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MICOP: Maximal information coefficient-
based oscillation prediction to detect
biological rhythms in proteomics data
Hitoshi Iuchi1,2, Masahiro Sugimoto2,3* and Masaru Tomita1,2,4

Abstract

Background: Circadian rhythms comprise oscillating molecular interactions, the disruption of the homeostasis of
which would cause various disorders. To understand this phenomenon systematically, an accurate technique to
identify oscillating molecules among omics datasets must be developed; however, this is still impeded by many
difficulties, such as experimental noise and attenuated amplitude.

Results: To address these issues, we developed a new algorithm named Maximal Information Coefficient-based
Oscillation Prediction (MICOP), a sine curve-matching method. The performance of MICOP in labeling oscillation or
non-oscillation was compared with four reported methods using Mathews correlation coefficient (MCC) values. The
numerical experiments were performed with time-series data with (1) mimicking of molecular oscillation decay, (2)
high noise and low sampling frequency and (3) one-cycle data. The first experiment revealed that MICOP could
accurately identify the rhythmicity of decaying molecular oscillation (MCC > 0.7). The second experiment revealed that
MICOP was robust against high-level noise (MCC > 0.8) even upon the use of low-sampling-frequency data. The third
experiment revealed that MICOP could accurately identify the rhythmicity of noisy one-cycle data (MCC > 0.8). As an
application, we utilized MICOP to analyze time-series proteome data of mouse liver. MICOP identified that novel
oscillating candidates numbered 14 and 30 for C57BL/6 and C57BL/6 J, respectively.

Conclusions: In this paper, we presented MICOP, which is an MIC-based algorithm, for predicting periodic patterns in
large-scale time-resolved protein expression profiles. The performance test using artificially generated simulation data
revealed that the performance of MICOP for decaying data was superior to that of the existing widely used methods. It
can reveal novel findings from time-series data and may contribute to biologically significant results. This study
suggests that MICOP is an ideal approach for detecting and characterizing oscillations in time-resolved omics data sets.
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Background
The circadian rhythm, which involves oscillations over a
cycle lasting 24-h, plays a critical role in biological sys-
tems [1]. Transcriptional negative feedback loops com-
posed of clock genes are a key component of this
mechanism [1–3]. These clock genes regulate down-
stream gene expression, leading to the 24-h cyclic

oscillation of various physiological phenomena such as
cell division, energy metabolism, blood pressure, and
sleep [4, 5]. Many molecules are involved in these sys-
tems, so comprehensive and multilayered approaches
are required to clarify the complex systems. Thus, it is
crucial to obtain a deep understanding of the circadian
rhythm in order to understand biological systems.
The availability of biological time-course data is key to

elucidating circadian rhythms, but there are several diffi-
culties in analyzing biological time-series data. In par-
ticular, the accumulation of time-series omics data via
the technological innovation of mass spectrometry and
DNA sequencers has led to the following problems: (1)
low sampling frequency and (2) unstable oscillation. The
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first problem is derived from the generally low sampling
frequency of omics datasets because comprehensive ap-
proaches such as proteomics and transcriptomics are
often expensive and laborious. Several omics studies col-
lected time-course data every 2–4 h per day and esti-
mated periodicity using 12 to 24 points [6–9]. This
sampling frequency of omics data was relatively low
compared with those for locomotor activity or tissue lu-
minescence, which were provided every minute [10].
The second problem is the unstable oscillation (such as
amplitude decay) of time-course experimental values.
There are various types of unstable oscillations in the
expression pattern of genes and proteins. For example,
previous reports assumed unstable oscillations such as co-
sine with outlier time points, cosine with a linear trend, co-
sine with an exponential trend, and decaying cosine as
possible natural oscillation phenomena [11, 12]. These un-
stable oscillations hamper oscillation detection, in particular
for amplitude decay, which is often observed in experimen-
tal systems and, is caused by degradation of the metabolic
activity of cells and degradation of fluorescent protein [13].
Therefore, novel computational analysis that functions over
the time course of omics studies with limited sampling
points and amplitude decay should be developed.
Many analytical approaches to predict molecules with

