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Abstract

Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric
and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most
attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have
demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen
lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the
bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested
with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes.
Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the
binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain
its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the
placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to
5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands,
conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and
contributes towards the development of 5-HT2 receptor subtype-selective ligands.
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Introduction

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT)

has key roles in mood, libido, aggression, anxiety, cognition, sleep,

appetite and pain and also regulates peripheral functions in the

cardiovascular, gastrointestinal, endocrine and pulmonary sys-

tem.[1-4] Serotonergic ligands have proven effective drugs in the

treatment of migraine, pain, obesity, and a wide range of

psychiatric and neurological disorders.[1,5–9] The serotonergic

system comprises 12 Class A G protein-coupled receptors and one

ligand-gated ion channel that together are divided into 7

pharmacological subfamilies. The 5-HT2 subfamily consists of

the three subtypes, serotonin receptors 2A-C (5-HT2A-C). 5-HT2A

inhibition by clinical drugs has antipsychotic (e.g., clozapine) and

antidepressive (e.g., mianserin) effects.[10] 5-HT2A subtype

stimulation by full or partial agonists mediates the hallucinogenic

effects of many natural (e.g. psilocybin and mescaline) and

synthetic drugs.[1,11,12]

The 5-HT2A agonist structures generally fall into one of three

categories, phenethylamines, tryptamines and ergolines.[13]

There is a clinical need for more highly 5-HT2 subtype-selective

ligands and the most attention has been given to the phenethy-

lamine class. The phenethylamine ligand 2C-B (1a in Fig. 1)

contains the structural features required for hallucinogenic

activity; a primary amine separated from the phenyl ring by two

carbon atoms, 2- and 5-aromatic methoxy groups, and a

hydrophobic 4-substituent. Methylation of the amine a-carbon,

as in DOB (1b), DOB-fly (2b) and DOB-butterfly (3b), results in

slightly decreased in vitro affinities but increases the strength and

duration of the response in vivo – hypothesized to be a

consequence of increased metabolic stability resulting in higher

exposure.[14]

Conformationally constrained analogs, primarily 2–4, have

demonstrated that for optimal activity the free lone pair electrons

of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs

anti relative to the ethylamine moiety.[15–17] Mutagenesis and

ligand structure-activity data suggest that the 2- and 5-oxygen

atoms hydrogen bond to serine residues, S3.36159 and S5.43239,

respectively.[18,19] Also the ethyl linker has been constrained,

exemplified by 5–7, providing information about the bioactive

conformation of the amine functionality.[20] Combined 1,2-

constraint by cyclization has only been tested with one compound,

8, which exhibits 373-fold lower affinity than the unconstrained

reference DOB (1a).[21] Here, we set out to further explore the

structure-activity relationships of 1,2-cyclized phenethylamine

ligands. The analysis includes the synthesis of three new

compounds, 9–11 (Fig. 2), binding affinity measurements,

conformational analysis, receptor homology modeling and ligand

docking.
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Results

Synthes of the 1,2-cyclized phenethylamines 9–11
The synthetic routes of 9-11 are shown in Figures 3-5 and

described in detail in Methods S1 (Supporting information).

Briefly, 9 was prepared starting from commercially available 2-

bromo-4-methoxyphenol, epoxide 12 underwent 5-exo cyclisation

to dihydrobenzofuranyl methanol 13 upon treatment with BuLi,

as reported by Bradsher.[22] Introduction of the amino group in

14 was accomplished by a Mitsunobu reaction with phthalimide.

This was followed by deprotection to give the free amine 15 and

finally 4-bromination to yield 9.

Compounds 10 and 11 could not be prepared in the same

manner as 9 because the required 6-exo/7-exo cyclisations onto

the corresponding epoxides did not occur. We were thus forced to

incorporate the bromine at an earlier stage to circumvent this

problem. 10 was prepared as shown in Figure 4. The 7-

bromochroman-4-one 16 was prepared as previously de-

scribed[23] and reduced with sodium borohydride to alcohol 17.

