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Abstract 

Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities 
including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for 
life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has 
indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism 
exerts a great impact on CSCs’ properties such as the capability of self-renewal, differentiation, invasion, 
metastasis, and drug sensitivity and resistance. CSCs’ formation and maintenance cannot do without the 
regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol 
metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling 
pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs’ properties, and 
such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other 
hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. 
Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising 
therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of 
lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for 
anticancer treatment. 
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Introduction 
Cancer stem cell (CSC) is a proportion of 

abnormal cell lineages involved in tumor initiation, 
progression and metastasis during tumorigenesis 
(Figure 1), are believed the major cause of drug 
resistance and recurrence after a period of anticancer 
chemotherapies. CSCs are similar to or even enhanced 
self-renewal of the normal pluripotent and 
multipotent stem cells but lose a certain degree of 
differentiation capacity [1,2]. Two potential origins of 
CSCs are suggested--either derived from normal 
stem/progenitor cells through transformation/ 
reprogramming or be transformed from fully 
differentiated cells caused by genetic instability and 
epigenetic abnormality during neoplasia pathology 
[3]. Evidence shows that adenomatous polyposis coli 
(APC) deleted crypt stem cells could induce intestinal 
microadenomas by activating the Wnt signalling 

pathway [4]. Besides, CSC surface markers, such as 
CD133+, CD44+, CD34+ CD166+, CD24+ and ALDH1+, 
also are well known stem cell markers. The study on 
cell-type plasticity shows that the Wnt-activation in 
intestinal epithelial cells (IECs) induces non-stem 
cancer cells’ dedifferentiation and crypt stem cell 
expansion [5]. Results from methylation-specific 
polymerase chain reaction (PCR) experiments reveal 
that the activated IL-6/JAK2/STAT3 signalling 
promotes the proliferation of lung cancer stem cells by 
suppressing p53/p21 expression via DNA 
hypermethylation [6]. During epithelial-mesenchymal 
transition (EMT), a complicated, multistage process 
for epithelial cells to enhance motility, weaken cell 
polarity and degrade the extracellular matrix (ECM) 
[7], both normal and cancer cells acquire stem-cell like 
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properties to allow migration and invasion to foreign 
tissues [8]. 

CSCs have been detected in different types of 
tumors, including lung cancer [6], breast cancer [9], 
ovarian cancer [10], pancreatic cancer [11], human 
acute myeloid leukemia (AML) [12], and glioblastoma 
(GBM) [13]. Regardless of the origin, CSCs are 
hierarchical plasticity subpopulations driving tumor 
progression and chemotherapy resistance, thereby 
hindering tumor prognosis and promoting tumor 
recurrence. Besides the abnormalities of signalling 
activations, increasing data have shown that the 
abnormalities of lipid metabolism exhibit great 
impacts on CSC properties. 

Abnormal microenvironment and 
metabolic pattern in tumors and CSCs 

CSCs are a group of subpopulation cells in 
carcinoma. Numerous studies demonstrate that CSCs 
are responsible for driving tumor growth, epithelial- 
mesenchymal transition (EMT), metastases and drug 
resistance. Alternated nutrient consumption between 
tumor bulk cells and CSCs in tumor 
microenvironment (TME) is associated with tumor 
immune evasion and progression. Induced by 
oncogenes, CSCs facilitate adaptive metabolic 
changes to sustain increasing energy need for growth 
and anabolic functions. Similar to stem cells, CSCs 
exhibit high plasticity in response to the metabolic 

changes in maintaining self-renewal, proliferation, 
and survival [14]. The metabolic phenotype of CSCs 
may be heavily decided by microenvironmental 
conditions. The metabolisms of CSCs are specifically 
varied, dependent on tumor types and the site of 
metastasis. Metabolic alternation of CSCs has been 
proposed as a functional marker and promising 
therapeutic target. 

Warburg effect 
The suffering of cancer cells from abnormal 

limitations in nutrient supply (such as glucose and 
oxygen) is referred to as the “Warburg effect” [15]. 
Warburg effect describes a metabolic shift from 
oxidative phosphorylation (OXPHOS) to glycolysis in 
pentose phosphate shunt and an accumulation of 
lactate in exchange for sustained ATP production in 
TME [16]. Emerging evidence has suggested that the 
glycolytic metabolism of Warburg effect plays a role 
in stemness and the EMT process [17]. R406, a Syk 
inhibitor for immune thrombocytopenia (ITP), 
inhibits neurosphere formation and triggers apoptosis 
in GBM through inducing a metabolic shift from 
glycolysis to OXPHOS and subsequently producing 
excessive reactive oxygen species (ROS) in glioma 
stem cells (GSCs) [18]. In the basal-like breast cancer 
(BLBC) EMT process, Snail-mediated promoter 
methylation of fructose-1,6-biphosphatase (FBP1) 
gives rise to enhanced CSC-like properties and 

 
Figure 1. The hallmarks of cancer stem cells (CSCs). CSCs may originate from either normal stem cells (including progenitor cells) or transformation of differentiated 
cells through reprogramming by genetic instability and epigenetic abnormality under long-term stress conditions (e.g., microenvironment factors, hypoxia, virus invasion, etc.). 
CSCs display a close association with tumor microenvironment. The self-renewal capability of CSCs is significantly enhanced to certain degrees similar to or even stronger than 
that of the normal pluripotent and multipotent stem cells, but the differentiation capacity is somewhat lost. During the epithelial-mesenchymal transition (EMT) process, cancer 
cells acquire stem-cell like properties to allow migration and invasion to foreign tissues. CSCs are hierarchical plasticity subpopulations, which are the main causes for 
tumorigenesis, immune evasion, EMT, tumor progression, metastasis, and drug resistance. These characters of CSCs are regulated by several signalling pathways, such as Notch, 
Wnt, Hippo cascades, Hedgehog, hypoxia-inducible factor 1 (HIF), etc.  
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tumorigenicity through increasing glucose uptake 
and macromolecules biosynthesis, as well as 
inhibiting oxygen consumption through suppressing 
mitochondrial complex I activity [19]. Internal tandem 
duplication (ITD) mutation in Fms-like tyrosine 
kinase 3 gene (FLT3/ITD) accounts for approximately 
30% of acute myeloid leukemia (AML) cases. FLT3/ 
ITD is extensively present in leukemia stem cells 
(LSCs) and is proposed to be a primary event in 
leukemogenesis in possessing CD123 (IL-3RA) stage, 
and is the main cause of poor prognosis in patients 
[20]. Results from both in vitro and in vivo studies 
demonstrate that FLT3/ITD upregulates aerobic 
glycolysis through activating mitochondrial 
hexokinase (HK2) in an AKT-dependent manner. 
Glycolytic inhibitors cause severe ATP depletion and 
massive cell death in FLT3/ITD positive leukemia 
cells [21]. Recent findings suggest that Warburg effect 
persist stem cell metabolism in tumors, as a failure of 
differentiation [13,22]. Clinical studies reveal that 
lower-level uptake of 18F-fluorodeoxyglucose occurs 
in well-differentiated tumors while higher level 
uptake happens in the poorly differentiated group. In 
GBMs, CSCs under nutrient deprivation shift toward 
the use of pentose phosphate shunt, which promotes 
CSCs’ self-renewal, proliferation and survival [15]. 