oscillating levels from time-series data have been devel-
oped. These algorithms were classified into time-domain
and frequency-domain methods [14]. Typical time-domain
methods are based on cosine curve-based pattern match-
ing and their simple algorithm helps biologists to evaluate
their analytical results [14]. For example, COSOPT and
chi-squared periodogram are algorithms employing curve
fitting and autocorrelation, respectively [15, 16]. Hughes et
al. developed a nonparametric approach using rank by the
nonparametric Jonckheere–Terpstra (JT) test and obtained
the strength of correlation by Kendal’s tau test (JTK) [17].
However, they have disadvantages, such as sensitivity to
noise and outliers, and being able to detect only cosine
wave-like curves; as such, there is a need for a novel algo-
rithm that can overcome these obstacles. Meanwhile,
frequency-domain methods based on spectral analysis are
strongly noise-resistant and model-independent [14].
Fisher’s G-test estimates periodicity by calculating the peri-
odogram of experimental data and calculating the P-value
using Fisher’s G-statistic [18]. Autoregressive spectral
(ARS) analysis is an approach combining time-domain and
frequency-domain methods, used to identify molecules
with rhythmically oscillating levels in large-scale
time-resolved profiles by autoregressive spectral analyses
[19, 20]. Similarly, an approach combining autocorrelation
and spectral analysis after removing noise from raw data
with a digital filter was also proposed [21]; however,
frequency-domain methods are limited by the low sam-
pling frequency and short time period in omics

experiments, which means that they are often insuffi-
cient to predict the periodicity of large-scale omics
datasets [22]. Therefore, developed approaches to
characterize oscillating molecules in biological data
have been used with success and have contributed to
our understanding of biological systems; meanwhile, it
has been shown that each method sometimes pro-
duces inconsistent results because of noise, sampling
rate, and waveform [23]. A novel oscillation predic-
tion method compatible with omics experiments, hav-
ing a low sampling frequency, was required, for
which quantitative evaluation of the performance
could also be achieved.
This study developed Maximal Information Coefficient

(MIC)-based Oscillating Prediction (MICOP) for analyz-
ing time-series omics datasets with high-level noise and
possible decay. MICOP offers unsurpassed performance
to identify and characterize oscillating molecules in
omics datasets.

Methods
Datasets
Time-resolved data from biological samples are generally
obtained every 2–6 h per day [6–9]. Therefore, we simu-
lated time-series data containing 6–24 points for two cy-
cles for a performance test. Half of these artificially
simulated data did not feature oscillation, while the
other half did. For oscillating data, to mimic experimen-
tal data, noise according to the normal distribution
(average = 0, standard deviation = 0–0.6) was added to
the sin curve. The decaying time-series datasets were de-
signed so that the value of the peak in the second cycle
is one-third of the value of the peak in the first cycle.
The nonoscillating data were random numerical data.
Proteomics datasets of C57BL/6 J and C57BL/6, which
was already normalized, were downloaded from journal
websites [8, 9]. The simulated data released by Wu et al.
are included in MetaCycle, as described below [23, 24].

Design
A conceptual diagram of MICOP is shown in Fig. 1. The
MIC belongs to the nonparametric exploration class, and
the score indicates the strength of the linear or non-linear
association between variables. First, the mutual informa-
tion for a scatterplot of X and Y is calculated as:

I X;Yð Þ ¼
X

Y

X

X

p X;Yð Þ log2
p X;Yð Þ
p Xð Þp Yð Þ

Where p(X) and p(Y) are marginal probability distribu-
tion functions of X and Y, and p(X,Y) is joint probability
distribution function. Then, to compare the values from
different grids and to obtain normalized values between
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0 and 1, MIC is divided by the lesser number of X and Y
bins. MIC is calculated as;