Reaction with trimethylsilyl cyanide afforded nitrile 18, which was

reduced with diisobutylaluminiumhydride (DIBALH) to the amine

in 10.

11 was synthesized as shown in Figure 5. Bromophenol 19[24]

was alkylated using ethyl 3-bromobutyrate and Cs2CO3 in

refluxing acetonitrile. Cyclization of the resulting acid 20 via

treatment with polyphosphoric acid afforded dihydrobenzoxepi-

none 21, which in turn gave access to amine 11 following the same

protocol utilized in the synthesis of 10: borohydride reduction,

cyanation and DIBALH reduction.

Binding affinities
Table 1 shows the binding affinities of published (128) and new

(9211) 2-oxygen- and/or amine-constrained phenethylamine

ligands. The binding affinities of 9211 against the 5-HT2A-C

receptors were determined in competition assays with [3H]-

ketanserin, [3H]-LSD and [3H]-mesulergine as radioligands for 5-

HT2A, 5-HT2B and 5-HT2C, respectively. 9 and 10 have higher

affinities in 5-HT2B-C than 5-HT2A. This was unexpected as the 5-

HT2A and 5-HT2C affinities are typically the most similar. The

highest affinity, 70 nM, is displayed by 10 in 5-HT2B. 11 is

inactive in 5-HT2A and 5-HT2C and displays only weak affinity

(1.9 mM) for 5-HT2B.

8, despite the 7-membered ring, appears to have somewhat

higher affinity (422 nM) than 9211. Of note however, 8 was

Figure 1. Published conformationally restrained analogs of 1. 5-HT2A affinities are given within parenthesis.
doi:10.1371/journal.pone.0078515.g001

Figure 2. The new conformationally constricted analogs
reported in this study.
doi:10.1371/journal.pone.0078515.g002
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tested in rat 5-HT2A, in which the binding site bears more

resemblance to that of 5-HT2B-C as these three receptors contain

an alanine in position 5.46 whereas human 5-HT2A holds a more

polar serine residue. Thus, until 8 has been tested in human 5-

HT2A or 5-HT2B-C we consider it equipotent to 9210. Also

ligands 1b and 3a-b have been tested in rat receptors and may not

be equipotent if tested in human receptors.

Structure-Activity Relationships
The 1,2-heterocyclized analogs 8211 display at best a 480-fold

lower affinity at 5-HT2A than the unconstrained reference 2C-B

(1a). However, pharmacological testing of 9211 against all three

5-HT2 subtypes, revealed significantly higher affinities for the 5-

HT2B and 5-HT2C receptors. Below we set out to rationalize these

two findings by ligand conformational analysis and, for the first

time, ligand docking inside the 5-HT2B crystal structure.[25]

Specifically, the different sections have investigated ligand-

receptor interactions, ligand conformational penalties of binding

and the optimal positions of the 2-oxygen and amine functional-

ities in comparison to the highest affinity reference compounds, 4
and 5, respectively.

The receptor binding site can accommodate 7-
membered 1,2-heterocycles

The 5-HT2B receptor has been crystallized in complex with a

partial agonist, ergotamine.[25] The reference ligands Bromo-

DragonFLY (4) and 2C-TCB (5) could be docked directly into this

crystal structure, but a small optimization of the binding pocket

was needed to adapt it to the phenyl-ethylamine scaffold. The

contacts for the charged amine, phenyl ring and 4-bromo

functionalities were all in perfect alignment with the interaction

map of the binding site. The triple-ring core of 2C-TCB (5) was

better accommodated by tilting F6.52341 slightly towards TMH5

to the same position as observed in the G protein-bound b2

adrenergic structure.[26] The previously described[19] hydrogen

bonding between the 2-oxygen functionality and S3.36139 required

rotation of the oxygen dihedral towards TMH5 until close (0.6 Å)

to the most frequent state (42%) in the library. The proposed

hydrogen bond[18] between the 5-oxygen and S5.43222 hydroxyl

cannot form as the oxygen atom pair distances are 5.8 and 5.7 Å

for Bromo-DragonFLY (4) and 2C-TCB (5), respectively).

