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Abstract: The spills of crude oil and other organic chemicals are common around the world, resulting
in severe damage to the environment and ecosystem. Therefore, developing low-cost and eco-friendly
absorption material is in urgent need. In this study, we report a superhydrophobic and oleophilic
porous material using biomass cuttlebone as the scaffold. A layer of polydopamine is grafted on the
cuttlebone as the adhesion layer between the cuttlebone and the superhydrophobic coating. The in
situ grown silica micro/nanoparticles on top of the adhesion layer provide the anchoring spots for
grafting the fluorinated hydrocarbon and a rough topography for realizing superhydrophobicity. The
static water contact angle of the superhydrophobic cuttlebone reaches 152◦, and its oil contact angle
is ~0◦. The excellent oil–water separation efficiency of the prepared superhydrophobic cuttlebone is
demonstrated using high-density oil/water mixtures and low-density oil/water mixtures.

Keywords: seafood byproduct; cuttlebone; biomass; superhydrophobicity; oil spill remediation

1. Introduction

Marine pollutants, such as untreated human sewage, spilled oil, and industrial chemi-
cal waste, have caused serious environmental and ecological damage. Among them, spilled
oil is the most harmful and destructive marine pollutant [1–6]. The ever-increasing demand
for crude oil has resulted in many oil spills over the years, such as Odyssey oil spill, ABT
Summer oil spill, and the Deepwater Horizon oil spill. These big oil spills could cause
severe and extensive damage to the marine and near-shore environment and ecosystem for
decades to come. Therefore, developing affordable oil spill remediation is in urgent need.
Among various oil spill remediation technologies, the superhydrophobic absorbing strategy
is of great interest. The development of highly efficient and low-cost superhydrophobic
and lipophilic materials is promising for oil spill management [7].

Absorbing materials such as polymers, natural fibers, and inorganic powders have
been utilized to absorb oil in oil/water mixtures [8–14]. Ruan et al. synthesized a flame-
retardant superhydrophobic sponge using melamine and formaldehyde, and the sponge
showed excellent oil absorption capability and flame retardancy [1]. Cheng et al. prepared
a superhydrophobic polyurethane sponge for efficient separation of immiscible oil/water
mixtures and emulsions [15]. Duan et al. reported a superhydrophobic chitin-based sponge
as an efficient oil absorber [16]. Arbatan et al. synthesized a superhydrophobic calcium
carbonate powder using a simple, low-cost preparation method, and it showed high effi-
ciency in separating oil/water mixtures [17]. Although fruitful results have been achieved
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in developing materials with superhydrophobic and lipophilic properties, practical appli-
cations of these materials in cleaning up oil spills are still hindered by their manufacturing
technologies, cost, and environmental impacts.

Cuttlefish as marine mollusks have a unique internal shell skeleton, i.e., cuttle-
bone [18–21]. It has a rigid surface and a porous honeycomb-like internal structure. With
high porosity (~93%) and excellent mechanical properties, cuttlebone has great poten-
tial for fabrication of new materials [18,20]. Compared to cellulose aerogel [22–28] and
chitin aerogel [16,29], and chitin/cellulose aerogel [30], the high porosity, ultra-low den-
sity, high permeability, and high robustness of cuttlebone make it a great candidate for
high-performance adsorption materials [31–33].

Superhydrophobic and oleophilic materials have gained tremendous research interest
for oil–water separation applications [34–38]. Herein we report a novel strategy for the
preparation of a superhydrophobic and oleophilic material, using low-cost and easily
available cuttlebone as the scaffold. A simple and convenient three-step method is used to
convert the surface of cuttlebone from superhydrophilicity to superhydrophobicity. A thin
layer of polydopamine is first grafted onto the surface of the cuttlebone by immersing the
samples in an aqueous solution of dopamine. Then, a layer of silica micro/nanoparticles
is grown on the polydopamine-modified cuttlebone. Finally, the surface of the sample is
modified with a fluoroalkyl silane. The as-obtained superhydrophobic cuttlebone exhibits
excellent oil absorption performance. The morphology, internal structure, and physical and
chemical properties of the untreated cuttlebone and the superhydrophobic cuttlebone were
characterized. Our work provides a new strategy for minimizing the environmental and
ecological impacts of oil spills.

