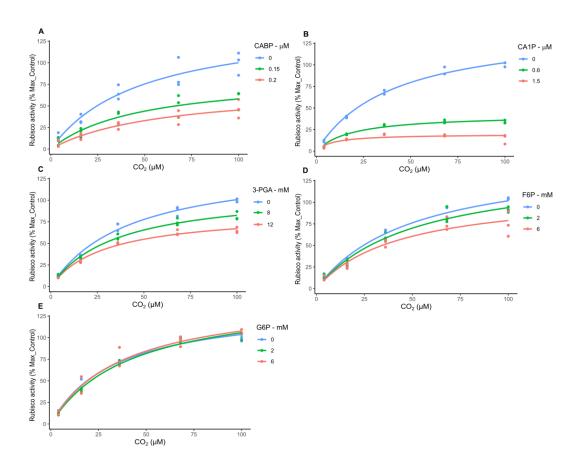

Supplementary Material - Figures

Regulation of Rubisco activity by interaction with chloroplast metabolites


Ana KM Lobo, Douglas J Orr, Elizabete Carmo-Silva

Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

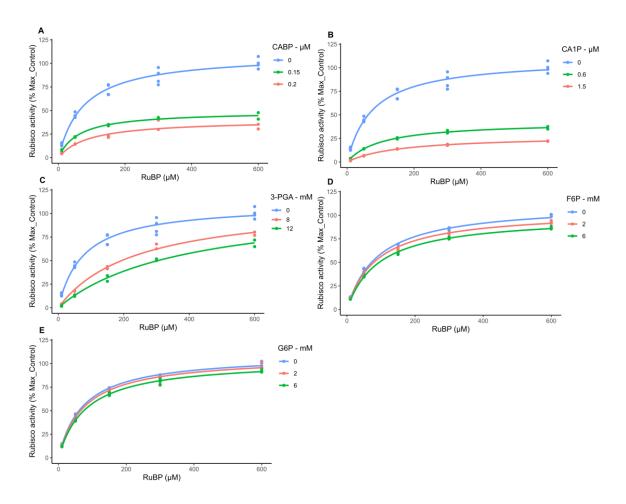

Correspondence: Elizabete Carmo-Silva (<u>e.carmosilva@lancaster.ac.uk</u>) or Ana KM Lobo (<u>a.moreiralobo@lancaster.ac.uk</u>)

Figure S1: Effect of chloroplast metabolites dose-response curve on rice Rubisco activity. 2-Phosphoglycolate (A), Glycolate (B), Glyoxylate (C), Glyceraldhyde-3-phosphate (D), Dihydroxyacetone phosphate (E), Glucose 6-phosphate (F), Ketoglutarate (G), Malate (H), Oxaloacetic acid (I), Glutamine (J), Glutamate (K) and Glycine (L). Symbols represent individual samples (n = 3-7 technical replicates except for malate, oxaloacetate and ketoglutarate that had 2 technical replicates). Lines were omitted as they were not significant (ns).

Figure S2: CO₂ dose-response curve of Rubisco activity in presence of different concentrations of chloroplast metabolites: 2-carboxy-D-arabinitol-1,5-bisphosphate (A), 2-carboxy-D-arabinitol 1-phosphate (B), 3-Phosphoglycerate (C), Fructose 6-phosphate (D) and Glucose 6-phospahte (E). The activity is expressed as % of the maximum activity of the control (0 metabolite) at 100 μM CO₂ (average = 1.78 ± 0.11 μmol mg⁻¹ protein min⁻¹). Symbols represent individual samples (n = 3 technical replicates; except for 0 μM CA1P with 2 technical replicates).

Figure S3: RuBP dose-response curve on Rubisco activity in the presence of different concentrations of chloroplast metabolites: 2-carboxy-D-arabinitol-1,5-bisphosphate (A), 2-carboxy-D-arabinitol 1-phosphate (B), 3-Phosphoglycerate (C), Fructose 6-phosphate (D) and Glucose 6-phospahte (E). The activity is expressed as % of the maximum activity of the control (0 metabolite) at 600 μ M RuBP (average = 1.44 \pm 0.14 μ mol mg⁻¹ protein min⁻¹). Symbols represent individual samples (n = 3-4 technical replicates).