Oxidative phosphorylation (OXPHOS) 
As opposed to differentiated bulk tumor cells 

that suffer from the “Warburg” effect, CSCs exhibit a 
distinct metabolic phenotype--being highly glycolytic 
or OXPHOS dependent. Cancers can be clustered 
along the differentiation pathways into two groups, 
utilizing either glycolysis or oxidative 
phosphorylation. Each group is decided by tumor 
subtypes, specific phenotype of CSCs, and tumor 
microenvironment [23]. In an inducible pancreatic 
cancer mouse model, a subpopulation of dormant 
tumor cells is found to rely on oxidative 
phosphorylation (OXPHOS) for survival [24]. 
OXPHOS happens in the mitochondria, with the 
generation of ROS. In gliomaspheres, CSC expansion 
also depends on OXPHOS in the mitochondrial 
respiratory chain to produce energy for survival [25]. 
AML employs higher mitochondria oxidative 
phosphorylation as compared to non-malignant 
CD34+ hematopoietic progenitor cells [26,27]. In an 
AML xenograft model, the bone marrow stromal cell 
is deprived of mitochondria through deriving 
tunnelling nanotubes in the stimulation of superoxide 
by NOX2. Inhibition of NOX2 interrupts 
mitochondrial transfer, increases AML apoptosis, and 
improves AML mouse survival [28]. On the contrary, 
lung CSCs derived from A549 cells display a low 
quantity of mtDNA, high mitochondrial membrane 

potential, low oxygen and glucose consumption and a 
low intracellular concentration of ATP and ROS [29]. 
Similarly, mitophagy, a selective cleansing of 
mitochondria through autophagy, facilitates the 
generation and proliferation of liver CSCs by 
inhibiting p53 expression [30]. 

Lipid metabolism 
Lipids are typically classified as lipoids 

(phospholipid, cholesterol and cholesterol ester, etc.) 
and fats (triglycerides, TG). Lipoids are essential for a 
variety of cellular functions, including membrane 
construction, signalling transduction and other 
biological activities. TG is the main source of cellular 
energy. Lipid metabolism is elementary for life 
sustentation that balances synthesis and degradation. 
As a prerequisite to maintain cell survival, lipid 
homeostasis is coordinated by integrated systems to 
quickly respond to metabolic changes. In an energy- 
deficient or a nutrient exhausted condition, the cell 
demand for metabolic intermediates for nutrient 
synthesis and energy production is substantial. 
Hence, the role of TGs and cholesterol is especially 
indispensable in cancer and related diseases. 
Accordingly, disorder or alternation of lipid 
metabolisms has been linked significantly with 
pathogenic infection (bacteria, fungi, and virus), lipid- 
related diseases (hyperlipidemia, lipid storage 
disease, obesity, etc.) and pathological cancers. 
Currently, lipid metabolism has been heralded as a 
novel and significant target for cancer therapy. 
Emerging evidence has revealed cancer cell 
alternations in several aspects including membranes 
formation, lipids synthesis and degradation, and 
cellular signalling driven by lipids. In the following 
sections, we focus on the importance and latest 
findings of fatty acid and cholesterol metabolisms in 
CSCs, as well as relevant and promising therapeutic 
targets for cancer therapy. 

The Effects of Lipid Metabolism 
Alterations in CSCs 

Accumulating evidence has shed light on 
alterations in lipid metabolism and related pathways. 
Recently, it has been shown that lipids and 
lipoproteins, either exogenous (or dietary) uptake or 
endogenous synthesis, have been shown to have a 
great impact on maintaining CSCs’ properties in 
tumorigenesis. For example, the fatty acid synthase 
(FASN), a rate-limiting enzyme for de novo lipid 
synthesis, is consistently found to facilitate in multiple 
types of CSCs. Furthermore, lipids and cholesterol are 
increasingly uptaken or generated through hyper- 
activating the metabolic routes in tumor stem cells. 
Single-probe mass spectrometry (MS) study has 



Theranostics 2020, Vol. 10, Issue 16 
 

 
http://www.thno.org 

7056 

revealed a remarkable metabolic pattern of live CSCs 
at the single cell level [31]. As compared to non-stem 
counterpart, CSCs generate more active tricarboxylic 
acid (TCA) and more abundant unsaturated lipids. 
Previous studies showed that CSCs require more 
monounsaturated fatty acids (MUFAs) than their 
non-stem counterparts in ovarian tumors and 
glioblastoma, suggesting that lipid desaturation may 
be an ideal biomarker for CSCs [32-35]. Furthermore, 
a comparison of lipidomic profiles between CSCs and 
non-stem cancer cells suggests that MUFAs affect the 
formation and stemness of CSCs [32]. As the 
structural components of cellular membranes, the 
membrane fluidity is highly dependent on the degree 
of lipid unsaturation. Low membrane fluidity inhibits 
metastasis and stemness in breast cancers [36]. Of 
note, treating with saturated fatty acids (SFAs) in 
proportion with glycerophospholipids suppresses 
hepatocellular carcinogenesis [37]. The high 
proportion of saturated fatty acids attenuates 
membrane tension and inhibits symmetric division or 
pluripotent deficiency, indicating the importance of 
MUFAs in maintaining CSCs [38]. The unsaturated 
lipids regulated by stearoyl-CoA desaturase-1 (SCD1), 
nuclear factor κB (NF-κB) and aldehyde 
dehydrogenases 1 A1 (ALDH1A1) significantly 
promotes the stemness of colorectal CSCs [31]. To 
further clarify this assumption, a study on a series of 
577 breast carcinomas shows that the highly elevated 
ALDH1 level is correlated with poor prognosis [39]. 
Results obtained from both in vitro and in vivo studies 
have highlighted the importance of ALDH activity in 
CSCs’ self-renewal and tumorigenicity. Additionally, 
elevated fatty acid oxidation (FAO) ensures the 
energy supplies for the extreme environment 
alternation in CSCs. Hence, carnitine palmitoyl 
transferase 1 (CPT1), the critical accelerator of FAO, 
promotes breast cancer stemness and chemoresistance 
[40]. Besides the glycolysis or oxidative 
phosphorylation, lipids from adipocytes residing in 
the microenvironment are also used as an energy 
source in ovarian cancer and prostate cancer [41,42]. 
CSCs require an accelerated FAO to obtain sufficient 
metabolic intermediates, such as acetyl-CoA and 
NADH, to satisfy the needs of ATP generation for 
self-maintenance and proliferation. In hepatocellular 
carcinoma (HCC) cells and leukemia-initiating cells, 
FAO is linked to stem-like properties with de novo 
fatty acid synthesis [43]. Leukemia-initiating cells 
co-opt the adipose tissue niche to create a supportive 
microenvironment for leukemic growth and 
chemoresistance [44]. Cholesterol is one of the key 
components in the cell membrane and lipid raft for 
signalling transduction in pro-oncogenic and 
anti-apoptotic pathways. Interfering cholesterol 

biosynthesis may bring large, additional impacts on 
the cholesterol content in lipid rafts and the signalling 
transduction for CSCs’ proliferation [45,46]. Lipid 
droplets (LDs) are cytoplasmic organelles originating 
from the endoplasmic reticulum and/or the Golgi 
apparatus for fatty acids and cholesteryl ester storage. 
Studies from Groupwise comparisons show that the 
accumulation of LDs has a close relationship with 
tumor proliferation and aggression potential [47]. In 
colorectal CSCs, as revealed by Raman spectroscopy 
imaging, a high level of LDs is a distinctive marker of 
CSCs. LDs’ level also fluctuates with other well- 
accepted CSC markers such as CD133, activated Wnt 
pathway, etc. [48]. Furthermore, a statistical analysis 
of the overall lipid droplets from cancer cells has been 
considered as an ideal marker of tumor 
aggressiveness [49]. 

