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Abstract: The attitude and heading reference system (AHRS), which consists of tri-axial magnetometer,
accelerometer, and gyroscope, has been widely adopted for three-dimensional attitude determination
in recent years. It provides an economical means of passive navigation that only relies on gravity
and geomagnetic fields. However, despite the advantages of small size, low cost, and low power,
the magnetometer and accelerometer are susceptible to external disturbances, such as the magnetic
interference from nearby ferromagnetic objects and current-carrying conductors, as well as the
motional acceleration of the carrier. To eliminate such disturbances, a vector-based parallel structure is
introduced for the attitude filter design, which can avoid the mutual interference between gravity and
geomagnetic vectors. Meanwhile, an approach to estimate and compensate the external disturbances
in real time for magnetometer and accelerometer is also presented. Compared with existing designs,
the proposed filter architecture and external disturbance rejection algorithm can feasibly and effectively
cooperate with mainstream data fusion techniques, including complementary filter and Kalman
filter. According to experiment results, in the case that large and persistent external disturbances
exist, the proposed method can improve the accuracy and robustness of attitude estimation, and it
outperforms the existing methods such as switching filter and adaptive filter. Furthermore, through the
experiments, the critical role of fading factor in handling the external disturbance is revealed.

Keywords: accelerometers; attitude and heading reference systems (AHRS); Kalman filter; magnetic
disturbance; magnetometers; sensor fusion

1. Introduction

Attitude and heading reference systems (AHRS) can provide three-dimensional attitude
information [1–6], and they are widely used in unmanned aerial vehicles (UAV), mobile robots, motion
tracking, etc. A typical sensor configuration in AHRS consists of a tri-axial magnetometer, a tri-axial
accelerometer, as well as a tri-axial gyroscope. The combination of magnetometer, accelerometer,
and gyroscope is also referred to as a MARG sensor [7–9], which has the advantages of ultra-low size,
cost, and power.

Three-dimensional attitude estimation in AHRS mainly relies on two natural vector fields,
namely gravity and geomagnetic fields [1,10]. The former points to the center of the Earth and can be
measured by the accelerometer, while the latter points to the magnetic north and can be measured by
the magnetometer. Besides the above two vectors, the gyroscope can provide the angular velocity of
the carrier that the AHRS is attached to, and it can help to augment dynamic attitude accuracy.

In recent decades, theories and techniques for MARG sensor-based AHRS have been well
developed. The scalar checking (or ellipsoid fitting) method [1,11–15] and the multi-position
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calibration [16,17] can help to compensate MARG sensor errors, including the bias, scale factors,
misalignments, etc. Meanwhile, various solutions for MARG sensor fusion can also be found in the
voluminous literature, such as the Kalman filter (KF) [1–3,7] and complementary filter (CF) [6,8,18–20].

Still, the complicated and volatile environments can bring in external disturbances for MARG-based
AHRS. For instance, the motional acceleration of carrier (also known as external acceleration) will
be vectoral added to gravity, and hence the calculation of pitch and roll angles will be affected [1–3].
On the other hand, external magnetic interference can lead to significant heading error [21],
since geomagnetic field intensity is very low. Such external disturbances cannot be thoroughly
solved by the above-mentioned error calibration and data fusion methods, since most of these methods
are mainly based on time-invariant models. Hence, specific approaches are necessary to improve the
accuracy and robustness of MARG-based AHRS against temporary external disturbances.

The existing external disturbances rejection algorithms can be categorized into two major types [5]:
The threshold-based [1,3] and the model-based methods [2].

The threshold-based methods use one or more criteria (e.g., whether the norm of gravity or
geomagnetic vector has notable deviation) to detect the external disturbance. They are also called
switching filters, and can be further divided into ‘hard-switching’ and ‘soft-switching’ ones. The former
directly excludes the vector field sensor from the filter once it is affected by external disturbance [3,21,22],
while the latter gradually reduces the weight of the affected sensor for data fusion when the disturbance
increases [1,9,23–30].