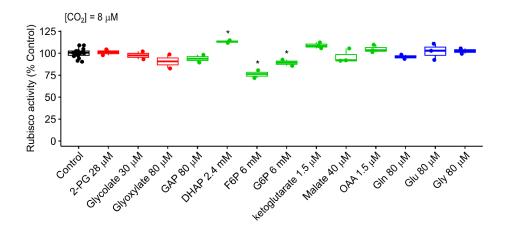
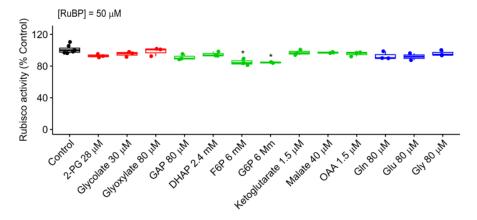
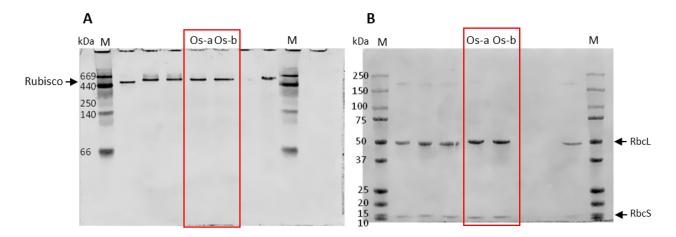




Figure S4: Rubisco activity in the presence of the highest concentration of chloroplast metabolite and low concentration of CO₂ (8 μM). Boxes represent the median and first and third quartiles, whiskers represent the range, symbols represent individual samples (n = 2-3 technical replicates). Asterisk represents significant differences between the control and metabolite at 5% level according to *t*-test (p ≤ 0.05). Control average = 0.49 ± 0.03 μmol mg⁻¹ protein min⁻¹.

Figure S5: Rubisco activity in the presence of the highest concentration of chloroplast metabolite and low concentration of RuBP (50 μ M). Boxes represent the median and first and third quartiles, whiskers represent the range, symbols represent individual samples (n = 3 technical replicates except for G6P and Glu with 2 technical replicates). Asterisk represents significant differences between the control and metabolite at 5% level according to t-test ($p \le 0.05$). Control average = $0.65 \pm 0.07 \ \mu mol mg^{-1}$ protein min⁻¹.

Figure S6: Purified rice Rubisco (Os-a and Os-b). Native (A) and SDS denaturing (B) polyacrylamide gel electrophoresis stained with Coomassie Blue. Each gel lane was loaded with 1 μ g of total soluble protein. M = molecular marker. The red box denotes the protein preparations used in this study.

Supplementary Material - Tables

Regulation of Rubisco activity by interaction with chloroplast metabolites

Ana KM Lobo, Douglas J Orr, Elizabete Carmo-Silva

Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

Correspondence: Elizabete Carmo-Silva (<u>e.carmosilva@lancaster.ac.uk</u>) or Ana KM Lobo (<u>a.moreiralobo@lancaster.ac.uk</u>)

Table S1: Concentrations of metabolites in plant chloroplast used in activity assays with purified rice Rubisco. Water (0 metabolite) was always used as control; the second and third intermediate values correspond to the concentration range likely to be physiologically relevant for regulating the activity of Rubisco *in vivo*. na = not applicable. ¹Structure source: https://pubchem.ncbi.nlm.nih.gov/. Source: metabolites were synthesised in the lab as described in the methods (Synt.) or purchased from Sigma-Aldrich/Merk (Sigma as indicated with product number).

Metabolite name and structure ¹	Metabolite abbreviation	Concentrations used	Source	Reference for physiological concentration in chloroplasts
Ribulose-1,5- bisphosphate	RuBP	Rubisco substrate used under limiting (10, 50, 150, 300 μM) and saturating (600 μM) concentrations	Synt.	Schimkat et al., 1990 [31]
2-carboxy-D-arabinitol- 1,5-bisphosphate	САВР	0.05, 0.1, 0.15, 0.2, 0.3 μΜ	Synt.	Synthetic, not present in vivo. Maximum concentration corresponding to the concentration of Rubisco catalytic sites used in the assays.
2-carboxy-D-arabinitol 1-phosphate	CA1P	0.15, 0.3, 0.6, 1, 1.5 μΜ	Synt.	Moore et al., 1991 [51]
2-Phosphoglycolate	2-PG	1.5, 3, 9, 18, 28 μΜ	Sigma: 72764	Flügel et al., 2017 [46]
Glycolate	na	2.5, 5, 10, 20, 30 μΜ	Sigma: 124737	Xu et al., 2009 [52]
Glyoxylate	na	5, 10, 20, 40, 80 μΜ	Sigma: G10601	Xu et al., 2009 [52]
3-Phosphoglycerate	3-PGA	1, 2, 4, 8, 12 mM	Sigma: P8877	Zhu et al., 2007 [53]
Glyceraldehyde-3- phosphate	GAP	10, 20, 40, 60, 80 μΜ	Sigma: 69312	Zhu et al., 2007 [53]

