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Abstract: The displacement responses of a civil engineering structure can provide important
information regarding structural behaviors that help in assessing safety and serviceability.
A displacement measurement using conventional devices, such as the linear variable differential
transformer (LVDT), is challenging owing to issues related to inconvenient sensor installation that
often requires additional temporary structures. A promising alternative is offered by computer
vision, which typically provides a low-cost and non-contact displacement measurement that converts
the movement of an object, mostly an attached marker, in the captured images into structural
displacement. However, there is limited research on addressing light-induced measurement error
caused by the inevitable sunlight in field-testing conditions. This study presents a computer
vision-based displacement measurement approach tailored to a field-testing environment with
enhanced robustness to strong sunlight. An image-processing algorithm with an adaptive
region-of-interest (ROI) is proposed to reliably determine a marker’s location even when the marker
is indistinct due to unfavorable light. The performance of the proposed system is experimentally
validated in both laboratory-scale and field experiments.
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1. Introduction

Structural health monitoring (SHM) is an essential tool for the effective maintenance of
civil infrastructure, with a number of SHM systems employed in real-world applications [1-5].
Data acquisition of structural responses is a fundamental step in SHM systems where the data is
subsequently processed for condition assessment and decision-making. Displacement responses from
a civil engineering structure are considered to be informative in evaluating the structure’s current
structural condition and safety. As it is directly related to structural stiffness and loadings, displacement
can be an indicator of structural changes and excessive external loadings [6,7]. For example,
the plastic deformation ratios of building structures are estimated by drift displacement data [8].
Most design codes used in modern countries (e.g., the AASHTO LRFD bridge design specification)
specify maximum displacement levels for bridge structures to assure structural safety and usability.
Thus, displacement information is commonly employed for infrastructure maintenance purposes.

Displacement sensors, such as linear variable differential transformers (LVDT) and strain-based
displacement transducers, are widely adopted for conducting displacement measurements in practice.
These sensors are typically placed between a target point on a structure and a fixed reference
point, measuring relative displacements. A sensor’s installation requires additional supporting
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structures with respect to the fixed references that are often unavailable or difficult to prepare in
field testing involving full-scale civil engineering structures. Furthermore, vibrations of the supporting
structures can significantly degrade measurement accuracy. Thus, using traditional sensors to measure
displacement responses from a full-scale structure is considered to be inefficient.

Recent research efforts have focused on effectively addressing this issue and providing
a practical means for displacement measurement. Specifically, extant research includes the following:
(1) the development of indirect displacement estimation algorithms to convert other physical quantities,
such as acceleration and strain, to displacement; and (2) an applicability investigation of relatively
new sensors, including the laser Doppler vibrometer (LDV), global positioning systems (GPS),
and computer vision-based approaches. Indirect estimation methods typically use acceleration and
strain measurements that are independent of the reference points [9-19]. However, the estimation
performance and accuracy of the indirect methods are highly dependent on displacement conversion
algorithms that should be carefully handled to avoid unexpected large errors. The laser Doppler
vibrometer (LDV) is a representative noncontact-type sensor that measures displacement by the
Doppler shift of emitted and reflected laser rays [20,21]. Although the LDV exhibits excellent accuracy,
disadvantages such as high cost and a limitation wherein an LDV only can measure displacement
in the direction of the emitted laser have prevented the widespread adoption of the LDV in practice.
Several studies have investigated global positioning systems (GPS) with respect to structural health
monitoring (SHM) as summarized succinctly by Im et al. [22]. The GPS is an attractive and promising
alternative for deflection monitoring. However, the positioning accuracy of current GPS technology is
considered as only appropriate for structures with large deflections, such as long-span bridges [23-25]
and high-rise buildings [26], while most of the other civil structures with small deflections require
better alternatives [27].

Previous studies have reported that computer vision-based methods possess the potential to
address the issues in existing techniques [28-53]. The existing vision-based methods differ by
(1) non-target approaches, (2) feature detection, and (3) coordinate transforms. The non-target
approaches utilize noticeable features from a structure, which are tracked to measure displacement.
Example algorithms include orientation code matching (OCM) [28,29], Kanade-Lucas-Tomasi
(KLT) [30], Eulerian-based algorithms [31,32], and upsampled cross correlation (UCC) [33].
Target-based approaches use a target marker with specially designed features, such as a circle [34-39],
a checkerboard [40—44], or a random pattern [45]. Once a feature is detected, the position of the feature
is transformed to the physical domain by using a coordinate transform. Several different transformation
methods have been employed, such as simple scaling [28-35,40,44], the affine transform [36,37],
extrinsic parameters acquisition [42,43], and the homography transform [46-50]. Previous studies
have shown the immense potential of computer vision for displacement sensing and other SHM
applications, such as system identification [51] and long-span bridge displacement measurement [52].