On the other hand, the model-based methods use certain model to estimate the external disturbance
in real time, and then subtract it from the measurement of the corresponding sensor [2,31–37].

Nevertheless, the problem of external disturbance rejection still needs further studies. It is
noteworthy that the existing approaches were mostly designed for specific attitude filter architecture,
i.e., for most cases, an approach designed for KF cannot be directly applied to CF due to the difference
in architecture, and vice versa. For instance, the method in [37] estimates the disturbances outside
the KF, but it also modifies the covariance matrix in KF, and thus it is not fit for CF. Moreover, since it
works outside but is not independent of the attitude filter, its mechanism needs more discussion.

In this paper, a more versatile approach is discussed and evaluated to estimate and compensate
the external disturbances for vector field sensors (i.e., the accelerometer and magnetometer) in AHRS.
This algorithm can cooperate with different types of attitude filters, and thus it is broadly applicable
for MARG-based attitude determination.

The rest of this paper is organized as follows. The existing algorithms will be briefly surveyed in
Section 2, and then the versatile algorithm for disturbance rejection will be introduced in Section 3.
After that, experimental evaluation and concluding remarks of the proposed algorithm will be presented
in Sections 4 and 5, respectively.

2. Previous Works

2.1. MARG Sensor Error Modeling

As stated above, the MARG sensor in AHRS are used to measure three different vectors, namely
the gravity vector g, the geomagnetic vector h, and the angular velocity ω. The measurement model of
MARG sensor can be written as (1), which includes various error sources [1,11–17].

vacc = Cs f , accCma,accCno,acc
(
g + fa

)
+ bacc + εacc

vmag = Cs f ,magCma,magCno,magCsi(h + bhi) + bmag + εmag

vgyr = Cs f ,gyrCma,gyrCno,gyrω+ bgyr + δbgyr + εgyr

(1)

In Equation (1), the subscripts ‘acc’, ‘mag’, and ’gyr’ indicate the parameters corresponding to
accelerometer, magnetometer, and gyroscope, respectively. The 3 × 1 vector v, b, and ε denote the
sensor outputs, biases, and noise terms, respectively. Moreover, the 3 × 3 matrices Cs f , Cma, and Cno



Micromachines 2020, 11, 803 3 of 15

stand for the scale factors, misalignment, and non-orthogonality, respectively. Meanwhile, there are
several noticeable issues in Equation (1) for each sensor.

According to Equation (1), the accelerometer is sensitive to both the specific force fa (defined as the
non-gravitational force per unit mass) and gravity g. In the case that accelerometer is used to measure
the motional acceleration [38], the measurand is fa, while gravity g can be viewed as the disturbance.
However, in AHRS, g is needed for attitude estimation, and fa plays the role of external disturbance.

For the magnetometer, the magnetic interferences can be categorized into hard-iron and soft-iron
disturbances. The soft-iron disturbance is proportional to the external magnetic field, and it is described
by the matrix Csi in Equation (1). On the other hand, the hard-iron disturbance usually comes from the
permanent magnetism of nearby ferromagnetic materials, and it is described by the 3 × 1 vector bhi in
Equation (1). In AHRS, the geomagnetic vector h is used for attitude estimation, and bhi is the source
of external disturbance.

For the gyroscope, δbgyr denotes the drift of its bias bgyr, and it should be properly handled in
attitude estimation algorithm to avoid accumulative error.