MIC X;Yð Þ ¼ max
X;Y<nα

I X;Yð Þ
log2 min X;Yð Þð Þ

The algorithm calculates the MIC value between the
reference sin curve and experimental data. The same sin
curve was used for all input traces. The script for
MICOP and its performance test is provided as an R
script. The P-values were calculated from the frequency
of each MIC value of experimental data and the MIC
values that were calculated from the random numbers.
The MIC represents the strength of association between
the two variables. The MIC between the reference sin
curve and targeted data, such as experimental data or
simulated data, was calculated using the following steps.
Step 1: Grids with different resolutions are introduced to
separate the different areas of the scatter plot of the two

variables. Step 2: Maximized mutual information at each
resolution is selected. Step 3: The mutual information is
normalized for each resolution. Step 4: The maximum
value among all division methods is MIC. Step 5: to cal-
culate the P-value, MIC between the reference curve
and 1000 nonoscillating time-series datasets, which
comprised random values, was calculated. We compared
MIC values and enumerated the occurrences (k) when
the MIC score exceeded the score calculated. k/1000
was taken as the P-value of the MICOP. Then, we com-
pute the P-value as;

P ¼ 1
1000

X1000

i¼1

I MIC Xpi;Ypið Þ > MIC X;Yð Þð Þ

where I is the indicator function, and Xpi and Ypi is the
ith permutated version of X and Y, respectively. If the
datasets have missing points, MIC is calculated without
the point.

a b

Fig. 1 Concept of MICOP. A conceptual diagram of MICOP is shown. a Scheme of MICOP, b Typical results of MICOP. Left boxes: experimental
data (red) and reference sin curves (blue); right boxes: scatter plots between reference sin curve (x-axis) and experimental data (y-axis); top: typical
oscillating data (MIC = 0.1, P < 0.05); middle: nonoscillating data (MIC = 0.22, P > 0.05); bottom: decaying oscillating data (MIC = 0.94, P < 0.05)
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Performance test
To test the performance of MICOP, the periodicity of
simulated data was determined by MICOP, JTK, ARS,
and LS. To compare the precision and sensitivity of
MICOP, the MCC was compared [25]. MCC values were
calculated as below:

MCC ¼ TP� TN−FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positives,
FN is the number of false negatives. The false discovery
rate is widely used and is calculated from true positive and
false positive values. In contrast, MCC is more informative
as a value evaluating the performance of the classification
method because it is calculated from true positive, false
positive, true negative, and false negative values.

Reanalysis of proteomics data
To verify the practicality of MICOP, we reanalyzed the
published time-series data [8, 9, 26]. Briefly, these are
proteome datasets of mouse liver sampled every 3 h for
2 days, and simulated data which are two cycles contain-
ing 20 molecules [26]. The MIC and P-value were calcu-
lated as described in the Design section.

Programming language, packages, and statistical analysis
R language (ver. 3.3.2) was used for all analyses [27]. Three
different random seeds were used; rnorm function was
used to generate random numbers according to a normal
distribution and runif function was used to generate uni-
form random numbers. The performance of each method
was compared to MICOP by Tukey-Kramer test. The
P-values were corrected by the Benjamini–Hochberg pro-
cedure for multiple testing. A graphical package named
ggplot 2 (ver. 2.2.0) was used to draw figures. The Minerva
package (ver. 1.4.3) was used to calculate the MIC score,
and binning range to calculate MIC score was 0.6, which
is a default value of the R library. The MetaCycle package
(1.1.0) was used for periodicity judgment by ARS, JTK,
and LS [21, 23, 24].

Results
Comparison of MICOP and existing methods for decaying data
To test the performance of MICOP, JTK, ARSER, and
Lomb-Scargle (LS) for mimicking the decaying
time-resolved data, the Matthews correlation coefficient
(MCC) values were calculated to differentiate signifi-
cantly oscillating data from nonoscillating data using
time-series simulation data, including 100 sets of oscil-
lating data and 100 sets of nonoscillating ones (Fig. 2,
Additional file 1) [17, 20]. Two-way ANOVA with
Method and sampling frequency as factors revealed

significant effects of Method (F = 631.8, P < 0.005), sam-
pling frequency (F = 810.1, P < 0.005) and Method x
sampling frequency interaction (F = 122.9, P < 0.005).
MCC values were 0.72 (P < 0.005), 0.40 (P < 0.005), 0.082
(P < 0.005), and 0.00 (P < 0.005) for MICOP, ARS, JTK,
and LS, respectively, when the sampling interval was 4 h
(Fig. 2). The MCC values increased as the sampling fre-
quency increased, and these values became almost equal
to 1 in all methods at 1-h interval sampling. The MCC
values of MICOP were 0.7 or more at all sampling fre-
quencies and were the highest at a sampling interval of
1–3 h, followed by ARS and JTK. LS did not function as
a classifier at a sampling interval of 1–3 h.