Several practical issues in computer vision-based displacement sensing have been identified in
the literature, including the use of target markers, the selection of camera locations, and light-induced
error. The non-target approaches are convenient in that they do not need an installation of target
markers. Despite the convenience, target-based measurement becomes useful when combined with
the homography transform, which can greatly increase field applicability by allowing cameras to
be arbitrarily placed [46-50]. Regarding light-induced error, few studies have examined feature
detection in a harsh field-testing environment, particularly those with adverse light conditions [53].
Sunlight causes an image blur of target markers and thereby leads to significant error in finding
features in the captured images.

This study presents a computer vision-based approach for displacement measurement tailored to
field testing for civil engineering structures. Following the hardware configuration and coordinate
transform used in previous studies, the proposed approach includes an image-processing scheme
associated with an adaptive region-of-interest (ROI) process to reliably identify marker locations under
the presence of light-induced image degradation. A laboratory-scale experiment is conducted to
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validate the proposed method in terms of light conditions. Field-testing results involving a 40-m-long
steel box girder bridge are presented to validate the performance of the proposed approach.

2. Computer Vision-Based Displacement Measurement

2.1. Overview

Computer vision-based displacement measurement methods typically consist of hardware and
software components (see Figure 1). The hardware part can be prepared with a commercial camera,
a computer for data acquisition and processing, and a user-defined target marker to build a highly
cost-effective system. The marker’s movements are recorded by the camera and simultaneously
transferred to the computer that calculates the displacement using image-processing algorithms and
coordinate transforms.
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Figure 1. Common configuration of vision-based displacement measurement approaches: (a) hardware;
(b) software.

As the coordinate transforms relate the image and the physical coordinates, the marker and the
camera must be properly aligned and placed considering the limitations of the coordinate transforms
selected. However, to find an appropriate location where the camera can be securely placed and the
assumptions in the coordinate transforms are not violated is often challenging in field testing. In this
section, coordinate transforms introduced by the previous research works are briefly described to
discuss issues in camera placement.

Four types of coordinate transforms are employed in the existing vision-based methods, which
are (1) simple scaling [28-35,40,44], the affine transform [36,37], the extrinsic parameters acquisition
method [42,43], and the homography transform [46-50]. Simple scaling multiplies the scaling factor
(unit: mm/pixel) to the measured image coordinate displacement; thus, the direction of the target’s
movement and the image displacement must be aligned with each other. The affine transform requires
the camera and the target marker to be aligned perpendicular to each other, because the assumptions
adopted in defining the transform disregard the perspective projection. Extrinsic camera parameters,
which describe six degree-of-freedom motions (three-dimensional (3D) translation and 3D rotation) of
the target marker, can be acquired only with a short focal length lens [54], which limits the camera to
stay near the target marker. The homography transform can map the image plane to the marker plane
regardless of the camera’s position as Figure 2 describes. As a result, the homography transform is
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regarded as an appropriate solution for unconstrained camera positioning in field testing, and is used
in this study.
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Figure 2. Illustration of the homography transform between the image and marker planes.

The displacement calculation using planar homography is based on the relationship between the
physical coordinates in the marker plane and the image coordinates in the captured image as described
in Equation (1).

si3x1 = H3x3w3x1 1)

where s denotes a scaling factor, i3x1 = [u v 1]T denotes an image coordinate, H3.3 denotes the
homography matrix, and w31 = [x y 1] denotes a physical coordinate. Firstly, the homography
matrix is computed by means of the direct linear transformation (DLT) algorithm [52], which adopts
at least four physical coordinates in the marker plane and the corresponding image coordinates in
the first image to determine the optimal transformation matrix between the image and physical
coordinate systems. Once the homography matrix is computed from the first image, a time history of
the marker’s movement is calculated by the inverse homography transform of the image coordinates
in the sequentially acquired images into the physical coordinates.

In full-scale civil structure applications, the vision-based approaches meet several practical issues,
such as the selection of a camera installation point and light-induced error. In the case of the camera
installation issue, the homography transform can be a solution allowing a camera to be placed at
an arbitrary point. The light conditions in a field-testing environment can have an adverse effect
on the captured images for a displacement measurement. To enhance the field applicability of the
computer vision-based method, this paper focuses on addressing light-induced image degradation,
while utilizing the homography transform to provide a wide freedom of camera installation.