2. Materials and Methods
2.1. Materials

Cuttlebone was provided by BoZhou Sea Medicines Procurement Co., Ltd., Bozhou,
China. Dichloromethane, acetone, n-hexane, anhydrous ethanol, ammonia solution, tetraethyl
silicate, heptadecafluoro-1,1,2,2,-tetrahydrodecyl dimethylchlorosilane, and dopamine hy-
drochloride were purchased from Macklin Biochemical Co., Ltd., Shanghai, China. Diesel oil
was purchased from Sinopec gas station. Edible blend oil was purchased from Shandong
Luhua Group Co., Ltd., Yantai, China.

2.2. Preparation of Polydopamine-Modified Cuttlebone

The hard shell of the cuttlebone was removed, and then the remaining cuttlebone
was cut into cylinders with a diameter of 2 cm and a height of 2 cm. Next, the cuttlebone
cylinders were immersed in acetone for 1 h and deionized water for 1 h to wash away dust
and impurities. The cuttlebone cylinders were then dried in an oven at 100 ◦C for 2 h. After
that, the dry cuttlebone cylinders were dipped into an aqueous solution of dopamine (in
10 mM Tris-buffer), leading to the spontaneous deposition of a thin layer of polydopamine
over the entire scaffold. After 6 h of soaking, the yellowish-brown cuttlebone cylinders
were washed with deionized water 3 times. Finally, the cuttlebone cylinders were dried in
an oven at 60 ◦C to obtain polydopamine-modified cuttlebone.

2.3. Preparation of Superhydrophobic and Oleophilic Cuttlebone

A total of 5 mL of 30% ammonia solution was combined with 65 mL of anhydrous
ethanol, and the mixture was mechanically stirred for 10 min to form solution A. 5 mL of
TEOS was combined with 25 mL of anhydrous ethanol, and the mixture was mechanically
stirred for 20 min to form solution B. 30 mL of solution B was added dropwise into 70 mL
of solution A to form solution C. Then the polydopamine-modified cuttlebone cylinders
were placed into a filter flask, followed by adding solution C. After that, the filter flask was
pumped down to remove the air trapped in the cuttlebone cylinders. When the cuttlebone
cylinders stopped bubbling, the flask was unplugged, and the cuttlebone cylinders sank
to the bottom of the flask as their pores were displaced by solution C. After being dried
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at 80 ◦C, the micro/nanosilica-decorated cuttlebone cylinders were obtained. Finally,
the micro/nanosilica-decorated cuttlebone cylinders were immersed in 300 mL of 0.1%
trichlorooctadecyl silane solution for 3 h. After being dried at 100 ◦C, the superhydrophobic
cuttlebone was obtained. The schematic of the preparation process is shown in Figure 1.
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Figure 1. Schematic of surface modification of superhydrophobic and oleophilic cuttlebone cylinders.

2.4. Characterization
2.4.1. Scanning Electron Microscopy (SEM) Analysis

A field emission scanning electron microscope (Merlin, Zeiss, Germany) was used to
investigate the morphology and internal microstructure of cuttlebone samples. The working
voltage was 1.5 kV and the current was 1 CVA. The samples were prepared using the
following method: The dried cuttlebone samples were cut into 0.5 cm × 0.5 cm × 0.5 cm
slices and then attached to the sample holders using conductive glue, followed by sputtering
a thin layer of gold.

2.4.2. Fourier Infrared Spectroscopy (FTIR) Analysis

Chemical structural and composition changes in the untreated cuttlebone, the
polydopamine-modified cuttlebone, and the superhydrophobic cuttlebone were analyzed
by FTIR (VERTEX 70, Bruker, Germany). Before the test, the samples were completely dried
to eliminate the interference of the strong OH absorption peak. Then, each dried sample
(1 mg) was mixed with spectral pure KBr (100 mg) and ground into fine powder. Finally,
the mixture was pressed to form a thin film for FTIR testing.

2.4.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

An AXIS Ultra DLD X-ray photoelectron spectrometer (K-Alpha+, Thermo Fisher
Scientific, Waltham, MA, USA) was used to analyze the chemical composition and elemental
content and valence on the surface of the untreated cuttlebone, the polydopamine-modified
cuttlebone, and the superhydrophobic cuttlebone. Before the analysis, the samples were
dried and grounded into powder. The XPS spectra of C, O, N, F, and Si were analyzed.
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2.4.4. Static Contact Angle (CA) Analysis

The contact angles of the untreated cuttlebone and the superhydrophobic cuttlebone
were determined by the static contact angle analyzer (Zetasizer Nano, Malvern, UK). The
analysis was carried out by placing a sample horizontally on the sample stage and then
dropping a drop of 3 µL of distilled water onto the sample surface. The measurement of the
CA between the water droplet and the sample surface was repeated three times at different
positions of each sample.