Fatty Acids (FAs) homeostasis 
Fatty acid (FA) metabolism is the core of lipid 

status harmonization, which maintains the energy 
and supplies for the living of organisms. FA synthesis 
produces the fundamental component of various 
lipids for cell membrane construction, signal 
transduction, energy storage, and biological 
functions. FA catabolic pathway generates energy via 
FA degradation conducted by FA oxidation (FAO), or 
commonly known as β-oxidation. 

In the last years, the importance of lipid 
metabolism in cancer cells has been repeatedly 
emphasized, and a series of significant advances have 
been made to provide useful reference indicators and 
directions for cancer therapy [50,51]. Tumor cells 
proliferate rapidly while angiogenesis becomes 
abnormal, thus cancer cells are under hypoxic, hyper- 
oxidative, acidic and malnutrition conditions. CSCs 
alter their basic metabolisms to encounter those 
unfavorable microenvironments. Lipid metabolism 
presents a massive and complex network of flexible 
pathways, feedback loops and cross talks that 
maintains the metabolic requirement for cancer cells. 
FA homeostasis and balance of FA synthesis, storage, 
and degradation control the core node of the 
framework. FA synthesis generates various metabolic 
intermediates that are fed to anabolic metabolisms for 
cellular membrane maintenance or signal 
transduction in inducing oncogenic cascades, 
resulting in malignancy, chemoresistance and cancer 
stemness. As a supplement, FAO retrieves acetyl CoA 
to initiate FA synthesis, indicating that FA synthesis 
and FAO are mutually complemented. More 
distinctive than glycolysis contribution in CSCs, lipid 
metabolism may contribute to CSCs in varied aspects. 
A recent study shows that fatty acids metabolisms, 
both FA synthesis and FAO, contribute to the 



Theranostics 2020, Vol. 10, Issue 16 
 

 
http://www.thno.org 

7057 

pluripotency and reprogramming of embryonic and 
somatic stem cells [38,52,53]. Compared to the 
non-stem counterparts, CSCs reduce the utilization of 
glycolysis but maintain a sufficient amount of ATP 
generation, indicating the significance of alteration in 
lipid metabolism [54]. Distinctive lipidomics changes 
have been demonstrated to vary in CSCs and bulk 
cancer cells in glioblastoma multiform [32]. Moreover, 
the intermediates generated by glycolysis are fed to 
FA synthesis for CSCs self-renewal [55]. Indeed, fatty 
acid homeostasis, or the balance of catabolic/anabolic 
state, keeps the grip of pluripotency, self-renewal, 
proliferation and formation of the CSCs (Figure 2). 

FA synthesis promotes CSCs 
Limited to the absorption and consumption of 

dietary lipids, cancer cells urgently require FA 
synthesis to meet energy needs and structural 
construction. Overall, key players in FA synthesis, 
such as ATP-citrate lyase (ACLY), acetyl-CoA 
carboxylase (ACC) and fatty acid synthase (FASN), 
are elevated in cancer cells. These enzymes are 
emerging as the hallmark of cancer and even ideal 
markers for cancer stemness [51,56]. Unlike their non- 
stem counterpart, CSCs may absorb glycolytic 
metabolic intermediates for lipid biosynthesis to 
improve self-renewability under the Warburg effect 
[57]. By measuring the 14C-glucose and 14C-acetate 
incorporation as the carbon source for de novo 
lipogenesis, studies show GSC requires more 
lipogenesis than bulk cancer cells in glioblastoma [58]. 
Emerging evidence has emphasized the impact of 
fatty acid synthesis deficiency in multiple 
carcinogenesis and cancer stemness, recognizing the 
inevitable role of de novo fatty acid synthesis in CSC 

self-renewal and survival [59]. Here, we mainly 
compare each key player for its role in constituting 
fatty acid synthesis and further discuss the potential 
therapeutic strategies in eliminating CSCs via the anti- 
lipogenesis method. 

ATP citrate lyase (ACLY)  
ACLY catalyzes the conversion of citrate into 

acetyl CoA in the cytoplasm, which is the significant 
building block of fatty acid and cholesterol synthesis. 
Elevated expression level and activation of ACLY 
have been broadly reported in multiple tumors. 
Elevated ACLY activity positively enhances 
malignant phenotypes and poorer prognosis 
[38,60,61]. On the contrary, inhibition of ACLY 
suppresses tumor growth and EMT [62,63]. ACLY is 
also indicated as a fundamental factor of cancer 
stemness. Inhibition of ACLY by siRNAs or chemical 
inhibitors significantly impairs the growth of CSCs 
derived from human non-small cell lung carcinoma or 
breast cancer [64-66]. ACLY inhibition decreases the 
proliferation of lung CSCs activated by Ras or by 
epidermal growth factor receptor (EGFR) mutations. 
ACLY knockdown significantly reduces the CSC 
population in breast cancer cells [62,66]. Snail, a 
crucial transcription factor for EMT induction, is a 
potential target of ACLY in the process of 
Ras-induced cancer stemness. The phosphorylation of 
ACLY at serine 454 by phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT) pathway is up- 
regulated with the stage, the tumor differentiation 
grade, and poor prognosis in non–small cell lung 
cancer [67]. Phosphorylated forms are suggested to 
profoundly increase the effect of ACLY in CSCs. 

 

 
Figure 2. The abnormal lipid metabolisms and current therapeutic targets in tumors and CSCs. Cancer cells, especially CSCs, increase lipids catabolic/anabolic 
activities, such as FA synthesis (Yellow arrows), FA oxidation (Green arrows), and cholesterol synthesis (Blue arrows). The ectopic lipid metabolisms facilitate the pluripotency, 
self-renewal, proliferation and formation of CSCs. Currently, key enzymes (Red letters) dominating lipid metabolisms have been considered as ideal therapeutic targets or 
prognosis for cancers. Abbreviation: ACC, acetyl-CoA carboxylase; ACLY, ATP-citrate lyase; ACSS2, acyl-CoA synthetase short-chain family member 2; CPT1, carnitine 
palmitoyl-transferase 1; FA, fatty acid; FAO, fatty acid oxidation; FASN, fatty acid synthase; SCD1, stearoyl-CoA desaturase1; TCA cycle, tricarboxylic acid cycle; MUFA, 
monounsaturated FA; SFA, saturated FA; PUFA, polyunsaturated FA. The figure was produced using Servier Medical Art (http://www.servier.com). 
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Acetyl-CoA carboxylase (ACC) 
ACC, which carboxylates acetyl-CoA into 

malonyl-CoA, exhibits up-regulation in the breast, 
gastric, and lung cancers [68-70]. Furthermore, the 
distinctive elevation of ACC and FASN in iPSC 
emphasizes the importance of lipogenesis in stemness 
and beacons potential therapeutic utilization in CSCs. 
Cytosolic ACC inhibition mediated by 
phosphorylation at serine 80 has been considered as a 
necessary feature for metastasis and invading 
behaviour in breast and lung cancers, and this concept 
may be universal in other types of cancers [70]. A 
study on ACC function in breast cancer indicates an 
unexpected enzymatic feature, in that the regulation 
of ACC in metastasis and tumor recurrence depends 
on the accumulation of acetyl-CoA and protein 
acetylation instead of its native duty in fatty acids 
synthesis [62]. Wnt/β-catenin signalling also 
participates in the regulation of ACC in CSCs, because 
silence of β-catenin induces ACC expression [71].  