2.2. Light-Induced Image Degradation

The features on a target marker could be inaccurately detected under adverse light conditions,
particularly in field testing. Direct sunlight or reflected light can cause significant degradation in
images captured with target markers. Such degradation can cause imbalanced brightness, a loss of
definite edges, or a change in feature shapes, which results in the erroneous positioning of features.
Feng and Feng [53] addressed this issue by providing a lab-scale experiment conducted in a dim-light
condition. However, the effects of excessive light exposure need to be further investigated. In this
section, the action of adverse light on the feature detection process is briefly described with an example.

For a better illustration, consider marker images (197 pixels x 193 pixels) acquired in the
laboratory experiment shown in Figure 3. A typical way of using the marker for a displacement
measurement is to find the centroid of the white circle surrounded by the black background, which
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can be obtained by image binarization. In case of the clear image shown in Figure 3a, the white circle
is successfully separated from the background. On the contrary, when the image has imbalanced
brightness (i.e., some background pixels are whiter than the circle), the binarization process fails
to isolate the circle, resulting in an incorrect estimation of the centroid. As cameras are typically
directed upward to focus on a structure where strong sunlight appears behind the structure in daytime,
this light-related issue must be controlled.

0> =

Original image with Binarized image Original image with Binarized image
dark background whitened background

(@) (b)

Figure 3. Image binarization using the Otsu threshold [55] for feature detection: (a) clear image;
(b) degraded image with imbalanced brightness.

Light-induced error must be carefully handled, as sunlight is inevitable in field testing. A strategy
to overcome this issue is proposed in Section 3. The advantage of using the proposed strategy is
experimentally verified in lab-scale and field testing environments in Sections 4 and 5.

3. Displacement Measurement Using an Adaptive ROI

3.1. Adaptive ROI Algorithm

The proposed approach enables an accurate displacement measurement in a field-testing
environment with adverse light exposure. To effectively address the light-induced feature detection
error described in the previous section, this study proposes a computer vision-based displacement
measurement strategy that focuses on a reliable feature detection algorithm with an adaptive ROI.

The adaptive ROI method is an automated and fast procedure to select the smallest ROI in each
captured image. As shown in Figure 4, the adaptive ROI method is composed of four steps. The first
step involves acquiring the boundary of the circle by applying an edge detection filter, such as the
Sobel filter [56], to the original image. Typically, the filtered image has a hollow hole as shown in
Figure 4b. This image is investigated to locate the smallest rectangular box that tightly contains the
hollow hole, which is termed the adaptive ROI in this study. The image cropped by the adaptive ROI
is shown in Figure 4c. Note that the cropped image contains a clear circle without a bright background,
and this results in a clear distinction between the circle and the background. As shown in Figure 4d,
the cropped image is binarized using a threshold method that helps in clearly separating the circle
from the background. Finally, the centroid of the circle is calculated by averaging the location of the
pixels in the circle. The overall procedure of the adaptive ROI takes 1.8 ms for a 200 pixels x 200 pixels
size of an image with MABLAB, which can cover over 500 Hz of a feature detection process. Hence,
the adaptive ROI method reliably detects features under adverse light conditions with sufficiently
fast computation.

@ () (d)

Figure 4. Flow of the adaptive region-of-interest (ROI) for the image in Figure 3b: (a) original image;
(b) Sobel edge; (c) cropped ROL (d) binarized image (Otsu threshold).
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The adaptive ROI can handle the adverse light effect in the image. The original image with the
whitened background shown in Figure 5a exhibits the histogram of the pixel intensity without clear
separation between black and white. Thus, any threshold value, including the Otsu threshold as
well as 70% and 80% of the pixel range, cannot fully isolate the circle from the background as shown
in Figure 5a. On the contrary, the histogram of the cropped image by the adaptive ROI approach
clearly has two groups of pixel intensities, each of which represents the circle and the background.
Indeed, any threshold between the two groups can successfully binarize the cropped image. As such,
the adaptive ROI provides a reliable means of feature detection tailored to a field-testing environment.
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Figure 5. Histogram and the binarized image with different threshold levels for (a) original image;
(b) cropped image along the adaptive ROL

The flowchart in Figure 6 shows the overall process of the displacement measurement.
The initialization step uses the feature positions (i.e., the centroids of the white circles) in the first
image and the foreknown metric locations of the circles to compute the homography transform matrix.
Here, the adaptive ROI method is employed in identifying the feature locations in the image to avoid
the adverse effect of excessive exposure. The real-time displacement acquisition step commences when
the direct linear transformation algorithm determines the homography matrix. The displacement
acquisition step involves first detecting features with the adaptive ROI method from an incoming
frame, and then using the homography transform to calculate the displacement. This process is
repeated for each frame obtained from the camera.