2.4.5. Oil Absorption Capacity Analysis

A superhydrophobic cuttlebone sample was immersed into various oil/organic sol-
vents for 10 min. After that, the sample was removed from the oil/organic solvent, and its
excess surface oil/organic solvent was drained. Next, the sample was weighted. This test
was repeated 3 times, and the averaged weight was used for the following analysis. The
absorption capacity, a, is defined as

a =
mt − mi

mi
(1)

where mi and mt are the weight of the superhydrophobic cuttlebone sample before and
after oil absorption.

2.4.6. Oil–Water Separation Efficiency Analysis

A water–oil mixture was prepared by combining 1 g of oil/organic solvent (containing
3% of Sudan III) and 4 g of deionized water in a beaker. Then, a superhydrophobic
cuttlebone sample was placed in the beaker to absorb the oil. The test was repeated 3 times
and the average weight of the oil–water mixture before and after the test was used for the
following analysis. The oil–water separation efficiency, e, is defined as follows:

e =
mz − mg

mo
(2)

where mz, mg, and mo are the average weight of the oil–water mixture before the test, the
average weight of the oil–water mixture after the test, and the weight of the oil used for
preparing the oil–water mixture, respectively.

3. Results and Discussion
3.1. Morphology and Composition Characterization

Cuttlebone is a porous lamellar septa structure covered by a hard calcium carbonate
shell. When cuttlebone is cut longitudinally, the cross section presents a highly ordered
structure consisting of walls and septa (Figure 2c). The walls are connected by ordered
parallel sheets, which consist of chitin and calcium carbonate. When cuttlebone is cut
transversely, the cross section shows that the walls are in wavier profiles forming inter-
connected “S” shaped channels (Figure 2d). The SEM analysis shows that the surface of
the “S” shaped channel has uniformly distributed nano-sized calcium carbonate particles
(Figure 2b), which are adsorbed through electrostatic force. This structure has good me-
chanical strength, allowing the cuttlefish to resist high pressure up to 200 m below water,
and the “S” shaped channel in the cuttlebone provides cuttlefish with an efficient way to
maintain neutral buoyancy by changing the liquid-to-air ratio. Therefore, with its unique
structure, cuttlebone has great potential in the development of superhydrophobic and
lipophilic materials for oil–water separation. In this study, the hard shell of the cuttle-
bone samples was first removed, and then the remaining porous structure was cut into
cylinders (2 cm in height and 2 cm in diameter, as shown in Figure 2a) for the following
manufacturing processes.
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Figure 2. (a) Untreated cuttlebone cylinders (2 cm in height and 2 cm in diameter), (b) SEM image
of the internal surface of an untreated cuttlebone sample, (c) SEM image of the cross section of an
untreated cuttlebone sample cut longitudinally, (d) SEM image of the cross section of an untreated
cuttlebone sample cut transversely.

A cuttlebone can be easily processed into various shapes as required (Figure 3a).
Figure 3b shows that the untreated cuttlebone has a three-dimensional highly porous
structure, indicating a high absorption capacity. The surface of the walls and septa of the
untreated cuttlebone is smooth, as shown in Figure 3c. For oil–water separation, natural
cuttlebone requires to be converted from hydrophilic to superhydrophobic. Therefore,
rapid superhydrophobic modification of cuttlebone is the key to this study.