Fatty acid synthase (FASN) 
Fatty acid synthase (FASN), the crucial enzyme 

for the de novo lipogenesis, also plays an important 
role in maintaining cancer stemness. Elevated FASN 
levels have been reported in a variety of cancers, 
including liver, prostate, breast, ovarian, endometrial 
and pancreatic cancers [59]. The increase of FASN is 
highly correlated with poor prognosis and disease 
recurrence [72]. Notably, FASN is overexpressed in 
iPSCs, while FASN deficiency impairs the 
reprogramming ability of iPSCs [73]. Similarly, adult 
neural stem and progenitor cells (NSPCs) show a 
strong dependence on FASN. Inhibition of FASN- 
mediated lipogenesis decreases NSPC proliferation 
[74]. FASN expression level is regulated by β-catenin 
[75], and associated with the level of stemness 
markers (SOX2, CD133 and Nestin) in GSCs [58]. In 
certain cases, FASN levels seems to be positively 
correlated with ACC expression in CSCs. FASN is 
suggested to be a more vulnerable target in CSCs than 
in the bulk cancer cells. 

Stearoyl-CoA desaturase (SCD) 
Several studies also revealed how signalling 

pathways to promote CSCs via regulation of 
unsaturated fatty acids. Importantly, NF-κB, the main 
regulator of tumors and CSCs, directly regulates the 
expression and activation of lipid desaturases, 
whereas the abrogation of lipogenesis through 
desaturases inhibition inactivates AKT/ERK- 
mediated NF-κB signalling [35,76]. Meanwhile, the 
level of SCD-dependent MUFAs also directly 
regulates CSCs through Wnt/β-catenin pathway, one 
of the most significant signalling both in stem cells 

and in CSCs [77,78]. Hippo pathway regulated by 
YES-associated protein (YAP) and tafazzin (TAZ) 
promotes embryonic and somatic stem cell renewal 
and differentiation [79]. Interestingly, the activation of 
SCD1 positively regulates the stabilization and 
nuclear localization of YAP/TAZ, indicating a 
significant impact on cancer stemness and the 
chemotherapy resistance in lung cancer stem cells 
[80]. 

In humans, SCDs have two isoforms, SCD1 and 
SCD5. SCD1 is the major enzyme catalysing 
desaturation in all tissues while SCD5 mainly 
expresses in the pancreas and brain [81]. Consistent 
with the performance of MUFAs in CSCs, the 
increased expression level of SCD1 in the lung, 
ovarian, breast, and glioblastoma cancer stem cells 
further emphasizes the importance of MUFAs, 
speculating a significant role of SCD1 for lipid 
component regulation in CSCs [80,82-84]. 
Additionally, SCD1 expression level also increases 
and corresponds with the maintenance of some stem 
cells, such as bone marrow mesenchymal stem cells, 
pluripotent stem cells and hair stem cells [85-87]. It is 
found that SCD1 also regulates Wnt signalling in 
CSCs [75,88]. Correspondingly, SCD1 inhibition 
preferentially diminishes CSCs population in the 
lung, brain, ovarian, lymphatic and colon cancers; 
while the functional failure is rescued by the MUFAs, 
such as oleic acid [32,35,80,82,89,90]. However, SCD5 
expression and activity may not be prominent in most 
cancer cells. Intriguingly, the SCD5 expression level is 
reduced in melanoma; while restoration of SCD5 
suppresses the formation of malignant melanoma 
through a reversed EMT-like process and induction of 
cancer cell differentiation [91]. 

FAO enhances CSCs 
FAO mediated energy generation is particularly 

critical to cancer cell survival and metastasis, 
especially to non-glycolytic prostate adenocarcinoma 
and diffuse large B-cell lymphoma [92,93]. Elevated 
FAO helps cancer cell survival in nutrient deficiency 
and anoxic microenvironments [94]. Ectopic 
activation of FAO maintains CSCs under conditions of 
glycolytic deficiency [95,96]. FAO is also found to 
dominate the stemness in mesenchymal stem cells 
(MSCs) isolated from the advanced stage of gastric 
cancer (GC), indicating an effective target for 
reducing chemoresistance [97]. Consistently, 
inhibition of FAO by perhexiline impairs cancer stem 
cell self-renewal and increases the sensitivity of breast 
CSCs to chemotherapy [98]. Increased FAO has also 
been speculated to interact with Src oncoprotein and 
participate in the generation of triple-negative breast 
cancer stem cells [99]. Emerging evidence has 
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revealed the mechanisms behind mitochondrial 
FAO’s contribution to CSCs. ROS reduction caused by 
FAO impairs stem cells [95], explaining the efficient 
therapeutic effect through redox defence blockage in 
CSCs [100]. Additionally, mitochondrial FAO 
contributes to cellular activity and pluripotency in 
haematopoietic stem cells [101] and adult neural stem 
cells [102]. Therefore, inhibition of FAO exacerbates 
the symmetric differentiation of adult neural stem 
cells at the expense of self-renewal abilities [103]. On 
the other hand, elevated peroxisome FAO benefits 
Tie2+ hematopoietic stem cell proliferation by 
activation of mitochondrial clearance [101]. Though 
no direct evidence pinpoints the influence of FAO on 
Notch signalling, Notch1 coordinates FAO for the 
regulation of lipid accumulation in the liver [104] and 
redox homeostasis in quiescent endothelial cells [105]. 
FAO and its functions in lipid accumulation provide 
the grounds for CSCs’ for survival under nutrition, 
environment and energy stress. 

Cholesterol homeostasis 
Cholesterol homeostasis mainly relies on two 

mechanisms [106]. On one hand, Cholesterol levels 
can be upregulated by synthesizing de novo from 
acetyl CoA provided by glycolysis, glutamine 
metabolism, TCA cycle or exogenous uptake by low 
density lipoprotein receptors (LDLRs), as well as the 
so-called reverse cholesterol transport (RCT), 
allowing peripheral cholesterol to be returned to the 
liver in low density lipoprotein (LDL) [107]. The 
process of cholesterol synthesis is mediated by the 
mevalonate (MVA) pathway [108]. On the other hand, 
cholesterol levels can be negatively regulated through 
the inhibition of the MVA pathway or the activation 
of liver X receptors (LXRs). The MVA pathway can be 
reduced through proteolytic processing or nuclear 
import of sterol regulatory element binding proteins 
(SREBP2), while LXRs can be activated through 
cholesterol conversion to oxysterols [109]. The 
activation of LXRs/PPAR pathway, in turn, activates 
the transcription of the E3 ubiquitin ligase IDOL, 
which ubiquitinates LDLR and upregulates the 
cholesterol efflux pump ABCA1 and ABCG1 [110]. 
Retrospective and experiment data show that both 
circulating LDL-cholesterol and elevated dietary 
cholesterol are associated with a poor progression free 
survival time (PFS), while statins show protective 
effects in ovarian cancer [111,112], non-small cell lung 
cancer [113], breast cancer [114], pancreatic tumour 
[115], colorectal cancer [116], and so on. SREBP2 is 
found to promote stem cell-like properties and 
metastasis by transcriptional activation of c-Myc in 
prostate cancer [117]. 