Real-time displacement

Initialization N
acquisition
[ Start ]H [Read first frameJ —> [ Read frame ]e \
Captured Captured
frame frame
Feature detection Feature detection
by adaptive ROI by adaptive ROIL
Feature Feature
points point i

Marker H computation Dlsplwla?er_nent ispl
dimension (DLT algorithm) caleulation Displacement
& | w=H"1xi
% H:homography transform matrix 3 i: image coordinate of a circle
3% DLT: direct linear transform 3% w: physical coordinate of a circle

Figure 6. Flowchart of computer vision-based displacement measurement.
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3.2. Uncertainty Analysis

A numerical simulation for an uncertainty analysis was conducted to identify the effect of light
on the accuracy of the adaptive ROI method. An image of 200 pixels by 200 pixels is numerically
produced to have a clear white circle with a 30-pixel radius on a black background. Gaussian noise is
added to the image for a realistic simulation. The added noise is assumed to be a zero-mean process
with a variance of 1.8588, which is determined from a typical charge-coupled device (CCD) camera.
The image’s degradation due to the excessive light exposure as shown in Figure 5a is simulated by
adding a pixel intensity gradation so that the dark background on the right side of the image becomes
lighter as shown in Figure 7. As a stronger pixel intensity gradation is added, the average pixel
intensity of each image increases. Given an added gradation, the circle moves 0.01 pixel to the right
until the circle completely moves 1 pixel, while the displacement estimation errors of the adaptive ROI
method are calculated. The error is represented in terms of pixels, which can be readily converted to
physical displacement values using a known scaling factor (mm/pixel). Figure 7b shows the error
versus the average pixel intensity of each image. The drastic change in error around the average pixel
intensity of 157 is caused when the white area expanded due to excessive light touching the circle in
the center of the image. Thus, this is the limiting condition for the adaptive ROI method.

Average pixel Average pixel Average pixel Average pixel
intensity: 55.3 intensity: 82.5 intensity: 130.2 intensity: 180.8
(No gradation

effect added)

(@
5 T T T T T
@® Mean

| Variance (20)

Error (pixel)
N

0 20 40 60 80 100 120
Changein average pixel intensity (pixel)
(b)
Figure 7. Error of the adaptive ROI method with respect to the light exposure. (a) Simulated marker
images with added pixel intensity gradations; (b) error of the adaptive ROI method.

4. Experimental Validation: Laboratory-Scale

A laboratory-scale experiment was conducted using a shaking table to investigate the robustness
of the adaptive ROI method with respect to light-induced image degradation. Figure 8 illustrates the
experimental setup, including the camera, target marker, computer, light source, and LDV. The camera
is placed 2 m away from the target marker. The target marker is installed on a shaking table that
provided harmonic excitation with a frequency of 1.5 Hz and an amplitude of 2 mm in the horizontal
direction. An artificial light is placed behind the marker to produce image degradation. Here, the right
side of the marker appeared to be light gray in the captured image due to the backlight, which makes
the white feature circles indistinguishable from the background (see Figure 8b). The resulting
displacements from the adaptive ROI are compared with the reference displacements measured
by the laser Doppler vibrometer (LDV). The hardware configuration is summarized in Table 1.
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Figure 8. Laboratory-scale test: (a) experimental setup; (b) schematic view and captured frame.
LDV: laser Doppler vibrometer.

Table 1. Hardware specifications.

Parts Model Features

- Four white circles in a black background
- Horizontal interval: 150 mm

- Vertical interval: 100 mm

- Radius of the circles: 10 mm

Marker User-defined

- NTSC output interface !
- x22 optical zoom

- 1.73 GHz Intel Core i7 CPU
-4 GB DDR3 RAM

LDV RSV-150 - Displacement resolution: 0.3 pm

1640 x 480 resolution at 29.97 fps. CPU: central processing unit; RAM: random access memory; NTSC: national
television system committee.