Comparison of MICOP and existing methods for noisy or
low-sampling-frequency or one-cycle data
We compared the accuracy of MICOP and existing
methods for time-series data containing noise and
having a low sampling frequency without attenuation
(Fig. 3a and b, Additional file 2). Initially, we quantita-
tively evaluated the degradation of classification per-
formance due to the noise of MICOP (Fig. 3a). Two-way
ANOVA with Method and noise level as factors revealed
significant effects of Method (F = 1099.4, P < 0.005),
noise level (F = 643.2, P < 0.005) and method x noise
level interaction (F = 475.5, P < 0.005). The MCC values
were 0.8 or more, except for LS, in all conditions, even if
the noise was 0.500; however, LS did not function as a
classifier when the noise was 0.375 or more.
The performance of MICOP as a classifier for

low-sampling-frequency unattenuated data was also quan-
titatively evaluated (Fig. 3b). Two-way ANOVA with
Method and sampling frequency as factors revealed sig-
nificant effects of Method (F = 424.3, P < 0.005), sampling
frequency (F = 447.7, P < 0.005) and Method x sampling
frequency interaction (F = 142.2, P < 0.005). The MCC
values increased in all methods as the sampling interval
decreased, and were equal to 1 in all four methods at a
sampling interval of 1 h. LS did not function as a classifier
at sampling intervals of 3–4 h. The MCC values of
MICOP were 0.7 or more under all conditions.
We compared the accuracy of MICOP and existing

methods for one-cycle data (Fig. 4). Among all condi-
tions (method, noise, and sampling frequency), deter-
mination accuracies using one-cycle were lower than
those using two cycles. All methods did not work under
all conditions at the 4-h sampling frequency. Meanwhile,
MICOP and JTK showed high performances under sam-
pling conditions ≤3 h.

Reanalysis of previously reported time-resolved
proteomics datasets
We reanalyzed the time-series proteome data for mouse
liver reported by Mauvoisin et al. using C57BL/6 and
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those reported by Robles et al. using C57BL/6 J, as well
as simulated data released by Wu et al. (Fig. 5, Table 1,
Table 2) [8, 9, 23]. The numbers of significantly oscillat-
ing proteins assessed by standard harmonic regression
were 9 (the F test for multilinear regression, P < 0.01), 9
(Fisher’s exact test, P < 0.01), and 3 (P < 0.01) for bio-
logical data in the original work. Meanwhile, 32, 22, and
5 proteins were judged as being significantly oscillating
for C57BL/6 J, C57BL/6, and Wu’s simulated data by
MICOP, respectively (P < 0.05). The numbers of proteins
judged to be significantly oscillating in both the original
work and MICOP were 2, 8, and 2 for biological data,
respectively. The numbers of proteins judged as being
significantly oscillating for the three above-mentioned
tests only by MICOP were 30, 14, and 3 for biological
data, respectively.

Discussion
Although many algorithms have been developed to extract
molecules with rhythmic oscillation in their levels from
large-scale time-series data derived from mass

spectrometry systems or DNA sequencers, it is known
that the accuracy and sensitivity of such methods depend
on noise, sampling frequency, and waveform. In particular,
the discussion of the prediction power in conditions of
decaying oscillation was insufficient. In this research, we
provide MICOP, which is classified as a time-domain
method, and demonstrate that the algorithm is particu-
larly effective for detecting decaying oscillation.
We compared the detection power of MICOP and

previously reported algorithms for decaying oscillation.
We revealed that, in terms of the power for detection
decaying oscillation, MICOP outperformed other algo-
rithms (Fig. 2). In particular, MICOP showed a clear ad-
vantage when the sampling frequency was low. This is
because MIC can effectively detect non-linear associa-
tions like associations between decaying oscillation and
the reference sin curve (Fig. 1). Although we compared
the performance for only cosine wave, additional experi-
ment with peak wave or complex wave is also important.
ARS showed high performance following MICOP be-
cause de-trending at preprocessing seemed to cancel out
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the decay of time-series data. JTK was the tool with the
third best detection power, although high performance
was expected because it was based on Kendall’s tau,
which is a measure of rank correlation, and it did not
depend on amplitude. This indicates that MICOP has
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Tukey-Kramer test. The error bar indicates standard deviation (n = 3)
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Table 1 Novel oscillating protein candidates of C57BL/6 J [9] detected by MICOP