Cholesterol is the major sterol in mammals and is 

especially critical for cell growth and function. Besides 
acting as a precursor for sterol hormones, bile acids, 
vitamin D and oxysterols, as well as major 
components for membrane reinforcement, cholesterol 
regulates cell signalling via lipid rafts. Various of 
proteins have been discovered in lipid rafts, such as 
caveolins [118], src family kinases [119], MAP kinase 
(MAPK), protein kinase C, EGFRs [120], flotillins, low 
molecular weight heterotrimeric G proteins [121,122], 
platelet-derived growth factor (PDGF) receptors [123], 
endothelin receptors and so on. Proteins are 
selectively included or excluded from the membrane 
microdomains, which serve as rafts for the 
transportation of specific domains or relay stations for 
transducing intracellular signalling [124]. In most 
cases, lipid rafts act as signalling platforms that 
combine the necessary components, manage their 
interactions and transduce pathway signalling [125]. 
Different lipid rafts could also be united as 
complementary components of a signalling pathway. 
In turn, pathway signalling could be regulated by 
lipid rafts compartmentalization through locational 
and physical separation of proteins [121,126,127]. For 
example, CD133+ pancreatic tumor initiating cells 
(TIC) shows high-level expression of MAPK with high 
cholesterol content. Furthermore, the study also 
shows that CD133 is localized in the lipid rafts. 
Disruption of lipid rafts decreases metastatic potential 
and chemoresistance in CD133+ cells but does not 
affect the CD133- cells, resulting in deregulation of 
focal adhesion kinase (FAK)-signalling [128]. 

Cholesterol facilitates CSCs tumorigenesis 
Cancer was first linked to nutrition by 

epidemiological studies, demonstrating that 
environmental factors such as diet and nutrition are 
important in carcinogenesis [129]. Caloric intake, 
types and amount of fats, proteins, amino acids, 
vitamins, minerals, fibers, and other dietary 
constituents have been studied regarding their 
influence on tumorigenesis. In particular, increased 
cholesterogenesis is associated with tumorigenesis 
through activation of tissue growth and loss in 
feedback control. Early laboratory studies elicited the 
role of cholesterol in cancer development and 
progression [45]. Lipoproteins are capable of 
stimulating growth and metastasis of cancer cells in 
vivo and in vitro [49,130,131]. Accelerated evidence 
also shows that cholesterol and FA metabolism are the 
hallmarks of cancer, contributing to malignant 
transformation due to the obligatory requirement of 
cholesterol for cell membrane functions. In 
mammosphere models generated from breast patient- 
derived xenograft (PDX) tumors, GO enrichment 
analysis identifies cholesterol biosynthesis to be the 
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most significantly activated process [132]. 
Furthermore, the high levels of cholesterol 
biosynthesis-related proteins are associated with short 
relapse-free survival in basal-like breast cancer 
patients [33]. In a cohort of 615 basal-like breast cancer 
patients, except for DHCR7 or LSS, all cholesterol 
synthesis-associated proteins show a significant 
correlation between higher level of gene expression 
and shorter relapse-free survival [9]. In another 
analysis, enzymes of the MVA metabolic pathway are 
overexpressed in breast cancer stem cell tumorspheres 
as compared to cognate adherent cells. A 
small-molecule inhibitor of the geranylgeranyl 
transferase (GGTI) reduces the breast CSC population 
both in vitro and in vivo [133]. Phospholipid 
remodeling enzyme lysophosphatidylcholine 
acetyltransferase 3 (LPCAT3), which incorporates 
polyunsaturated fatty acids into phospholipids, is a 
crucial determinant of membrane lipid composition. 
Lack of LPCAT3 in intestinal stem cells leads to an 
excess of cholesterol production in response to 
changes in phospholipid composition, resulting in 
intestinal stem cell hyperproliferation [46]. In multiple 
brain tumor-initiating cells, several genes in MVA 
pathway, including HMGCR, PMVK, MVK, MVD, 
IDI1 and FDPS, are highly expressed [134]. 

Bile acids and oxysterol are two chemical by- 
products in the MVA pathway. They act as ligands for 
a family of nuclear receptors (including FXR, VDR, 
LXR and PXR) and G-protein-coupled receptors [135] 
[136]. As reported in colorectal cancer, the high-fat 
diet and dysregulated WNT signalling pathway alter 
bile acids profiles, activate FXR, and drive malignant 
transformations in Lgr5+ subpopulation CSCs [137]. 
Oxysterols are a group of Janus molecules result from 
enzymatic oxidation of cholesterol’s side chain, can 
induce both the early inflammatory reaction against 
cancer expansion or apoptosis and sustain a complex 
survival signalling pathway in favor of the neoplastic 
process [138]. 

Abnormal cholesterol metabolism in CSCs 
Cancer cells adapt to maintain high intracellular 

cholesterol similar to the normal homeostasis 
including accelerated endogenous production of 
cholesterol and fatty acids regulated by the SREBPs, 
or by reducing cholesterol efflux trough ABC class A 
transporters such as ABCA1, or by increasing the 
uptake of LDL. 

Loss of phospholipid-remodelling enzyme 
Lpcat3 or activation of SREBP-2 in APC-defect mice 
markedly promotes intestinal tumor formation by 
modulating intestinal stem cell homeostasis and 
tumorigenesis [139]. HMG-CoAR is the rate-limiting 
enzyme in the MVA pathway and the popular 

cholesterol synthesis lowering agents [131]. Statins, 
the inhibitors for HMG-CoAR, reduces tumor-like 
sphere formation and exhibits high therapeutic 
indices [140]. This study indicates that HMGCR may 
be a predictive marker for statin therapy [141]. 
Overexpression of ABCA1 contributes to drug 
resistant in subpopulations of CSCs (EpCAM+ CD45+ 

CD133+ and CD117+ CD44+) in epithelial ovarian 
carcinoma patients [142]. The scavenger receptor, 
class B type 1 (SRB1), is a multiligand membrane 
receptor protein that functions as high-density 
lipoprotein (HDL) influx receptor of HDL-derived 
cholesteryl esters into cells and tissues [136]. SRB1 
also facilitates the efflux of cholesterol from 
peripheral tissues back to the liver [143]. SRB1 may be 
responsible for an increased cholesterol uptake by the 
tumor and indirectly regulate tumor development. In 
the western diet mice models, SRB1 is highly 
expressed in the transformed prostatic epithelial cells 
and is responsible for an increased cholesterol uptake 
sustaining tumor development [144]. The higher 
affinity of LDL in tumor cells is detected, the 
increased activity of HMG-CoAR is observed 
[145,146]. LDL macromolecule has been developed as 
a specific delivery for cytotoxic drugs or radio 
nucleotides [147], specifically in CML patients where 
the poor prognosis is linked to low plasma lipid 
concentrations [148]. 

Signalling modulated by cholesterol in CSCs 
MVA pathway is highly conserved in all the 

eukaryotes. Other intermediate products, such as 
farnesyl pyrophosphate, squalene, isoprenoids, 
lanosterol, bile acids, steroid hormones and vitamin 
D, participate in cellular physiological functions. 
Deregulation of cholesterol homeostasis has been 
proven a powerful way to suppress oncogenic 
receptors’ signalling for inhibiting tumor growth. 
Cholesterol mainly promotes cancer signalling in two 
ways. Cholesterol itself as well as chemical 
by-products from the mevalonate cascade exerts a 
tumor progression effect. On the other hand, as a 
critically important component in lipid rafts, 
cholesterol can affect receptor affinity and the activity 
of proteins via sterol-sensing domains, including 
EGFR family, G-protein coupled receptors (GPCRs), 
PI3K and AKT [146]. 