Camera CNB-A1263NL

Computer [G-A510

The displacement measured by the adaptive ROl was compared to those measured by the
conventional approach (i.e., Otsu binarization without the adaptive ROI) and measured by LDV.
The displacements calculated from the upper left and upper right circles are individually shown
in Figure 9 to clearly demonstrate the light-induced errors. All displacements calculated using the
adaptive ROI are accurately measured and agreed well with those from the LDV, even when the light
significantly affected the marker images. However, the conventional approach, without the adaptive
RO, involved considerable errors, particularly with respect to the circles on the right, as expected from
the image degradation caused by the right side of the background. Furthermore, the displacement
from the left circles exhibits considerable errors, as shown in Figure 9b, because the centroid detection
failure on the right circles directly leads to an erroneous homography matrix. For further error analysis,
correlations between the displacements measured by the camera and the LDV are shown in Figure 10,
which also confirms the advantage of using the adaptive ROI. The regression line in the case of
the adaptive ROI has a coefficient of determination, R?, of 0.9987 and 0.9988 for the upper right
and upper left, respectively. Furthermore, amplitude-dependent errors are not observed in that the
regression line and the correlation plot are consistently close to each other over the entire amplitude
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range. The adaptive ROI-based feature detection method is thus expected to prevent possible large
measurement errors that could frequently occur due to sunlight in a field-testing environment.

@)

(b)
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Figure 9. Comparison of the displacements with and without the adaptive ROI and by LDV from the

feature circles at the (a) upper right; (b) upper left.

Displacement from camera (mm)

Displacement from camera (mm)

g e w/ adaptive ROI ‘ /] I/ é ¢ w/ adaptive ROI ' ‘ 2 - /_

@ 2 + R2=0.9987 . e d,/ E 2 « R2=0.9988 //

> « y=1.02x R A > « y=1.01x x-":’

8 - P o 8 4 - A%

— » w/o adaptive ROI RIF ¢ —~ » w/o adaptive ROI s

g « R2=-4.3407 Sy g + R2=0.8457 g

£ 0 © y=3.13x .,k- go « y=1.38x 74

- s ¢ /ad - )9-‘3‘

8 ) ,(-... 5 :/}"

Eal L

Q ’6 e Q o o

< %s * 3

&2 // il &2r ///

=) : : . . =) : : : : .
-2 -1 0 1 2 -2 -1 0 1 2

(@) (b)
Figure 10. Correlation between the displacement from the camera and the LDV by a linear regression
line from the circle at the (a) upper right; (b) upper left.

The measurement uncertainty of the adaptive ROI method was experimentally examined with
varying light conditions. Over 14,000 images were captured while the backlight located on the right
side of the marker was gradually brightened to the maximum level of the lighting equipment as
described in Figure 11a. The average pixel intensities of the marker images were increasing with
stronger backlight. The trend of the measurement error is shown in Figure 11b in terms of the average
pixel intensity. The captured images are categorized into nine groups in terms of the change in pixel
intensity compared to the without backlight case. The displacements of the circle for each group are
then averaged to identify the trend of the measurement error. Herein, the position of the feature point
when the backlight is turned off is assumed to be the ground truth. The measurement error is at most
0.23 pixels in the horizontal direction and 0.04 pixels in the vertical direction. The measurement error
in the horizontal direction is much larger than that in the vertical direction, because the backlight is
placed on the right side of the marker in this experiment. The adaptive ROI method is observed to
achieve sub-pixel accuracy even with an adverse light condition, which can produce large unacceptable
errors unless properly handled.
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Figure 11. Measurement errors with varying light conditions. (a) Images with different backlights;

(b) error for each direction.

5. Field Validation

A full-scale experiment was performed at the Samseung Bridge, which is a 40-m long steel
composite girder bridge located in Korea as shown in Figure 12a. The Samseung Bridge has been
built for bridge testing purposes, providing an ideal field-testing environment. The same target
marker as that used in the laboratory-scale experiment is attached to the bottom of the bridge deck
at the mid-span using magnetic bases. As shown in Figure 12b, three different camera locations are
considered to verify the benefit of the homography-based coordinate transform. An LDV that is located
right below the target marker provides reference displacements to compare with those obtained from
the camera. The LDV could be installed at the desired position because the area below the bridge
involved an open space without any significant obstacles. This is not always the case with respect
to most other bridges. A 29-ton truck operating on the bridge is used as an external load to produce

bridge deflections.