Inspection of the crystal structure shows that the base (i.e. C-

alpha to C-beta bond) of the S5.43222 side chain projects towards

TMH6 rather than TMH3 and that F6.52341 blocks access.

Also the 1,2-cyclized compounds 8211 could be docked

directly into the 5-HT2B structure (Figure 6a-d). Similar contacts

were achieved for the charged amine and phenyl ring, whereas the

4-bromo pointed deeper and closer to A5.46225. Their 2-oxygen

lone pairs are directed in opposite direction compared to the

reference ligands and the optimal hydrogen bonding angle was

found to be for the third rotameric state of S3.36139 (21%

frequency in rotamer library), which positions the hydroxyl deeper

and just below the ligands. For compounds 8 and 9 both

enantiomers fitted, although (S)-8 and (R)-9 formed more optimal

receptor interactions. For 10 and 11 only the R-enantiomer fitted

in a way that the 2- and 5-oxygens could be directed towards the

corresponding receptor contacts. In conclusion, all compounds

could be docked into the 5-HT2B receptor. The 2-oxygen to

S3.36139 hydrogen bond could form, but required alternative

rotamer shifts. A 5-oxygen to S5.43222 hydrogen bond could not

be formed. Arguably, it may form in another conformational

receptor state, but it is unlikely that the helical backbones would

move enough. If such as bond is formed it could however be

indirect being bridged either by a water molecule or the proximal

residue N6.55344.

The inactive compound 11 exhibits a high
conformational penalty of binding

We calculated the conformational energy penalties of binding

for 8211 by comparing the energies of the receptor-bound poses

Figure 3. Synthesis of 9. Reagents and Conditions: (a) epichlorohydrin, Cs2CO3, MeCN, reflux, 4 h; (b) BuLi, THF, 278uC to r.t., 30 min; (c)
phthalimide, PPh3, DEAD, CH2Cl2, r.t., 1 h; (d) N2H4.H2O, EtOH, reflux, 2 h; (e) Br2, AcOH, r.t., 18 h.
doi:10.1371/journal.pone.0078515.g003

Figure 4. Synthesis of 10. Reagents and Conditions: (a) NaBH4, EtOH, r.t., 2 h; (b) Me3SiCN, BF3.Et2O, CH2Cl2, 278uC to r.t.; (c) DIBALH, THF, reflux,
2 h. The 7-bromochroman-4-one 16 was prepared as previously described.[23]
doi:10.1371/journal.pone.0078515.g004
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with their respective lowest energy conformation in solution

(Fig. 6e-h). The inactive 11 exhibits a considerable penalty,

21.4 kJ/mol, whereas 8210 display close to none. A closer

inspection of 8 and 11, which both have 7-membered rings shows

that their ring conformations are exactly the same in the global

energy minimum, whereas their amine positions differ by 2.7 Å. In

the docking, 11 displays a higher energy ring conformation, which

is necessary to direct the amine in the proximity of D3.32 and also

has a strained methyl amine linker. As the binding sites of 5-HT2A-

C are identical in the region around this ring, this observation

provides a plausible explanation also to the lack of affinity of 11 in

the 5-HT2A and 5-HT2C receptors.

1,2-cyclization alters the amine and 2-oxygen lone pair
orientations and shifts the overall poses

We next investigated the orientation of the amine functionality.