To improve the stability of the superhydrophobic layer, a layer of polydopamine was
first grafted on the surface of the external and internal structures of the cuttlebone samples.
The polydopamine layer acts as an adhesion mediator between the superhydrophobic layer
and cuttlebone. With a large number of micro/nano-sized pores, the inner structures of
the polydopamine-modified cuttlebone cannot be fully wetted when placed in an aqueous
solution. Hence, a vacuuming and releasing method (see method section for details) was
adopted to rapidly wet the polydopamine-modified cuttlebone samples with solution C for
the in-situ growth of silica micro/nanoparticles on the surface of the cuttlebone samples.
After that, the samples were dried, and the in-situ grown silica particles on the surface of
the cuttlebone samples were further reacted with fluorosilane to form a superhydrophobic
layer (Figure 3g). As shown in Figure 3a,d, the color of the superhydrophobic cuttle-
bone changes from white to yellowish-brown, which is mainly due to the presence of the
polydopamine layer. The SEM image of the superhydrophobic cuttlebone shows that the
layered porous structure of the untreated cuttlebone is preserved (Figure 3e), indicating
that polydopamine and superhydrophobic modification have little influence on the orig-
inal structure of the cuttlebone. The high-resolution SEM image (Figure 3f) shows that
the surface of the superhydrophobic cuttlebone sample is covered with a layer of silica
micro/nanoparticles, and the walls and septa become thicker and rougher compared to
that of the untreated cuttlebone.
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Figure 3. (a) Photograph of an untreated cuttlebone sample, (b) low-magnification SEM image of the
cross-section of an untreated cuttlebone sample, (c) high-magnification SEM image of the lamellar
structure of an untreated cuttlebone sample, (d) photograph of a superhydrophobic cuttlebone
sample, (e) low-magnification SEM image of the cross-section of a superhydrophobic cuttlebone
sample, (f) high-magnification SEM image of the lamellar structure of a superhydrophobic cuttlebone
sample, (g) the reaction scheme of preparing fluorinated silica particles.

The wetting properties of the samples were characterized by measuring the static
contact angle using a contact angle analyzer. As shown in Figure 4d, a water droplet
was dropped on the surface of a superhydrophobic cuttlebone sample and an untreated
cuttlebone sample. As the untreated cuttlebone is hydrophilic, the water droplet was
absorbed by the sample, resulting in a static water contact angle of ~0◦ (Figure 4b). In
contrast, the water droplet on the superhydrophobic cuttlebone sample formed a sphere
with a static water contact angle of ~152◦ (Figure 4a). To demonstrate the water-repelling
property of the superhydrophobic cuttlebone sample, filter papers were used to remove
the water droplets dropped on the surfaces of the superhydrophobic cuttlebone sample
and the untreated cuttlebone sample. As shown in Figure 3d, the water droplet on the
superhydrophobic cuttlebone can be fully removed without leaving any residue, while the
water drop on the untreated cuttlebone has already been absorbed and cannot be removed
by the filter paper.

To demonstrate the oil–water separation performance of the superhydrophobic cuttle-
bone, a vacuuming and releasing treatment of superhydrophobic and untreated cuttlebone
samples was first carried out in a filter flask with water. Both samples were then placed
in a beaker with water (Figure 4c). The untreated cuttlebone sample sinks to the bottom,
while the superhydrophobic cuttlebone sample floats on the surface.
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Figure 4. (a) Photograph of a water droplet on the surface of a superhydrophobic cuttlebone sample,
(b) photograph of a water droplet on the surface of an untreated cuttlebone sample, (c) photograph
of an untreated cuttlebone sample and a superhydrophobic cuttlebone sample placed in a beaker
with water, (d) snapshots of the water-repelling test of the samples.

The chemical compositions of the cuttlebone samples before and after modification
were investigated by FTIR. The results are shown in Figure 5a. The spectra of the untreated
cuttlebone, the polydopamine-modified cuttlebone, and the superhydrophobic cuttlebone
exhibit a strong absorption peak at 3453 cm−1, which could be assigned to the stretching
vibration of the -OH group. The characteristic absorption peak at 2936 cm−1 corresponds
to the stretching vibrations of C-H4, and the peak at 1642 cm−1 corresponds to the N-H
stretching [39]. The weak peak at 1642 cm−1 of the untreated cuttlebone is due to its low
chitin content. As polydopamine contains N-H bonds, the polydopamine-treated cuttlebone
shows a strong peak at 1642 cm−1 compared with the untreated cuttlebone. The absorption
peak at 3453 cm−1 in the spectrum of the polydopamine-modified cuttlebone could be
assigned to the superimposed stretching vibration of the N-H bonds and O-H bonds. In
the spectrum of the superhydrophobic cuttlebone, the adsorption peaks at 1248 cm−1 and
776 cm−1 could be ascribed to the stretching vibrations of the C-F bonds and Si-O-Si bonds,
and the peak at 470 cm−1 could be ascribed to the stretching vibrations of the Si-O bond
in SiO2 [29]. These results indicate that the surface modification using polydopamine and
fluorinated silica is successful. The successful grafting of the hydrophobic molecules on
the surface of the superhydrophobic cuttlebone was confirmed by XPS. The XPS spectra in
Figure 5b reveal the presence of the elements of silicon and fluorine on the surface of the
superhydrophobic cuttlebone, showing the characteristic peaks at 105.3 eV (Si2p), 156.2 eV
(Si2s), and 692.6 eV (F1s) [40].