In the Hh signalling pathway, lipid modification 
is crucial for its biological function. Cholesterol 
covalently bound to the cleaved C-terminal end 
Gly257 of the N-peptide in Shh translation is an 
essential step for Shh maturation. The genetic defects 
in cholesterol biosynthesis can cause a subset of 
genetically determined anatomical defects, termed 
holoprosencephaly (HPE), which results from Shh 
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signalling blockage in embryonic development [149]. 
Besides, the GPCR-like protein Smoothened (SMO), as 
an orphan GPCR that transmits the Hh signal, can be 
directly activated by cholesterol. Cholesterol together 
with some other oxysterols, such as 20(S)- 
hydroxylcholesterol, 22(S)-hydroxylcholesterol and 
7-keto-25-hydroxylcholesterol, is identified as potent 
activators of SMO through its extracellular cysteine- 
rich domain (CRD) [150,151]. Sterol depletion reduces 
SMO accumulation on the primary cilium. However, 
neither the Notch signalling nor the Hippo cascades 
could directly interact with cholesterol. Instead, 
Notch signalling can be modulated by the lipid 
composition of the cell membrane, in addition to the 
O-glycosylation of the receptor [152]. A high-content 
with high-throughput screening on FDA -approved 
drug library shows the strongest YAP/TAZ inhibitory 
effect in all of the five statins present in the library 
[152]. MVA pathway activity, mainly the 
geranylgeranyl pyrophosphate (GGPP), is required to 
sustain the YAP/TAZ gene expression program. Only 
the geranylgeranyl transferase inhibitor GGTI-298 is 
shown to rescue the effect of statins on YAP/TAZ 
localization, while the squalene synthase inhibitor 
(YM-53601) or farnesyl transferase inhibitor (FTI-227) 
fails to converse the effect. GGPP, crucial for the 
enzymatic activity of Rho small GTPases located in 
the plasma membrane, reduces the inhibitory 
phosphorylation of YAP/TAZ and sustains YAP/ 
TAZ nuclear accumulation [153]. Inhibitor of the 
geranylgeranyl transferase effectively reduces the 
growth of breast CSCs both in vitro and in vivo [133]. 
CSCs’ sphere-forming is suppressed through 
inhibiting RhoA and increasing P27kip1 accumulation 
that finally leads to inhibition of RB phosphorylation 
and cell cycle arrest in cancer cells. These findings are 
considered as promising perspectives for target-based 
cancer therapy [131,133]. 

Cholesterol metabolism has also been explored 
its important roles in immunity. Current studies 
indicate a significant connection between cholesterol 
metabolism and immunotherapy resistance. The 
plasticity and ability of CSCs enable them to interact 
with TME, to modulate and shape immune responses, 
thus resulting in immune impairment and tumor 
recurrence [154,155]. Among the numerous immune 
cells, T cells (especially CD8+ T cells) have exerted an 
important function in IFN-γ and TNF (tumor necrosis 
factor) signalling [156]. However, the activity of CD8+ 
T cells is suppressed in tumor microenvironments. 
Nevertheless, the increased cholesterol level decreases 
the T cell antigen receptor (TCR) activity and 
nanoclusters, which are critical for antigens 
recognition and binding to major histocompatibility 
complex molecules (MHC) on other cells [157].  

Important signalling pathways involved 
in lipid metabolism of CSCs 

In stem cells, several important signalling 
pathways involved in lipid metabolism participate in 
controlling self-renewal, embryonic development and 
lineage specification. Since CSCs can be derived from 
stem cells through genetic mutations and epigenetic 
alteration, it is highly likely that these pathways are 
hijacked to maintain the unrestrained proliferation, 
invasion and drug resistance [158]. In CSCs, a series of 
pathways involved in lipid metabolism maintains the 
undifferentiating state, guide the lineage progeny and 
sustain their survival as well as proliferation (Figure 
3), including Notch signalling [159-161], Hippo 
cascades, Hedgehog (Hh) signalling, and Wnt 
signalling [9,153,154]. 

 
 

 

 
Figure 3. A diagram of cholesterol homeostasis. Cholesterol uptake is mediated by LDLR through EGFR dependent pathway. Cholesterol synthesis goes through MVA 
pathway. LXR plays a crucial role in both the negative control of cholesterol uptake and regulation of cholesterol efflux. Abbreviation: EGFR, epidermal growth factor receptor; 
LDLR, low density lipoprotein receptors; ABCA1, ATP-binding cassette transporter 1; PI3K/Akt, phosphatidylinositol 3-kinase/protein kinase B; SREBP-1, sterol regulatory 
element binding proteins; MVA, mevalonate; IDOL, inducible degrader of the low-density lipoprotein receptor; PPAR/LXR, lipid-activated transcription factors /liver X 
receptors. 
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Notch signalling pathway 
Notch signalling pathway is one of the most 

conserved signalling pathways activated in 
embryonic vasculature development [160]. In 
Drosophila, Notch signalling is sensitive to 
environmental sterol levels. The expression level of 
Notch signalling is modulated by dietary cholesterol, 
resulting in intestinal cell differentiation from 
stemness status [162]. In cancer cells, Notch pathway 
plays a critical role in angiogenesis, EMT and CSCs 
proliferation [159,163]. The low-sterol diet restricts the 
growth of enteroendocrine tumors by decrease of 
Notch responses [162]. Interestingly, Notch1 controls 
FAO to achieve intermediate lipid homeostasis and 
redox homeostasis in CSCs [104,105]. Exogenous 
lipids are demonstrated to positively regulate Notch 
signalling. In human beings, Notch signalling can be 
modulated by the lipid composition of the cell 
membrane [153]. 

Hippo signalling 
Emerging evidence shows the intimated 

association and the importance of hippo-YAP/TAZ 
signalling in lipid metabolisms in regulating cancer 
stemness [80,164]. Hippo signalling mainly functions 
through phosphorylating the plasma membrane 
receptor MST1/2, followed by phosphorylation and 
activation of MOB1A/B and LATS1/2, causing 
sequester and proteasomal degradation of YAP and 
TAZ by the 14-3-3 phosphopeptide binding proteins. 
In CSCs, the activation of YAP or TAZ sustains 
self-renewal and tumor-initiation capacities [165], 
promotes cell pluripotency [166] and drug resistance 
[167], and is highly related to EMT process [167-171]. 
The main MUFAs regulator SCD1 contributes to 
cancer stemness through the regulating YAP/TAZ in 
both expression and nuclear localization [80]. As an 
intermediate controlled by the MVA pathway, GGPP 
is a sufficient factor for the stabilization of YAP/TAZ 
[153]. 

Hedgehog (Hh) signalling 
When the three Hh ligands, Sonic (Shh), Indian 

(Ihh), and Desert (Dhh), binding and inhibiting the 
Patched 1 (Ptch1) and/or Patched 2 (Ptch2) receptors, 
the repression of Smoothened (SMO) is relieved, 
followed by activation of the GLI transcription factors 
(GLI-TFs) GLI1, GLI2, and GLI3 [172]. The Hh 
signalling cascade leads to transcription of Hh- 
targeted genes, such as Cyclin D1 and c-Myc [173]. Hh 
ligands are found to activate in colon cancer, as well 
as other solid tumors. The enhanced Hh signalling 
accelerates the progression of advanced neoplasms 
[174]. Hh signalling also plays a crucial role in CSCs. 
Hh signalling modulates the postnatal mammary 

stem cells (MASCs) proliferation and generates the 
complex ductal structure of the adult mammary gland 
[175]. In breast cancer EMT programs, primary 
ciliogenesis activates the Hh signalling that enables 
the stemness and the tumor-forming capacity of stem 
cell-like tumor-initiating cells [176]. Lipid metabolism 
is also known to regulate hedgehog signalling and its 
ligand properties [177]. Cholesterol is crucial for Shh 
maturation and can directly activate the SMO receptor 
in Hh signalling [149,150]. The genetic defects in 
cholesterol biosynthesis causes a subset of anatomical 
defect holoprosencephaly (HPE), resulting from Shh 
signalling blockage in embryonic development [149]. 
Recently, SMO inhibitors and GLI inhibitors are used 
to target the Hh signalling pathway in clinical trials 
[178,179]. 