The measurement model in Equation (1) can be rewritten as Equation (2), in which g∗, h∗, and ω∗

stand for the measurements of g, h, and ω, respectively. Moreover, the 3 × 3 matrix K and 3 × 1 vector
b with corresponding subscripts indicate the deterministic sensor errors. Moreover, δbgyr is simplified
to δb, while da and dm indicate the undetermined external disturbances for the accelerometer and
magnetometer, respectively. 

g∗ = Kacc·g + bacc + da + εacc

h∗ = Kmag·h + bmag + dm + εmag

ω∗ = Kgyr·ω+ bgyr + δb + εgyr

(2)

The commonly used calibration methods for MARG sensor (such as the ellipsoid fitting method
and multi-position method) can determine K and b, but most of them presume that both K and b are
time-invariant. In other words, such calibrations are based on linear time-invariant (LTI) error models,
and thus they are insufficient to compensate δb, da, and dm.

In the following discussion, it is presumed that the time-invariant error terms of MARG sensor
have already been calibrated appropriately.

2.2. MARG Sensor Data Fusion

As stated above, KF and CF are the two major types of MARG sensor fusion techniques.
There are two essential parts in KF, namely the state transition (or prediction) and state correction

steps. As can be seen in Figure 1a, when KF is used for attitude estimation, in each time step, the 3D
attitude Θ is predicted according to ω∗, and then the prediction is corrected according to g∗ and h∗.
The superscripts ‘−’ and ‘+’ indicate the a priori and a posteriori estimation, respectively.

Either the prediction or correction step may involve nonlinear mathematics, and thus nonlinear
KFs had been proposed, e.g., the extended Kalman filter (EKF), unscented Kalman filter (UKF) [2],
and cubature Kalman filter (CKF) [39,40]. Meanwhile, since there are various representations of 3D
attitude Θ, such as Euler angles (i.e., heading, pitch, and roll), quaternion, direction cosine matrix
(DCM), and even the vectors g and h [41,42], they also lead to numerous attitude filters.

On the other hand, complementary filters perform data fusion in frequency domain, as shown
in Figure 1b,c. In Figure 1b, H(s) stands for a high-pass transfer function that can help to eliminate
the gyro bias drift, and TRIAD refers to the tri-axial attitude determination algorithm [43]. Figure 1c
shows another widely used implementation of CF that first presented in [18].

Hereafter, it is assumed that the noise term ε and the gyro bias drift δb can be properly handled by
the attitude filter (i.e., KF or CF), and thus the only problem left is to handle the external disturbances
da and dm.
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2.3. Switching Filters

Different criteria can be used to detect the disturbances da and/or dm:

- The norm of g∗ (or h∗): it is the most widely used criterion, due to its high convenience
and feasibility.

- The deviation between ĝ and g∗ (or ĥ and h∗): it is another frequently used criterion, which can be
easily acquired from the residual (or innovation) in the state correction step of KF. However, it
may be affected by the filter’s instability.

- The angular velocity: it can be used to detect rotational acceleration (especially the centripetal
acceleration) [28], but it is not always reliable since the turning radius is usually unknown.

- The magnetic dip (i.e., the angle between h and the horizontal plane): it can be used to detect
dm [21,27], but with the requisite that the pitch and roll angles are accurately known.

Besides the variety of criteria, there are also different ways to implement hard-switching and
soft-switching filters:

(a) Tune the filter gain (or the weighting coefficient, cut-off frequency, etc.) directly [8,27].
(b) Enlarge the measurement covariance of g∗ and/or h∗, to adjust the filter gain indirectly [1,23–25].

This is only fit for KF.
(c) Tune the filter according to more complex switching logic, such as the hidden Markov model

in [28] and the state machine in [30].

2.4. External Disturbances Estimation

Model-based disturbance rejection method tries to extract the external disturbances from raw
measurement, rather than discarding it. Therefore, it can probably preserve more information than the
threshold-based methods.

To estimate the external disturbance, it can be included in the state variables of attitude
filter (specifically the KF) [31,32]. However, it will increase the dimension of KF, as well as the
computational burden.

Alternatively, the external disturbance can be estimated outside the attitude filter, to avoid state
augmentation [33–37]. Hereinafter, these two approaches are referred to as ‘interior’ estimator and
‘exterior’ estimator, respectively.

