetic activa-
tion due to a physiological response to a short exposure to high 

CO2 concentration, which was not relevant in a longer exposure to 
lower CO2 concentration in MH. The number of EEG studies using 
moderately high CO2 concentrations is limited.27,44,59 Zhang et al. 
observed a trend of a global decrease in the relative theta power 
with no significance in the CO2 exposure at 3500 or 5000 ppm,44 
which is also consistent with our results. Bullock et al. observed that 
spontaneous alpha activity was significantly affected by arterial 
CO2: the alpha powers were elevated or declined during hypocapnia 
or hypercapnia conditions, respectively.60 It has been reported that 
the CO2 exposure at 5000  ppm significantly increased breathing 
wave amplitude.44 In our study, we observed no significant increase 
in the respiratory rate by classical paired t-test (p = 0.053) but the 
Bayesian paired t-test indicated anecdotal evidence (BF10 = 1.628) 
of increase in the respiratory rate at MH CO2 condition (Figures S5, 
S6 and Table S28). Considering above, MH CO2 exposure might have 
caused mild hyperventilation, possibly avoiding the decrease in the 
alpha power. Altogether, the decrease in the alpha power at H may 
be as a general response of the brain to higher CO2 exposure which 
was not present in our MH condition because of the suppressive ef-
fect of mild hyperventilation. Regarding the increase in theta power 
in H condition could be as result of sympathetic activation only pres-
ent in H condition.

4.3  |  Advantages of a combinational approach 
using classical and Bayesian analyses

Our combinational approach reported here would provide the follow-
ing two advantages: (i) Although the classical statistical analysis didn't 
suggest any significance in the current data, Bayesian analysis could 
give us degrees of confidence as Bayes’ factors, leading to a possible 
research target in the future study. (ii) Bayesian analysis can give con-
fidence criteria to the p-values from the classical statistical analysis, 
solving p-threshold, multiple comparison, and p-hacking problems. 
Typically, p < 0.05 is used for a significant level in classical statistics, 
but there must be no clear reason. Multiple comparisons often re-
quire complicated statistical procedures, sometimes reducing detec-
tion power because of a compensated small p-value. The p-hacking 
is the unfavorable procedure to repeat statistical analysis until sig-
nificant p-values are obtained. The Bayesian analysis could provide us 
with a second criterion, which avoids the problems mentioned above.

4.4  |  Limitations and future recommendations

The present study has a few limitations. One of the most critical 
points is that daytime sleepiness could be influenced significantly 
even by slight sleep loss.61 Although GSQS is considered a practical 
assessment for subjective sleep quality, the result does not always 
guarantee that participants had enough sleep time and quality due 
to incorrect self-assessment. Therefore, it would be strongly rec-
ommended that future studies consider using a clinical sleep quality 
testing device like polysomnography (PSG) to assess the objective 
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sleep quality of participants. The second point is that the subjec-
tive questionnaire was applied to the assessment of participants’ 
sleepiness. For the current study, we used only the KSS-J to assess 
changes in subjective sleepiness during CO2 exposure. However, 
subjective sleepiness perception may result from individual differ-
ences and misjudgments, for example, the KSS-J may not be valid 
for examination when local sleepiness is present in the brain.46 In 
addition, although EEG is one of the effective methods to exam-
ine objective sleepiness, the CO2 effect could contaminate the EEG 
signal, as indicated by our study; future studies should include the 
multiple sleep latency test, which is clinically used to measure day-
time sleepiness in sleep disorder patients, to extend the readability 
of the results.

5  |  CONCLUSIONS

Our study is the first report to apply the combinational approach 
using classical and Bayesian statistics to investigate the effect of 
CO2 exposure on daytime sleepiness development and EEG signals 
to the best of our knowledge. Through comparison of classical and 
Bayesian statistical approaches, our results provided interesting in-
sights into the understanding of how exposure time and CO2 ex-
posure induce daytime sleepiness. The Bayesian statistical analyses 
indicated anecdotal evidence that exposure to MH CO2 condition 
induced daytime sleepiness at 40 min. We also showed that EEG sig-
nals could be affected by even a relatively low concentration of CO2 
(MH CO2 condition).

Our combinational approach using classical and Bayesian sta-
tistics presented in this study would enable us to perform more 
flexible analyses of daytime sleepiness, which resulted in con-
troversial conclusions due to large individual variations. Classical 
statistics frequently require an unfeasible sample size when the 
outcome variation is too large in the population, such as in the 
case of subjective daytime sleepiness. However, Bayesian statis-
tics accepts a relatively small sample size and allows to include 
additional data as Bayesian updating, leading to gradual progress 
with a small sample number. Especially, our combinational ap-
proach would enable researchers more flexible and reasonable 
interpretation even if there is no statistically significant difference 
in the classical statistical analysis. We would recommend that fu-
ture studies should consider using the Bayesian approach to fur-
ther explore ambiguous data.
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