The Wnt signalling pathway 
In the canonical Wnt pathway, Wnt ligands bind 

to the transmembrane receptor Frizzled (Fzd) family, 
leading to activating Dishevelled (Dvl) and then 
triggering the stabilization and accumulation of 
nuclear β-catenin transcriptional activity, in 
cooperation with T-cell factor (TCF)/lymphoid 
enhancer factor (LEF) family. Other co-receptors, such 
as low-density lipoprotein-related protein (LRP5/6) 
or tyrosine kinase receptors (PTK7, ROR, RYK), may 
also act as cofactors in the canonical Wnt pathway. 
The non-canonical signalling (β-catenin-independent 
pathway) consists of the Wnt/Ca2+ pathway and the 
planar cell polarity (PCP) pathway. The Wnt 
signalling pathway plays a highly evolutionarily 
conserved role in embryonic proliferative tissue 
development (such as hematopoietic system, skin and 
intestine) for body axis patterning, cell fate 
specification, cell proliferation and migration [180]. In 
tumorigenesis, the Wnt signalling promotes tumor 
migration and invasion by upregulating genes 
involved in cell adhesion, including Eph/Ephrins, 
E-cadherin and MMPs [181]. However, in the hypoxic 
GBM patient-derived cell lines, TCF1 and HIF-1α 
together inhibit the expression of stemness markers 
Nestin and CD133 through activation of Wnt 
signalling that reduces the GBM stem cell frequency 
and strongly increases acquisition of neuronal traits 
[182,183]. In squamous cell carcinoma, depletion of 
β-catenin halts tumor progression, suggesting its roles 
in the maintenance of cutaneous CSCs-like properties 
[181]. The Wnt signalling also cooperates with 
lipogenesis in cancer cells [75]. The Wnt/β-catenin 
signalling significantly modulates de novo lipogenesis, 
which is characterized by a significantly increased 
expression of ACC, FASN, and sterol regulatory 
element binding protein-1c (SREBP1-c) in breast 
cancer cells [71]. FAO has been identified as an 
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enhancer for β-catenin expression in HCC [184]. 
Importantly, SCDs have been considered as the key 
factor in regulating Wnt signalling in CSCs [75,88]. In 
colorectal cancer, a high-fat diet and dysregulated 
WNT signalling pathway alter bile acids profiles, 
activate FXR, and drive malignant transformation in 
Lgr5+ subpopulation CSCs, which promote an 
adenoma-to- adenocarcinoma progression [137]. 

Other signalling pathways involved in lipid 
metabolism in CSCs 

Other pathways, such as EGFR signalling 
[185,186], signal transducer and activator of 
transcription (STAT) signalling, PI3K/PTEN/Akt/ 
mTORC1/GSK-3 pathway [186], ephrins and bone 
morphogenetic proteins (BMPs) signalling [187], and 
NF-κB signalling, have been studied in CSCs for many 
years. Pharmacological agonists/inhibitors targeting 
such pathways are in clinical trials [188]. For example, 
the member of STAT family ultimately regulates 
tumor stem cell self-renewal, differentiation, and 
apoptosis [189]. Activation of JAK/STAT3 signalling 
promotes CPT1 expression, resulting in the 
reinforcement of cancer stemness and 
chemoresistance in breast cancer [98].  

Targeting lipid metabolism for anticancer 
treatment 

The importance of lipid metabolism in CSCs has 
been continuously studied and emphasized that the 
inhibitors targeting each participant in FAS, FAO and 
cholesterol metabolisms are widely tested in cancer 
treatment and chemotherapy assistance. 

Targets on FAS 
Promisingly, therapeutic targets on ACC and 

FASN achieve reliable results in elimination of CSCs 
or cancer therapy. ACC inhibitor, such as Soraphen 
A, has been considered as a treatment option by 
targeting lipogenesis in breast CSCs [190]. 
Additionally, chemical compounds with the same 
binding site as Soraphen A can inhibit the growth and 
proliferation in non-small cell lung cancer (NSCLC) 
and hepatocellular carcinoma cells [191,192], 
indicating the significance and potential of ACC in 
both CSCs inhibition and cancer therapy. Similarly, 
FASN plays an essential part in CSCs’ survival and 
proliferation. Both pharmacological inhibitor and 
RNA silencing of FASN diminished a variety of CSCs 
through different disruptive activities, including the 
destruction of mammosphere formation, weakened 
invasion, inhibition of proliferation and apoptosis 
[58,193-195]. Currently, FASN inhibitor, such as 
TVB-2640, is in the phase II trials as the assistant drug 
for chemotherapy (Paclitaxel, and Trastuzumab) in 

patients with human epidermal growth factor 
receptor 2 (HER2) positive advanced breast cancer. 
Meanwhile, a phase I trial of TVB-2640 is also in 
patients with colon or other cancers (National Cancer 
Institute, NCI). 

However, therapy by targeting the ACLY seems 
to be tangled in a whack-a-mole effect. Currently, the 
progress of ACLY inhibition in CSCs has still been 
stuck in vitro since the year 2013 [64]. The most 
controversial issue haunting in the progress is the 
compensation effect after ACLY inhibition. For 
example, inhibition or knockdown of ACLY 
undoubtedly inhibits the growth of certain cancers, 
but other key players in the fatty acid and cholesterol 
synthesis pathways, such as FASN and HMGCR, are 
stimulated in accordingly to reimburse for the effects 
of ACLY deficiency [55]. Furthermore, the duty of 
ACLY in lipogenesis that converses acetate into acetyl 
CoA can also be substituted by acetyl-CoA synthetase 
short-chain family member 2 (ACSS2) in mammals 
[196]. ACSS2 is particularly prominent in the absence 
of ACLY [60]. Therefore, previous studies have 
speculated that ACSS2 supplements the acetyl CoA 
required by cells to restore the effects of ACYL 
inactivation [197, 198]. Additionally, ACSS2 also 
maintains cancer growth under lipid deficiency, and 
ACSS2 knockdown inhibits tumor xenografts in vivo 
[199]. Of note, phosphorylation of ACLY can be 
conducted by other kinases such as nucleoside 
diphosphate kinase [200] and cyclic AMP-dependent 
protein kinase [201]. Therapeutic strategies focusing 
on ACLY phosphorylation also encounters an 
obstacle, because dephosphorylation and inactivation 
of ACLY with PI3K inhibitors have no significant 
effect on lung cancer cell therapy. Though the 
compensatory effect may not completely rescue the 
consequences under the absence of ACLY in vitro [64, 
202], there is still a gap in the effect of ACLY 
deficiency in cancer research.  