The principle of exterior estimator can be summarized as follows.

(1) Assuming that the a posteriori estimation of da and dm at the (k − 1)th time step are already

available (denoted as d̂
+
a,k−1 and d̂

+
m,k−1), the a priori estimations at the kth time step (denoted as

d̂
−

a,k and d̂
−

m,k) are calculated according to Equation (3). Please note that the coefficient ca and cm

are both between 0 and 1.
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 d̂
−

a,k = ca·d̂
+
a,k−1

d̂
−

m,k = cm·d̂
+
m,k−1

(3)

(2) Using d̂
−

a,k and d̂
−

m,k, the measurements g∗k and h∗k are corrected according to Equation (4). gc
k = g∗k − d̂

−

a,k

hc
k = h∗k − d̂

−

m,k
(4)

(3) Once the a posteriori estimation ĝ+k and ĥ
+
k are provided by KF, the estimations of da and dm can

be updated according to Equation (5).  d̂
+
a,k = g∗k − ĝ+k

d̂
+
m,k = h∗k − ĥ

+
k

(5)

The exterior estimator described by Equations (3)–(5) has been proven to be effective in [33–37],
but it can only work with KF. Meanwhile, it still has two major problems that need further explanation.

The first problem is the interpretation of Equation (3), which was called the first-order
auto-regressive process [36] or Markov chain process [37] that driven by low-pass filtered white
noise [33–35]. However, in most cases, the external disturbances da and dm are unpredictable, i.e., there
is no sufficient a priori knowledge about their arising and changes over time. Therefore, Equation (3)
is by no means rigorous, and it is certainly not driven by white noise (as presumed in [33–37]).

The second problem is the measurement covariance in KF when using the above exterior estimator.
Theoretically, if the covariance of d̂

−

a,k is Ra, while the covariance of g∗k is Rg, the covariance of gc
k should

be
(
Rg + Ra

)
. Unfortunately, Ra remains unknown in most cases due to the lack of a priori knowledge.

In [33–37], Ra was calculated according to da itself. For instance, Ra can be simply defined as a scalar
matrix in Equation (6) [33,37]:

Ra,k =
1
3

∣∣∣∣d̂−a,k

∣∣∣∣2 =
1
3

c2
a

∣∣∣∣d̂+
a,k−1

∣∣∣∣2 (6)

Alternatively, Ra can be calculated by a windowed smoothing approach, as in Equation (7) [34]:

Ra,k =
1
m

c2
a

m∑
i=1

d̂
+
a,k−i(d̂

+
a,k−i)

T
(7)

Obviously, Equations (6) and (7) will enlarge the measurement covariance of gc
k once the external

disturbance arises, but they are not rigorous either.
In the following section, the versatility of the exterior estimation algorithm will be expanded,

and a different interpretation of Equation (3) will be given. Furthermore, it will be proved that the
above modification of measurement covariance are unnecessary (and can even bring in negative effects)
by experiments in Section 4.

3. Novel Attitude Filter Design

3.1. Attitude Filter Architecture

Figure 2 shows a universal architecture for attitude estimation as well as external disturbances
rejection. This architecture can cooperate with all variants of KF and CF, since the estimation and
compensation of either da or dm is performed outside the filter. Moreover, this architecture incorporates
several features that can help to simplify the structure and/or enhance the robustness.

First, the 3D attitude information is preserved in g and h, instead of the commonly used quaternion
or DCM. Thus, there is no need to calculate the quaternion or DCM according to g and h, or vice versa.
Once g and h have been estimated, the heading, pitch, and roll angles (denoted as ψ, θ, and = ϕ,
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respectively) can be solved by TRIAD algorithm [43]. This feature is known as the vector-based or
sensor-based design [41,42].
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Secondly, since the filter is vector-based, it is possible to use two sub-filters to estimate g and h
separately. This is called the parallel filter [37], which can avoid the mutual interference between g and
h, and thus help to restrain the impact of external disturbances. Meanwhile, it is also beneficial for
reducing the dimension of each sub-filter.