Figure 6i-l shows a superimposition of the minimum energy

conformations of 8211 to that of docked (R)-TCB-2 (5), which is

the amine-constrained ligand with the highest affinity (5-HT2A:

0.26 nM). In 8 the amine is slightly distanced whereas in 9211 it

is positioned closer towards the side of the interacting D3.32. The

distances between the charged nitrogen atoms are 1.3, 1.5, 1.5 and

2.3 Å for 8211, respectively, from that of 5. After docking, the

distances are 0.523.2 Å, and the amine is shifted primarily

upwards compared to TCB-2 (5). We next turned to the lone pair

orientations of the 2-oxygen, which has been suggested based on

mutagenesis to form a hydrogen bond with S3.36.[19] Figure 6m-

p shows a superimposition of the minimum energy conformations

of 8211 to that of the docked Bromo-DragonFLY (4), which is the

2-oxygen-constrained ligand with the highest affinity

(0.0220.19 nM in 5-HT2A-C). The distances between the 5 and

8211 2-oxygen atoms are small (0.2 Å in 8,10211 and 0.5 in 9).

However, as expected from their 2D structures, the orientations of

the lone pair vectors differ markedly. This has an effect on the

docked poses (Fig. 1a-d), in which the 2-oxygen atoms of 8211
have shifted 1.523.0 Å from that of Bromo-DragonFLY (4) away

from THM5 and a somewhat higher.

The large changes in the amine orientations of 8211 seem to

be accommodated by the receptor as the interacting residue D3.32

offers a large contact area and there is some flexibility on both

sides (one-carbon linkers in the amine and carboxylic acid).

Maintaining the 2-oxygen hydrogen bond to S3.36 seems more

challenging, as there is less flexibility at this point. Moreover, the

amine and 2-oxygen both interact with residues on the same helix,

TMH3, and a helical movement would therefore not relieve the

combined constraint. The 1,2-cyclization is therefore compensated

for by a translation of the ligand that shifts the positions of the

methoxy, bromine and phenyl functionalities and, in particular,

the 4-bromo and 5-oxygen substituents are located markedly

deeper. Taken together, the constrained moieties may to some

extent be compensated for by flexible receptor contact points, but

alter the position and/or angle of the core scaffold and so

modulate the remote 4-bromine and 5-oxygen functionalities.

Figure 5. Synthesis of 11. Reagents and Conditions: (a) Ethyl 3-bromobutyrate, Cs2CO3, MeCN, reflux, 2 hrs; (b) polyphosphoric acid, 90uC for 1 h.
(c) NaBH4, EtOH, r.t., 2 h; (d) Me3SiCN, BF3.Et2O, CH2Cl2, 278uC to r.t.; (e) DIBALH, THF, reflux, 2 h.
doi:10.1371/journal.pone.0078515.g005

Table 1. Binding affinities of published (128) and new
(9211) compounds at human 5-HT2 receptors.

Affinity, Ki (nM)

Compound 5-HT2A 5-HT2B 5-HT2C Species Ref.

1a 2C-B 0.88 NA NA Human [20]

1b DOB 2.16 NA 2.82 Rat [31]

2a 2C-B-fly NA NA NA Human [15]

2b DOB-fly 0.48 1.60 0.30 Human [15]

3a 2C-B-butterfly 1.76 NA 1.52 Rat [16]

3b DOB-butterfly 3.87 NA 1.85 Rat [16]

4 Bromo-DragonFLY 0.04 0.19 0.02 Human [17]

5 TCB-2 0.26 NA NA Human [20]

6 42 NA NA Human [20]

7 47 NA NA Human [20]

8 422 NA NA Rat [21]

9 10406188 196628 135631 Human

10 847679 70613 12469 Human

11 .10000 18726345 .10000 Human

NA: Not Available
doi:10.1371/journal.pone.0078515.t001
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Differences in the binding site may explain the lower
affinity of 8211 in 5-HT2A and higher affinity of 10211 in
5-HT2B