Targets on FAs desaturation 
A strong relevance between SCD1 and CSCs 

suggests a promising therapeutic target for 
identification and elimination of CSCs. Previous 
studies aiming at the importance of unsaturated lipids 
in CSCs also show that SCD1 inhibition by chemical 
compounds such as CAY10566, A939572, effectively 
interferes with cancer stemness, tumor formation and 
proliferation [35, 90]. However, it remains unclear 
what a consequence on blockage of systemic 
metabolism would be in normal cells. Ben-David et al 
showed that an SCD1 inhibitor PluriSIn-1 effectively 
eliminates hPSCs while it reserves a sufficient amount 
of progenitor and differentiated cells [86]. Another 
SCD1 inhibitor CVT-11127 induces programmed cell 
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death in lung cancer without impairing the 
proliferation of normal human fibroblasts [89]. The 
current progress of SCD1 inhibitor for cancer therapy 
mainly stays at the animal test. Comparatively, a 
liver-specific SCD1inhibitor MK-8245 is proven to 
treat diabetes and dyslipidemia without liver toxicity 
at Phase II clinical trials [203]. Noticeably, cocktail 
inhibitors targeting both the Wnt and Hippo-YAP 
signallings effectively suppress triple-negative breast 
cancer in both mesenchymal and epithelial states 
[204]. This finding shows that alteration of lipid 
metabolism may be a synergy from both the Wnt and 
YAP pathways in CSCs, indicating an ideal 
therapeutic strategy. Cocktail inhibitors may be a 
better option for treating CSCs. No further reports 
show that SCD1 inhibitor can selectively affect CSCs 
by sparing normal somatic cells. ALDH family, which 
is related to the lipid desaturation, is considered as an 
ideal marker and target for in clinic application. 
ALDH inhibitors, such as disulfiram and its 
derivative, achieve periodic results in the promotion 
of chemosensitization of lung cancer [205]. 

Targets on FAO 
The therapeutic targets on FAO mainly focus on 

inhibitors of the rate-limited enzyme CPT1, which 
locates on the outer mitochondrial membrane. 
Typically, CPT1 is associated with the increasing level 
of FAO in glioblastoma and breast, prostate, ovarian, 
and lung cancer [206]. CPT1 inhibitors, such as 
etomoxir, ranolazine, reduce chemoresistance and 
pluripotency of cancer cells [40,97,105,207]. Because 
JAK/STAT3 interferes with cancer stemness through 
the regulation of CPT1, a first-in-class STAT3 inhibitor 
displays strong anti-CSC effects in numerous cancers 
[179]. Napabucasin (BBI608) is in phase III clinical 
trials for metastatic colorectal carcinoma and 

pancreatic cancer [189]. Therefore, the potency of FAO 
inhibition may also create an effective combination for 
eliminating cancer stemness. 

Targets on cholesterol metabolisms 
In melanoma mice models, inhibiting cholesterol 

esterification by cholesterol acyltransferase (ACAT) 
inhibitor avasimibe leads to enhanced effector 
function and proliferation of CD8+ instead of CD4+ T 
cells [208]. Furthermore, ACAT1-deficient CD8+ T 
cells show better control in melanoma growth and 
metastasis in mice models. In preclinical research, the 
combination of ACAT inhibitor and an anti-PD-1 
antibody exhibits more promising anti-tumor 
efficiency than monotherapies. 

Besides, the activation of LXRs in cancer cells can 
be induced by disrupting cholesterol metabolism, 
which regulate inflammation and innate and acquired 
immunity. In NK cells, activated LXRs leads to 
overexpression of major histocompatibility complex 
class I chain-related molecule A and B (MICA and 
MICB), ligands in melanoma cells rendering the 
tumor cells more sensitive to recognition, 
degranulation, and killing by NK cells [209]. 
Cholestane-3β, 5α, 6β-triol (abbreviated as triol) is one 
of the most abundant and active oxysterols. Triol 
exhibits anti-cancer activity against human prostate 
cancer cells. Triol treatment results in reduced 
expression of Akt1, phospho-Akt Ser473, phospho- 
Akt Thr308, PDK1, c-Myc [134], and Skp2 as well as 
accumulation of the cell cycle inhibitor p27kip[210]. In 
a phase II study, atorvastatin, a lipophilic statin, is 
found to prolong survival in HMGCR-positive breast 
cancer. These observations suggest a novel 
immune-mediated mechanism involving modulation 
of intracellular cholesterol levels in cancer cells. 

 

 
Figure 4. Cancer stemness related signalling pathways involved in the lipid metabolisms in CSCs. Notch, Hippo, Hh, and Wnt signalling participate in lipid 
metabolism to maintain the properties of cancer stem cells. Abbreviation: GGPP, geranylgeranyl pyrophosphate; YAP/TAZ, yes-associated protein (YAP)/ tafazzin (TAZ); 
JAK/STAT3, Janus kinase/signal transducers and activators of transcription 3; SMO, Smoothened; Hh, Hedgehog. The figure was produced using Servier Medical Art 
(http://www.servier.com). 
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Summary and Perspectives 
Due to the excessive demand for energy and 

structural component than ‘normal’ cancer cells, 
cancer stem cells urgently rely on lipid metabolism to 
maintain cell survival and proliferation. Dramatically, 
the known cancer stemness associated signalling 
pathways, such as Notch, Hippo, Wnt, and Hh, have 
a close relationship with lipid metabolisms. Therefore, 
the alternation of ‘alternated’ lipid metabolisms has 
been indicated as promising therapeutic targets for 
CSCs suppression and cancer therapy. Specifically, 
because of the relatively simple and maneuverability 
for those key regulators in the pathway, therapeutic 
targets on fatty acid and cholesterol metabolism 
contribute to several impressive progress on the 
inhibition of CSCs and reduction of chemoresistance 
both in vivo and in vitro. 

However, the application also encounters several 
challenges when commencing in the clinical trials. For 
example, fatty acid synthesis is drastically 
upregulated under pathogen infection, a wide range 
of diseases including cardiovascular disease, insulin 
resistance of type 2 diabetes and cancers mentioned 
above [211,212]. Hence, the co-occurring of FASN and 
cancer stemness markers, such as SOX2, CD133 and 
Nestin, would be hard to hallmark cancer stem cells 
within multiple pathogenic or metabolic disorder 
circumstances, especially in tissue with excessive 
metabolic activities. Secondly, the compensation 
conversed by other metabolic pathways or uptake 
from extracellular environment spare cancer cells 
from the shortage of energy and intermediates for 
metabolisms. The last but not least, the dilemma 
crushing on the cancer therapy remains to be the same 
problem for current treatment; i.e., lipid metabolism- 
associated inhibitors may also affect surrounding 
healthy cells, resulting in inevitable side-effects. 

Notably, there are several interesting related 
progresses for therapeutic targets on lipid 
metabolisms, solving those concerned or problems 
haunting in current cancer therapy. For instance, the 
combination of lipid metabolism-associated inhibitors 
and chemotherapy agents, or immunotherapy (such 
as PD-1 antibodies), does significantly promote 
anticancer efficiency. Interestingly, the current study 
shows another novel strategy by utilizing engineered 
adipocytes or lipids to deliver the anticancer drug 
[213,214]. By intratumoral or postsurgical injection, 
this drug design and deliver strategy enable those 
‘greedy’ cancer cells to suffer their consequences. As 
the global profiles of lipid metabolisms have been 
well unveiled in cancer or CSCs, we may 
continuously exploit the combination of exciting 
therapeutic strategy or a novel treatment, and 

lipid-associated drugs to ameliorate chemoresistance 
and even the cure for cancers. 
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