(a)

Marker

6m
. T . »
o
-
Case 2

(b)

Figure 12. Experiment setup: (a) overview; (b) experimental cases with different camera locations to

verify homography-based unconstrained camera positioning.
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As the experiment was conducted during the daytime, the captured images were observed to be
affected by the sunlight and bright background as shown in Figure 13. The light from the sky severely
changed the background brightness at the corner of the target marker. The degradation due to the
excessive exposure impairs feature detection by the conventional approach, whereas the feature circles
are correctly determined by using the adaptive ROI process in all three cases.

The measured displacements calculated by the proposed method are compared with those
obtained by the conventional technique without the adaptive ROI as well as the references from the
LDV. In all three cases, as shown in Figure 14, the displacements calculated with the adaptive ROI and
the homography transform are consistently close to those measured by the LDV. In the case without the
adaptive ROI, the feature detection failure that occurred in Cases 2 and 3 results in significant errors in
the calculated displacement. For a quantitative demonstration of the results, two error indicators are
defined as:

Emax = |maX(|ucamera|) - maX(|uexact|)| (2)
O camera — Oexact
E, = |t —eme 3)
Oexact
where || denotes the absolute value, and #camera and seyqc: are the displacement measured by the

camera and LDV, respectively. O cumera and oexact are the standard deviations of the displacement from
the camera and LDV, respectively. The error indicators calculated for each case are summarized in
Table 2, and verify the observations in Figure 14. Thus, the results indicate that the proposed computer
vision-based approach provides accurate displacement measurements with robustness to unfavorable
light conditions and flexibility in camera position.

without with
adaptive ROI adaptive ROI

@

@)
without with
adaptive ROI adaptive ROI

9
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=
Q

1
1
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L

(b)
without with
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]

Figure 13. Feature detection with and without the adaptive ROI process: (a) Case 1; (b) Case 2; (c) Case 3.
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Figure 14. Comparison of measured displacements: (a) Case 1; (b) Case 2; (c) Case 3.
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Table 2. Measurement errors.

Time (s)
Zoom in of (c)

Cases Feature Detection Enax Esq
Case 1 without adaptive ROI 0.0549 mm 0.0185
ase with adaptive ROI 0.0433 mm 0.0126
Case? without adaptive ROI 0.2518 mm 0.1736
ase with adaptive ROI 0.0314 mm 0.0127
Case 3 without adaptive ROI 0.7110 mm 0.4081
ase with adaptive ROI 0.0565 mm 0.0439

In addition to the error measures, the correlation between the displacements from the camera and
the LDV is shown in Figure 15 to further analyze the error characteristics. Case 1 with the clear marker
has a regression line with a slope of 1 and R? of 0.9873 when the adaptive ROI is used. For Cases 2 and
3, the correlation plots deviate more from the regression lines because of the strong backlights, resulting
in lower R?; however, the adaptive ROI can successfully correct the slope of the regression line to 1.
This observation also can be verified from the error histograms in Figure 15. The error distributions of
the adaptive ROI have mean values close to zero with smaller standard deviations compared to the
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displacement obtained without the adaptive ROL Thus, the adaptive ROI can effectively handle the

adverse effect of light on recording the marker image.

Linear regression plot
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Figure 15. Error analysis by means of a linear regression model and a histogram of the error for

(a) Case 1; (b) Case 2; (c) Case 3.

6. Conclusions

In the present study, a reliable computer vision-based approach to provide a practical means for
structural displacement measurement was presented. To maximize the applicability of the vision-based
system to full-scale civil engineering structures, the proposed approach focused on addressing image
degradation due to excessive exposure. To this end, an adaptive ROI process was developed to reliably
detect the features on the target marker even when undesired light significantly affects the captured

maker image.

The proposed structural displacement measurement method was validated in both laboratory
and field-testing environments. A laboratory-scale experiment with artificial light to generate the
image degradation was conducted. Three field experiments were subsequently conducted at the
Samseung Bridge to validate the performance of the adaptive ROl method. In addition, the experiments
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also verified the unconstrained camera positioning provided by the homography transform in the
field testing environment. The images of the feature circles on the target marker were significantly
illuminated, as the camera was on the side looking up the bridge. This condition was expected to
be common in this type of field experiment. The proposed method measured the displacement with
subpixel accuracy even with the light-induced image degradation. The results also indicated that the
proposed method reliably tracked the displacements of the target marker at three different camera
locations using the homography transform. In conclusion, the structural displacement measurement
method examined in the present study is reliable as well as suitable for field applications which require
robustness to adverse light and enhanced flexibility in selecting camera locations.
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