Gene name Species Condition Tissue Reference

Acot8 – – – –

Acox1 Homo sapiens LL blood [36]

Mus musculus LD liver/SCN [37, 38]

Acsl5 Mus musculus DD/LD liver/SCN [39]

Mus musculus LD SCN [37]

Akr1c14 Mus musculus LD liver [40]

Mus musculus DD cartilage tissue [41]

Cbs Mus musculus DD/LD liver [42–45]

Mus musculus LD SCN [37]

Homo sapiens LL blood [36]

Cct8 Mus musculus LD SCN [37]

Ces1b – – – –

Chid1 Mus musculus DD/LD liver/SCN [46]

Cxadr Mus musculus DD/LD liver/SCN [42]

Cyp4f14 – – – –

Gns Homo sapiens LL blood [36]

Mus musculus DD/LD liver [40]

Golgb1 Mus musculus DD/LD liver/SCN [37, 40, 47]

Gpx3 – – – –

Hars Mus musculus LD liver [40]

Hrg – – – –

Mfap4 – – – –

Mug1 Mus musculus DD liver [42]

Pdcd6 Mus musculus LD liver/SCN [37, 40, 47],

Ptms Mus musculus LD SCN [37]

Safb – – – –

Serpina6 Mus musculus DD/LD liver [44]

Sf3b2 Mus musculus LD telogen epidermis [46]

Slc9a3r1 Mus musculus DD/LD liver [46]

Snrpd3 Mus musculus LD liver [47]

Stk38 Mus musculus DD liver [46]

Mus musculus LD SCN [37]

Tpr Mus musculus DD/LD liver [40, 46]

Txndc15 Mus musculus DD/LD liver [46, 47]

Mus musculus LD SCN [37]

Ubl4a Mus musculus LD SCN [37]

Mus musculus DD liver [46]

Uox Mus musculus DD/LD liver [39, 40, 42, 47]

Ythdf2 Mus musculus LD liver [47]

Novel oscillating protein candidates identified by MICOP from time-series proteomics data of C57BL/6 J [9] and a list of previous papers that have experimentally
demonstrated that gene expression oscillates in transcriptome analysis. LD stands for the daily 24-h light-dark (LD) cycle and DD stands for constant darkness
conditions. Hyphens indicate that we could not find previous consistent works which prove the mRNA oscillation
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excellent performance for decaying oscillation, and sug-
gests that an MIC-based approach that can detect
non-linear associations is useful to detect decaying
oscillation.
Moreover, we compared the MCC values for all

methods on data containing gradual Gaussian noise to test
the noise resistance (Fig. 3a). As a result, MICOP showed
equal performance to JTK and ARS in the range of stand-
ard deviation of 0.125–0.500. This indicated that the per-
formance of MICOP for noisy data is equal to that of the
existing methods. This result suggests that the robustness
to noise of MICOP is the same as that of well-known ARS
and JTK, while the high performance of LS was limited to
conditions with a low noise level. This numerical experi-
ment revealed that the noise resistance of MICOP is the
same as that of other widely used methods.
Clarifying the relationship between accuracy and sam-

pling frequency in analyzing omics data, for which in-
creasing the number of sampling points seems difficult,
is important for determining the experimental design.
As expected, with increase in the sampling frequency,
the MCC values tended to increase (Figs. 2 and 3b). The
fact that the ARS, JTK, and LS could characterize oscil-
lation and non-oscillation in almost all cases when the
sampling interval was 2 h or less is similar to the find-
ings in original research studies of various methods and
research comparing them [11, 28]. This suggested that a

high sampling frequency improved accuracy; therefore,
sampling frequency should be as high as experimental
constraints allow.
We applied MICOP and existing methods for one-cycle

of data (Fig. 4). As expected, accuracy decreased for all
methods when one-cycle was used. However, MICOP and
JTK showed high MCC values among methods under this
condition. Also, MICOP seems to outperformed JTK
under limited conditions which is low sampling frequency
and high noise for one-cycle data (Fig. 4). Human omics
data often have lower sampling frequencies, high noise
levels, and only one-cycle. Our results suggest that
MICOP and JTK have considerable potential for analyzing
human omics datasets.
We reanalyzed the time-series proteomics data of