9210 display 5212 fold higher affinities in 5-HT2B-C than 5-

HT2A. Arguably, this difference is too large to only be due to the

use of different radioligands; an antagonist for 5-HT2A (ketanserin)

and agonists for 5-HT2B (LSD) and 5-HT2C (mesulergine). An

additional factor is the difference in the binding sites. As noted

above human 5-HT2A holds a polar serine residue in 5.46,

whereas 5-HT2B-C have an alanine (Fig. 7d-f). In our ligand

docking, the 4-bromo substituent is closer to 5.46 in the 1,2-

cyclized compounds 8211. Thus, it is plausible that the lower

affinity of these ligands in 5-HT2A is caused by a less favorable

environment for the 4-bromine in the presence of S5.46. In future

studies it would therefore be interesting to exchange the 4-bromine

for a polar substituent, for example a hydroxyl or nitrile, too see if

the affinity profile is inverted (i.e. higher affinity in 5-HT2A than 5-

HT2B-C).

5.39, located approximately two helical turns higher on TMH5,

is close to the 5-oxygen of the docked phenethylamine ligands.

This position is occupied by a methionine in 5-HT2B, but an

alanine in 5-HT2A and 5-HT2C (Fig. 7a-c). This could give more

room for large ligands in the latter receptors tentatively explaining

the somewhat lower affinities of Bromo-DragonFLY (4) and

DOB-fly (2b) in 5-HT2B (Table 1). Taken together, the two

subtype differences could explain some of the observed affinity

profiles, but many ligands have only been tested in 5-HT2A

making it difficult to define any general relationships for all

constrained phenethylamines. Future ligand design aiming at

selectivity, could exploit the subtype differences.

Conclusions

Previously the effect of 1,2-cyclization of phenethylamines had

only been explored with one ligand (8) [21]. Here, we have

presented three new 1,2-cyclized of phenethylamines and

described their synthetic routes giving access to novel derivatives.

The 1,2-heterocyclized analogs 8211 display at best 480-fold

lower affinity at 5-HT2A than the unconstrained reference 2C-B

(1a, Table 1). The ligand docking results show that all four 1,2-

heterocyclized compounds can be accommodated in the binding

site, but conformational analysis showed that 11 can only bind in a

higher-energy conformation. The amine orientation in 9211 is

shifted significantly to the side of D3.32 as compared to the

reference (5), however the docking poses display near optimal

interactions. This is because the interacting atoms both have

flexible 1-carbon linkers and due to the shift in the scaffold

placement. The 2-oxygen lone pairs in 8211 have opposite

directions to that of earlier constrained ligands.[15217] The

Figure 6. Ligand docking and conformational analyses. a-d) Docking poses for 8211 the 5-HT2B crystal structure. 8211 have similar contacts
as the reference compounds 4 and 5 for the charged amine, and phenyl ring, whereas the 4-bromo points deeper and closer to A5.46225. e-h) The
docked poses of 8211 (green carbons) overlaid on their calculated lowest energy conformations (magenta carbons). 11 has a high conformational
energy penalty, Epen (21.4 kJ/mol) upon binding, which is consistent with its lack of or low affinity for 5-HT2A-C. i-l) Comparison of the positions of the
amine side chains of 8211 (green carbons) superimposed onto the docked reference 5 (magenta carbons). NH3Dist is the distance (Å) between the
amines of 8211, respectively, and 5. The distance is greatest for 11, indicating a conformationally strained amine side chain upon binding. m-p)
Comparison of the lone pair orientations of the 2-oxygens of 8211 (green carbons) and 4 (magenta carbons). The lone pair vectors (semi-transparent
sticks) of 8211 all differ significantly from 4. All superimpositioning (Fig. 6e-p) was made on the phenyl, bromine, 2-oxygen and 5-oxygen atoms.
doi:10.1371/journal.pone.0078515.g006
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docked poses of 8211 still display hydrogen-bonding to S3.36, but

this requires a very specific positioning of the 2-oxygen with little

flexibility and a slight of the scaffolds. The constraints in 9211
resulted in docking poses with the 4-bromine in closer vicinity to

5.46, which is polar only in human 5-HT2A. Future medicinal

chemistry programs should evaluate whether polar 4-substituted

analogs can invert the target preferences.