Last but not least, the external disturbances da and dm are estimated outside the attitude filter, i.e.,
it is an exterior estimator of da and dm, as introduced in Section 2.4. Thus, it is possible to use different
algorithms in the filter, including EKF, UKF, CKF, and CF.

3.2. External Disturbances Estimation

Figure 2 also shows the algorithm for external disturbances estimation, in which the superscripts
‘−’ and ‘+’ indicate the a priori and a posteriori estimations, respectively.

In each time step, the proposed attitude estimation and external disturbances rejection algorithm
can be summarized as follows:

• Step 1: Predict the disturbances d̂
−

a,k and d̂
−

m,k. This step is the same as (3).

• Step 2: Subtract d̂
−

a,k and d̂
−

m,k from the corresponding measurements (i.e., g∗k and h∗k) to get the
corrected vectors (denoted as gc

k and hc
k). This step is the same as (4).

• Step 3: Get the estimated vectors ĝk and ĥk according to gc
k, hc

k, andω∗k through a certain algorithm
(KF or CF).

• Step 4: Update the estimated disturbances d̂
+
a,k and d̂

+
m,k according to ĝk and ĥk, i.e., d̂

+
a,k = g∗k − ĝk

and d̂
+
m,k = h∗k − ĥk. Then k = k + 1 and go to Step 1.
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3.3. Specific Implementations

The above algorithm can cooperate with KF and CF, as presented below.

3.3.1. The Proposed Method with Kalman Filter (Abbreviated as PM-KF Hereafter)

• PM-KF Step 1: Get a priori estimation according to Equation (8), in which the state transition

matrix is calculated as Fk = I3×3 − ∆t·
[
ω∗k

]
×

. The matrix
[
ω∗k

]
×

satisfies
[
ω∗k

]
×

u = ω∗k × u for any
3 × 1 vector u, and ∆t is the sampling period. ĝ−k = Fkĝ+k−1

ĥ
−

k = Fkĥ
+
k−1

(8)

• PM-KF Step 2: Calculate a priori covariance matrices according to (9). The process covariance

matrices are defined as Qg =
∣∣∣g∣∣∣2σ2

ωI3×3 and Qh = |h|2σ2
ωI3×3, with σω denoting the noise

of gyroscope.  P−k,g = FkP+
k−1,gFT

k + Qg

P−k,h = FkP+
k−1,hFT

k + Qh
(9)

• PM-KF Step 3: Get a posteriori estimation according to Equations (10)–(12). The measurement
covariance matrices are defined as Rg = σgI3×3 and Rh = σhI3×3, with σg and σh denoting the
noise of accelerometer and magnetometer, respectively. Kk,g = P−k,g(P

−

k,g + Rg)
−1

Kk,h = P−k,h(P
−

k,h + Rh)
−1 (10)

 gc
k = g∗k − d̂

−

a,k

hc
k = h∗k − d̂

−

m,k
(11)

 ĝ+k = ĝ−k + Kk,g(gc
k − ĝ−k )

ĥ
+
k = ĥ

−

k + Kk,g(h
c
k − ĥ

−

k )
(12)

• PM-KF Step 4: Calculate a posteriori covariance matrix according to Equation (13). P+
k,g = (I3×3 −Kk,g)P−k,g

P+
k,h = (I3×3 −Kk,h)P−k,h

(13)

Then k = k + 1 and go to PM-KF Step 1.