C57BL/6 J and C57BL/6 to test the performance of
MICOP and explore additional candidates of proteins
with rhythmic change in their expression profile [8, 9].
These datasets include the mouse liver proteome data
obtained by sampling every 3 h for 2 days, for which the
analysis of the peptides was performed with a mass spec-
trometer. Approximately, 3000 protein types were de-
tected in each study. Proteins that were detected in both
MICOP and the original studies numbered 2 and 8 for
C57BL/6 J and C57BL/6, respectively (Fig. 5). This actual
application for proteomics data suggests that MICOP
can obtain results in a manner approximately similar to

Table 2 Novel oscillating protein candidates of C57BL/6 [8] detected by MICOP

Gene name Species Condition Tissue Reference

Anp32e Mus musculus DD/LD liver [39, 40]

Anpep – – – –

Cgn Mus musculus LD liver [47]

Csde1 Mus musculus DD liver [39]

Mus musculus LD SCN [37]

Enpp4 Mus musculus LD liver/anagen epidermis [40, 46, 47]

Gnl2 Mus musculus DD hippocampus/liver [39, 48]

Mus musculus LD SCN [37]

Ldhb Homo sapiens LL blood [36]

Mus musculus LD anagen epidermis, SCN [37, 46]

Numa1 Mus musculus LD liver [40]

Mus musculus DD cartilage tissue [41]

Prdx2 Mus musculus LD SCN [37]

Rnf114 – – – –

Slc4a1 – – – –

Slco1b2 Mus musculus DD/LD liver [39, 40, 42]

Tomm70a – – – –

Vps26a – – – –

Novel oscillating protein candidates identified by MICOP from time-series proteomics data of C57BL/6 [8] and a list of previous papers which experimentally
demonstrated that gene expression oscillates in transcriptome analysis. LD stands for the daily 24-h light-dark (LD) cycle and DD stands for constant darkness
conditions. Hyphens indicate that we could not find previous consistent works which prove the mRNA oscillation
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the existing methods. Specifically, the MICOP results
were consistent with those in the original articles regard-
ing these commonly identified proteins. Furthermore,
the proteins that were uniquely identified with MICOP
were numbered 30 and 14 for C57BL/6 J and C57BL/6,
respectively (Table 1, Table 2). These results strongly
suggest that MICOP is a powerful tool to detect proteins
with rhythmic changes in their expression levels from
time-resolved proteomics data.
Although mass spectrometry-based approaches have

been used for proteome-level studies of circadian
rhythms, completely measuring mouse proteomes re-
mains difficult. A comprehensive transcriptome analysis
with parallel sequencers has revealed that ~ 15–20% of
mouse liver mRNA significantly oscillates [29]. However,
in these proteome studies of C57BL/6 and C57BL/6 J,
significantly oscillating protein are rare (< 1% of detected
total proteins; FDR < 0.05), a result inconsistent with
those of mouse proteome studies. Multiple factors can
explain this pattern. Typical clock protein known as
principle oscillators such as CRY1, CRY2, PER2,
REV-ERBα and CLOCK have comparatively low expres-
sion levels and are not detected in these studies [8, 9]. In
addition, non-Gaussian experimental noise which is spe-
cific to MS measurement hampers the application of
statistical test on proteins [30]. These problems may be
improved by analyzing higher quality proteome datasets
with modern technologies [31, 32]. Some core circadian
proteins such as CRY1, CRY2, PER2, REV-ERVα and
CLOCK could be detected in recently published prote-
ome datasets [31, 32]. Thus, the development of prote-
ome analysis technology may resolve discrepancies
between results of transcriptome analysis and proteome
analysis, and clarify connections within the circadian
rhythm transcription and translation network.
We present a new list of proteins that oscillate by