Methods

Affinity measurements
Ki determinations were generously provided by the National

Institute of Mental Health’s Psychoactive Drug Screening

Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP).

The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the

University of North Carolina at Chapel Hill and Project Officer

Jamie Driscol at NIMH, Bethesda MD, USA.

Ligand docking into the 5-HT2B crystal structure
The 5-HT2B receptor crystal structure[25] in complex with the

partial agonist ergotamine (4IB4) was downloaded from the

protein data bank[27] and prepared with the Maestro protein

preparation workflow[28]. A map of the interaction features and

areas of the binding site was generated by SiteMap.[29]

Accordingly, as a first step to adapt the binding pocket to

phenylethylamine ligands, the hydroxyl hydrogen atoms of

S3.36139 and S5.43222 were rotated towards the center of the

binding site to constitute hydrogen bond donors. In opposite, the

hydroxyl hydrogen of S3.37140 rotated away to enlarge a

hydrophobic portion of the binding site. The triple-ring core of

2C-TCB (5) was better accommodated by tilting F6.52341 slightly

towards TMH5 to the same position as observed in the G protein-

bound b2 adrenergic structure.[26] The binding sites of the 5-HT2

receptor subtypes deviate only in two residue positions: 5.46

(5-HT2A: S, 5-HT2B: A and 5-HT2C: A) and 5.39 (5-HT2A: A, 5-

HT2B: M and 5-HT2C: A). Models of the 5-HT2A and 5-HT2C

binding sites were simply derived by mutation of these two residues.

Glide was used to generate the receptor grid, in which the S3.36

hydroxyl was allowed to rotate.[30] Glide SP was used for the

docking, including sampling of ligand ring conformations and

increasing the maximum number of output poses from 1 to 10. In

a first docking round, (R)-Bromo-DragonFLY (4), (R)-2C-TCB (5)

and 8211 were docked with no further adjustments. In a second

subsequent docking, separate grids were prepared for the reference

and 1,2-constrained ligands, after shifting of the S3.36 rotamer to

provide optimal fit (see Results). Binding poses were evaluated for

placement of all interacting moieties as well as strain on the amine

linker. For the reference ligands the top scoring poses proved

satisfactory, whereas for 8211 the selected poses were among the

first 225 presented.

Conformational penalties for strained ligand poses
The lowest energy (global minimum) conformations of 8211

were calculated using MacroModel conformational searches with

exhaustive settings (maximum iterations: 5000 and convergence

threshold 0.01) and applying the OPLS2005 force field (used in all

calculations). The energies of the bound conformations (all poses

with a docking score within one unit of the highest scoring) were

also calculated with MacroModel (current energy) after a mild

minimization that restricted the movement of the heavy atoms to

0.3 Å. Finally, the conformational energy penalty of binding was

calculated as the energy difference between the bound and global

minimum conformations.

Supporting Information

Methods S1 Detailed synthetic routes of 9, 10 and 11.

(DOC)

Figure 7. Visualizations of the hydrophobic- (yellow surface) and hydrogen bond acceptor areas (red surface) of the binding sites in
5-HT2A-C. The maps were produced with SiteMap.[29] The 5.39 methionine in 5-HT2B (b) reduces the size of hydrophobic pocket. The 2-oxygen
matches the hydrogen bond acceptor area for S3.36 interaction whereas the 5-oxygen cannot reach that of S5.43 (left and right sides, respectively, in
d-f). 5.46 holds a serine in 5-HT2A (d) resulting in an hydrogen bond acceptor site close to TMH5, where the other receptor subtypes display
hydrophobic areas.
doi:10.1371/journal.pone.0078515.g007
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