3.2. Oil–Water Separation Tests

To study the oil–water separation ability of the superhydrophobic cuttlebone, a simple
oil–water separation test was carried out (Figure 6). First, a gasoline–water mixture and a
chloroform–water mixture were prepared, wherein gasoline and chloroform were colored
with chromium oxide green to enhance the contrast between the oil layer and the water
layer. When a superhydrophobic cuttlebone sample was placed in a beaker containing
the gasoline–water mixture, the top oil layer was fully absorbed within 30 s (Figure 6a).
Similarly, when a superhydrophobic cuttlebone sample was pushed to the bottom of a
beaker containing the chloroform–water mixture, the green chloroform layer was gradually
absorbed by the superhydrophobic cuttlebone sample, as shown in Figure 6b. These results
indicate that the superhydrophobic cuttlebone has excellent oil–water separation ability.
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To investigate the durability of the superhydrophobic coating, the static water con-
tact angles of the superhydrophobic cuttlebone samples after the gasoline–water and
chloroform–water tests were measured, and they were 150◦ and 151◦, respectively (Table 1).
The result shows that the superhydrophobic cuttlebone samples still maintain excellent
superhydrophobicity after the oil–water separation tests, implying the high adhesion and
stability of the interfaces between the polydopamine coating layer, the fluorinated silica
micro/nanoparticles, and cuttlebone.

Table 1. Contact angle of superhydrophobic cuttlebone before and after oil absorption.

Samples Contact Angle

Superhydrophobic cuttlebone 152◦

After absorbing gasoline 150◦

After absorbing chloroform 151◦

To investigate the oil absorption capacity of the superhydrophobic cuttlebone, superhy-
drophobic cuttlebone samples were first immersed in petroleum, n-hexane, dichloromethane,
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diesel, and cooking oil for about 10 min. After removing the excess oil on the surface, the
samples were weighed, and the oil absorption capacities of the superhydrophobic cuttle-
bone in different organic liquids were calculated using Equation (1). The superhydrophobic
cuttlebone shows excellent absorption capacity ranging from 195% to 416%, as shown in
Figure 7a. To further explore the oil–water separation efficiency of the superhydrophobic
cuttlebone for the oils of different viscosities and densities, various oil–water mixtures
were prepared using petroleum, n-hexane, dichloromethane, diesel, and cooking oil as the
oil layer. In all four tests, the oil layer was absorbed by the superhydrophobic cuttlebone
within 30 s. The oil–water separation efficiencies based on Equation (2) are all above 97%
(Figure 7b).
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4. Conclusions

In this study, an efficient, convenient, and sustainable superhydrophobic material was
developed using porous biomass cuttlebone as the scaffold and a layer of polydopamine
as the adhesion layer between the cuttlebone and the superhydrophobic coating. The
adhesion layer was obtained via the self-polymerization of dopamine on the surface of
cuttlebone under a weak alkaline condition. The in situ grown silica micro/nanoparticles
on the adhesion layer provide the anchoring spots for grafting the fluorinated hydrocarbon
and a rough topography to realize superhydrophobicity. The static water contact angle
of the superhydrophobic cuttlebone reaches 152◦, and its oil contact angle is ~0◦. The oil
absorption tests and oil–water separation tests demonstrate a good superhydrophobicity
of the superhydrophobic cuttlebone. Its oil adsorption capacity ranges from 195% to
416%, and its oil–water separation efficiency is over 97%. Besides, the oil absorption tests
and oil–water separation tests have little influence on the superhydrophobicity of the
superhydrophobic cuttlebone, showing the excellent durability of the superhydrophobic
coating. The preparation of the superhydrophobic porous material based on a degradable
and sustainable marine biomass waste, cuttlebone, has great potential for managing oil
spills in oceans and rivers, opening a new avenue for transforming biomass waste into
high-value functional materials.
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