MICOP (Tables 1 and 2). The accuracy of these esti-
mates is difficult to ascertain. Interestingly, when
examining expression patterns of genes encoding
these proteins, we estimated that the proteins were
new oscillating molecules in MICOP. In addition, a
large fraction of candidates was presumed to oscillate
in a previous transcriptome analysis [29]. Two inde-
pendent studies which measured both transcriptome
and proteome of human samples revealed that only
30% of mRNA-protein correlation had statistically sig-
nificant [33, 34]. This fact suggested that even if
mRNA abundance is oscillating, protein abundance
may not be always oscillating. However, about 90% of
mRNA-protein correlation showed positive, hence
rhythmic mRNA expression suggests the possibility of
protein oscillation [34]. An overlap between
re-analyzed proteomics data by MICOP and transcrip-
tome analysis showed a consistent result.

MICOP accuracy tends to be low for data that do not
perfectly fit a sine curve. The periodicity that MICOP can
detect is subject to the shape of the reference curve, so
changing the reference curve is necessary to detect asym-
metric waveforms including saw tooth-like shapes like
RAIN [30]. Furthermore, adjusting the false discovery rate
is essential for accurate prediction, since MICOP repeats
the hypothesis tests. In addition, verification with add-
itional data such as periodic peak wave or overlapping sine
wave is necessary in order to evaluate the accuracy of
MICOP more precisely. Judgments of phase and cycle are
possible in principle, but we did not perform them; there-
fore, this should be considered in future studies. Mutual
information increased when sample size was small and
correlation between two variables was null, even when the
variables were random [35]. We solved this issue in
MICOP by determining the P-value with the Monte Carlo
method. When the time points (sample size) are small, the
criterion for calculating the P-value increases, and when
the time points are large, the criterion for calculating the
P-value decreases (Additional file 3). In this paper, we pre-
sented MICOP, which is an MIC-based algorithm, for pre-
dicting periodic patterns in large-scale time-resolved
protein expression profiles. The performance test using ar-
tificially generated simulation data revealed that the per-
formance of MICOP for decaying data was superior to
that of the existing widely used methods. Additionally, we
indicated that MICOP is compatible with noisy data ob-
tained with a low sampling frequency. Furthermore, the
performance test using actual mouse proteomics data sug-
gested that MICOP may be able to provide novel findings
from proteomics data. Specifically, it can reveal novel find-
ings from time-series data and may contribute to biologic-
ally significant results. This study suggests that MICOP is
an ideal approach for detecting and characterizing oscilla-
tions in time-resolved omics data sets.

Conclusion
In this paper, we presented MICOP, which is an
MIC-based algorithm, for predicting periodic patterns in
large-scale time-resolved protein expression profiles.
The performance test using artificially generated simula-
tion data revealed that the performance of MICOP for
decaying data was superior to that of the existing widely
used methods. Additionally, we indicated that MICOP is
compatible with noisy data obtained with a low sampling
frequency. Furthermore, the performance test using ac-
tual mouse proteomics data suggested that MICOP may
be able to provide novel findings from proteomics data.
Specifically, it can reveal novel findings from time-series
data and may contribute to biologically significant re-
sults. This study suggests that MICOP is an ideal ap-
proach for detecting and characterizing oscillations in
time-resolved omics data sets.
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Additional files

Additional file 1: Wide range comparison of MCC values of MICOP, ARS,
JTK, and LS for decaying data. Sampling interval and noise level were
gradually adjusted. The bar indicates MCC values (1 indicates a perfect
prediction, 0 indicates a random prediction, and − 1 indicates a
prediction in complete disagreement). (PDF 75 kb)

Additional file 2: Wide-range comparison of MCC values of MICOP, ARS,
JTK, and LS for non-decaying data. Sampling interval and noise level were
gradually adjusted. The bar indicates MCC values (1 indicates a perfect
prediction, 0 indicates a random prediction, and − 1 indicates a prediction
in complete disagreement). (PDF 75 kb)

Additional file 3: Monte-Carlo simulation to calculate P-values. MIC
values were calculated between random numbers. The x-axis indicates
sample number (N time points) and the y-axis indicates MIC. The error
bar indicates the standard deviation (N = 1000). The red color represents
random values and the blue color represents the significance threshold
(5%). (PDF 68 kb)
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