3.3.2. The Proposed Method with Complementary Filter (Abbreviated as PM-CF Hereafter)

• PM-CF Step 1: Correct the angular velocity according to Equation (14). ωc
k,g = ω∗k −Kg ·ωerr

k−1,g
ωc

k,h = ω∗k −Kh ·ωerr
k−1,h

(14)

• PM-CF Step 2: Update gravity and geomagnetic vectors using to the corrected angular velocity,
as described by Equations (15)–(17). gk,p = ĝk−1 + ĝk−1 ×ω

c
k−1,g

hk,p = ĥk−1 + ĥk−1 ×ωc
k−1,h

(15)
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 gk,c = ĝk−1 + gk,p ×ω
c
k,g

hk,c = ĥk−1 + hk,p ×ωc
k,h

(16)

 ĝk =
(
gk,c + gk,p

)
/2

ĥk =
(
hk,c + hk,p

)
/2

(17)

• PM-CF Step 3: Compensate external disturbances and calculate equivalent angular velocity errors,
as described by Equations (18) and (19). ∆t denotes the sampling period. gc

k = g∗k − d̂
−

a,k

hc
k = h∗k − d̂

−

m,k
(18)


ωerr

k,g =
ĝk × gc

k
|ĝk ||g

c
k |·∆t

ωerr
k,h =

ĥk × hc
k

|ĥk ||h
c
k |·∆t

(19)

Then k = k + 1 and go to PM-CF Step 1.

3.4. Remarks

As can be seen in the above implementations, the proposed parallel vector-based architecture
can greatly simplify the design of attitude filter, especially the KF. There is no need to use UKF, CKF,
or other nonlinear version of KF, since both the process and measurement models are concise and
straightforward. Moreover, the proposed external disturbance rejection method seems to be a direct
extension of Equations (3)–(5). However, it can be interpreted in a different way as follows.

As pointed out in the above section, the external disturbances da and dm are unpredictable in most
cases. As a matter of fact, the essence of Equation (3) is the assumption that either da or dm will not
have drastic change during a single sampling period, and thus the last a posteriori estimation can be
used to correct the sensor measurement at the present time step. Obviously, this approach is inexact,
and the actual role of the coefficients ca or cm is to make the estimation error tend to decrease. In other
words, ca and cm are actually the fading factors that help to avoid divergence. Nonetheless, if ca (or cm)
is too close to zero, it will inevitably weaken the compensation of da (or dm). The effects of these two
fading factors will be evaluated in the following section.

To find a general solution for not only the KF, it is unnecessary to modify the covariance of gc
k

and/or hc
k. In fact, the proposed algorithm makes no change to the attitude filter itself, and thus it

is an actual exterior estimator of external disturbances. Moreover, it can be seen in the following
experiments that the modification of the measurement covariance is not always helpful to improve
the performance.

4. Experiments

4.1. Basic Settings

The proposed algorithm is evaluated on an AHRS module, which is based on a monolithic MARG
sensor MPU9250 and working at the sampling rate of 20 Hz. Meanwhile, a single-axis rate table is
used to provide heading and angular rate references with 0.0001◦ resolution. The AHRS module and
rate table, as well as the hardware installation, are shown in Figure 3.

The magnetometer and accelerometer in MPU9250 are calibrated using a calibration scheme based
on dual inner products, which can be viewed as an improved ellipsoid fitting method and was detailed
in [44]. Moreover, the gyroscope in MPU9250 is calibrated using a cross product-based algorithm,
which was presented in [45].
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After the above calibration, raw data are then acquired according to the flowchart in Figure 4.
It can be seen that the AHRS experiences high-speed stop-and-go rotations, which can generate
considerable centripetal acceleration. Meanwhile, it also suffers artificial magnetic interference that
caused by ferromagnetic objects.
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Three different algorithms are used for attitude estimation, including PM-KF and PM-CK
that introduced in Section 3.3, as well as the parallel Kalman filter in [37] (abbreviated as PA-KF).
The main difference between PM-KF and PA-KF is that the latter has adaptive measurement covariance,
as described by Equation (6).