Dihydroxyacetone phosphate	DHAP	0.2, 0.4, 0.8, 1.6, 2.4 mM	Sigma: 51269	Zhu et al., 2007 [53]
Fructose 6-phosphate	F6P	0.5, 1, 2, 4, 6 mM	Sigma: F3627	Bassham & Krause, 1969 [42]
Glucose 6-phosphate	G6P	0.5, 1, 2, 4, 6 mM	Sigma: G7250	Bassham & Krause, 1969 [42]
Ketoglutarate	na	0.2, 0.4, 0.8, 1.2, 1.5 μM	Sigma: 75890	Szecowka et al., 2013 [51]
Malate	na	2.5, 5, 10, 20, 40 μM	Sigma: 02288	Szecowka et al., 2013 [54]
Oxaloacetic acid	OAA	0.2, 0.4, 0.8, 1.2, 1.5 μM	Sigma: O4126	Isherwood & Niavis, 1956 [55]
Glutamine	Gln	5, 10, 20, 40, 80 μM	Sigma: G3126	Dellero et al., 2015 [53]
Glutamate				
0 - 0 -	Glu	5, 10, 20, 40, 80 μΜ	Sigma: G1251	Dellero et al., 2015 [56]
Glycine	Gly	5, 10, 20, 40, 80 μΜ	Sigma: G8898	Dellero et al., 2015 [56]

Table S2: Model fitting to the dose-response of chloroplast metabolite on rice Rubisco activity. The model providing the best fit to the data is highlighted in bold and was selected according to the lowest AIC score (Akaike information criterion) estimated according to Akaike (1974) using the AIC function in R. Models were applied to the full dataset shown in Figure 2 and Supplementary Figure 1. nls = nonlinear least squares. *The nls was selected as a better representation of nonlinear fitting and the AIC is close to the minimal. R^2 and p-value were extracted from the linear regression and represent how the data fits in the model and the significance (p < 0.05 in bold), respectively.

Metabolite	Model	AIC score	R ²	p-value
	Linear	155.88	0.95	<0.001
CABP	2 nd order polynomial	134.86		
	nls*	135.51		
	Linear	199.21	0.77	<0.001
CA1P	2 nd order polynomial	170.21		
	nls	129.68		
3-PGA	Linear	158.22	0.69	<0.001
3-PGA	2 nd order polynomial	160.17		
2.00	Linear	124.56	0.02	0.59
2-PG	2 nd order polynomial	126.56		
Cl l- b-	Linear	320.66	0.01	0.55
Glycolate	2 nd order polynomial	322.50		
Cl laka	Linear	146.69	0.00	0.84
Glyoxylate	2 nd order polynomial	144.23		
CA.D.	Linear	146.63	0.23	0.09
GAP	2 nd order polynomial	145.29		
DUAD	Linear	158.14	0.00	0.78
DHAP	2 nd order polynomial	159.00		
ECD	Linear	119.93	0.33	0.01
F6P	2 nd order polynomial	121.38		
G6P	Linear	163.95	0.11	0.13
	2 nd order polynomial	165.82		
Ketoglutarate	Linear	90.47	0.02	0.51
	2 nd order polynomial	92.40		
	Linear	94.25	0.00	0.75
Malate	2 nd order polynomial	96.25		
	Linear	85.08	0.11	0.30
OAA	2 nd order polynomial	86.92		
	Linear	119.08	0.01	0.65
Gln	2 nd order polynomial	120.82		
	Linear	124.65	0.06	0.34
Glu	2 nd order polynomial	125.60		
	Linear	179.75	0.04	0.31
Gly	2 nd order polynomial	180.22		V.U =
	2 Order polynomial	100.22		

Table S3: Apparent inhibitor constants (Ki^{app}) of RuBP carboxylation for CABP (2-carboxy-D-arabinitol-1,5-bisphosphate), CA1P (2-carboxy-D-arabinitol 1-phosphate) and 3-PGA (3-Phosphoglycerate). Ki was estimated according to the type of inhibition and using Michaelis-Menten equations (Eq. 1) or the "quotient velocity plot" (Eq. 2) as detailed in the methods. For a more accurate and laborious method to determine the Ki for Rubisco inhibitors, please see Pearce and Andrews (2003 J Biol Chem 278: 32526-32536) [8].

Metabolite	Inhibition Type	Ki ^{app} (Eq. 1)	Ki ^{app} (Eq. 2)
CABP	Noncompetitive-like	$0.12 \pm 0.02 \mu M$	$0.10 \pm 0.02 \mu M$
CA1P	Noncompetitive-like	$0.44 \pm 0.08 \mu M$	$0.44 \pm 0.01 \mu M$
3-PGA	Competitive-like	$3.36 \pm 0.71 \text{mM}$	$3.21 \pm 0.77 \text{mM}$