In both PM-KF and PA-KF, the sensor noise covariances are σh = 0.5 µT, σg = 0.1 m/s2,
and σω = 0.005 rad/s, respectively. On the other hand, the coefficients of PM-CF are set to
Kg = Kh = 0.3.
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4.2. Experiment Results

Since each of the above algorithms outputs the estimations of g and h, their performance is
evaluated in terms of the directional errors of g and h, i.e., the angle between the estimated vector
and the true vector. At the kth time step, if the estimated vector is ĝk (or ĥk), while the true
vector is gr,k (or hr,k), the directional error can be calculated as δg,k = cos−1

[(
ĝk·gr,k

)
/
(
‖ ĝk ‖‖ gr,k ‖

)]
(or δh,k = cos−1 [(ĥk·hr,k)/(‖ ĥk ‖‖ hr,k ‖)]). Moreover, both fading factors ca and cm are increased from
0 to 2 with the increment of 0.01, so as to evaluate their impacts. Figure 5 shows the maximum error
and root mean square error (RMSE) of each algorithm versus the fading factors.
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of h. (d) RMSE of h.

As can be seen in Figure 5, the fading factors ca and cm have significant impacts on the performance
of each algorithm. It is clear that all the algorithms will diverge once ca or cm is greater than 1.
Meanwhile, in Figure 5, the optimal fading factors for each algorithm (i.e., the fading factors that lead to
the best performance) can be found, as listed in Table 1. It is noteworthy that the optimal fading factors
of PA-KF are quite small, especially the optimal value of ca is only around 0.05 (but coincides with [33]
and [37]). As mentioned in Section 3.4, such small fading factors will weaken the compensation of
external disturbances.

Table 1. The best performance of each algorithm.

Algorithm Raw Data PA-KF PM-KF PM-CF

Gravity vector Maximum error/ca 64.36◦/− 50.34◦/0.04 15.63◦/0.91 10.58◦/0.92
RMSE/ca 31.72◦/− 22.97◦/0.05 7.41◦/0.92 6.46◦/0.93

Geomagnetic vector Maximum error/cm 52.75◦/− 8.24◦/0.21 31.31◦/0.96 10.26◦/0.87
RMSE/cm 5.24◦/− 1.76◦/0.20 3.82◦/0.83 2.18◦/0.64

To further demonstrate the performance of each algorithm with its optimum fading factors,
the estimated vectors g and h, the estimated disturbances da and dm, as well as the corresponding 3D
attitude outputs (heading ψ, pitch θ, and roll ϕ) are all plotted in Figures 6 and 7.
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In Figure 6a,b, the centripetal acceleration caused by rapid rotations can be spotted, and it results
in the fluctuation and divergence in the output of PA-KF in Figure 6d,e. On the contrary, the outputs of
PM-KF and PM-CF remains stable when the centripetal acceleration exists. This is consistent to the
results in Table 1, i.e., both PM-KF and PM-CF have better results than PA-KF in compensating the
large and lasting external acceleration.

Nevertheless, it can also be noticed in Table 1 that PM-KF and PM-CF do not outperform
PA-KF when compensating magnetic interference. More details of the magnetic interference and its
compensation by different algorithms are shown in Figure 7.

Figure 6. Estimation of gravity vector g and disturbance da, as well as the corresponding pitch (θ) and
roll (ϕ) angles. (a) g measurements, with uncompensated da. (b) Theoretical value of da. (c) θ and
ϕ calculated from uncompensated g measurements. (d) g estimated by PA-KF with ca = 0.05. (e) da

estimated by PA-KF. (f) θ and ϕ calculated from PA-KF outputs. (g) g estimated by PM-KF with
ca = 0.92. (h) da estimated by PM-KF. (i) θ and ϕ calculated from PM-KF outputs. (j) g estimated by
PM-CF with ca = 0.93. (k) da estimated by PM-CF. (l) θ and ϕ calculated from PM-CF outputs.
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Figure 7. Estimation of geomagnetic vector h and disturbance dm, as well as the corresponding heading
(ψ) angle. (a) h measurements, with uncompensated dm. (b) Theoretical value of dm. (c) ψ calculated
from uncompensated h measurements. (d) h estimated by PA-KF with cm = 0.20. (e) dm estimated by
PA-KF. (f) ψ calculated from PA-KF outputs. (g) h estimated by PM-KF with cm = 0.83. (h) dm estimated
by PM-KF. (i) ψ calculated from PM-KF outputs. (j) h estimated by PM-CF with cm = 0.64. (k) dm

estimated by PM-CF. (l) ψ calculated from PM-CF outputs.

5. Discussion

The above experiment results have proven the feasibility and effectiveness of the proposed method,
including the vector-based parallel architecture and the external disturbance rejection algorithm. Still,
there are some noteworthy issues.

First, the proposed method (including PM-KF and PM-CF) outperforms PA-KF when dealing with
the centripetal acceleration, but shows no superiority in handling the magnetic interference. As shown
in Figure 6, the raw data from accelerometer contain large and long-term centripetal acceleration,
and the proposed method is more adaptive to such hostile conditions. On the contrary, PA-KF works
better against momentary and moderate disturbances, as shown in Figure 7.

The main reason for the above phenomenon lies in the data fusion process of MARG sensor.
Once the external disturbance arises, the measurement of accelerometer and/or magnetometer becomes
unreliable, and thus the attitude estimation algorithm can only rely on the integration of angular
velocity. However, inevitable bias drift of gyroscope results in a dilemma that the attitude filter will
either diverge due to accumulated error, or still use the distorted measurement of accelerometer and/or
magnetometer. In a word, any solution for disturbance rejection is essentially a trade-off between the
gyro drift and the external disturbances.
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Compared to the switching filters that completely discard the unreliable measurements, both PA-KF
and the proposed method partially retain the measurements of accelerometer and magnetometer even
when they contain external disturbances. However, PA-KF assigns more weight to the gyroscope by
enlarging the measurement covariance of accelerometer and/or magnetometer. Consequently, PA-KF
will be more significantly affected by the gyro drift when the disturbance is large and lasting.

Another key issue is the fading factor ca and cm, which can greatly impact the compensating of
external disturbance. As discussed in Section 3.4, a fading factor between 0 and 1 can help to decrease
the estimation error, and it is proven by the fact that the optimal fading factors of all the algorithms
are less than 1 in Table 1. However, if the fading factor is too small, it will evidently weaken the
compensation of external disturbance, and it is also proven by the results listed in Table 1.

Compared to PM-KF and PM-CF, the optimal fading factors of PA-KF are much closer to 0.
Since PA-KF is more significantly affected by the gyro drift due to its adjustment to the measurement
covariance, it needs a smaller fading factor to alleviate this problem. Unfortunately, such a small fading
factor will definitely weaken the compensation effect, and it results in the poor performance of PA-KF
when handling large and lasting centripetal acceleration.

Finally, it is worth mentioning again that the main advantage of the proposed method is not only
its better performance against strong and persistent disturbances, but also its flexibility to cooperate
with commonly used sensor fusion algorithms (including but not limited to KF and CF).

6. Conclusions

In this paper, a versatile external disturbance rejection approach is presented, along with a
vector-based parallel architecture for 3D attitude estimation. It is proven by experiments that the
proposed filter architecture and disturbance rejection approach can work well with KF and CF in the
presence of external acceleration and magnetic interference.

The proposed method provides a feasible and generally applicable solution for MARG-based
3D attitude estimation. Nonetheless, the problem of external disturbance rejection for accelerometer
and magnetometer is far from completely solved. As stated in the above section, all solutions for
disturbance rejection in MARG-based AHRS, either the existing approaches or the proposed method,
are no more than trade-offs between the gyro drift and the external disturbance. Since the significant
role of the fading factor is revealed, a possible direction for future exploring is the adaptive adjustment
of such fading factors.
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