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Abstract

Understanding the ecological niche of some fishes is complicated by their frequent use of a

broad range of food resources and habitats across space and time. Little is known about

Broad Whitefish (Coregonus nasus) ecological niches in Arctic landscapes even though

they are an important subsistence species for Alaska’s Indigenous communities. We investi-

gated the foraging ecology and habitat use of Broad Whitefish via stable isotope analyses of

muscle and liver tissue and otoliths from mature fish migrating in the Colville River within

Arctic Alaska. The range of δ13C (-31.8– -21.9‰) and δ15N (6.6–13.1‰) across tissue types

and among individuals overlapped with isotope values previously observed in Arctic lakes

and rivers, estuaries, and nearshore marine habitat. The large range of δ18O (4.5–10.9‰)

and δD (-237.6– -158.9‰) suggests fish utilized a broad spectrum of habitats across eleva-

tional and latitudinal gradients. Cluster analysis of muscle δ13Cˈ, δ15N, δ18O, and δD indi-

cated that Broad Whitefish occupied four different foraging niches that relied on marine and

land-based (i.e., freshwater and terrestrial) food sources to varying degrees. Most individu-

als had isotopic signatures representative of coastal freshwater habitat (Group 3; 25%) or

coastal lagoon and delta habitat (Group 1; 57%), while individuals that mainly utilized inland

freshwater (Group 4; 4%) and nearshore marine habitats (Group 2; 14%) represented

smaller proportions. Otolith microchemistry confirmed that individuals with more enriched

muscle tissue δ13Cˈ, δD, and δ18O tended to use marine habitats, while individuals that

mainly used freshwater habitats had values that were less enriched. The isotopic niches

identified here represent important foraging habitats utilized by Broad Whitefish. To pre-

serve access to these diverse habitats it will be important to limit barriers along nearshore

areas and reduce impacts like roads and climate change on natural flow regimes. Maintain-

ing these diverse connected habitats will facilitate long-term population stability, buffering

populations from future environmental and anthropogenic perturbations.
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Introduction

The ecological niche conceptualizes the physical environment and food resources used by a

species [1]. First described by Grinnell (1917) [2], the “niche habitat” concept proposed that

environmental conditions across geographic space limit, or at least influence, the habitat uti-

lized by species. Elton’s “niche” concept further explored this idea but focused on resources

consumed and the status of a species within a community, including trophic relationships

between prey and predators [3]. Building from previous definitions, Hutchinson (1957) [4]

described the “fundamental niche” as a set of points in multivariate space whose axes represent

both physical and biological variables required by a species. Within the fundamental niche

concept, the first axis represents the bioclimate variables or the habitat stage used by a species

and the second axis represents the prey resources that the species consumes [4]. Inside the fun-

damental niche is the “realized niche,” which is constrained by predation and competition.

Diverse foraging behaviors and anadromy help fishes maximize foraging efficiency by

enabling them to exploit a suite of seasonally available habitats and food supplies [5, 6]. The

evolutionary basis for anadromy in high-latitude fishes is linked to generally lower freshwater

productivity compared to marine environments [7, 8]. In addition, extreme seasonal variation

in climate and changing hydrologic conditions create a shifting and heterogeneous mosaic of

food-resources and suitable habitats [9] that can be exploited by mobile generalists typical of

Arctic and boreal fishes [10–13]. The benefits of diverse foraging behavior within Arctic fishes

are also influenced by ontogenetic changes in diet that favor migration between habitats to

maximize prey intake and minimize energetic costs [14–16]. Collectively, these factors compli-

cate the task of characterizing the ecological niches of Arctic fishes.

Many animals inhabit ecosystems that are difficult to monitor and frequently move in

search of food (e.g., fishes), which makes it difficult to quantify niche space via conventional

techniques. Such techniques require extensive sampling to accurately measure diet composi-

tion yet generally lack temporal integration and fail to account for variation in assimilation

rates [17, 18]. Alternatively, stable isotope analysis offers an approach for characterizing eco-

logical niches that can time-integrate multiple dimensions of information on both resources

and habitat [19–21]. Stable isotopes change in systematic ways within and across ecosystems

[22, 23] and are incorporated into animals’ tissue through food and environmental water. Sta-

ble isotope ecologists can gain new insights into what a species consumes and where it lives

through the development of the “isotopic niche” [19], which uses multiple stable isotope ratios

within tissues to characterize a species’ niche space and the location of individuals within that

space [17, 19, 24, 25]. Stable isotope analyses of carbon (δ13C) and nitrogen (δ15N) from tissues

with different turnover rates (e.g., muscle, liver) can be used to understand diet and trophic

position over different time spans [26–28]. Oxygen (δ18O) and deuterium (δD) isotope ratios

in animal tissues change in predictable ways across landscapes and, when used in combination

with modeled isoscapes [29], can offer additional insights into habitat use [18, 30].

Otolith microchemistry is another tool to help understand ecological niches of highly

mobile fish species [31–37]. Otoliths, paired inner ear stones used for hearing and balance in

all teleost fishes, are laid as concentric layers of metabolically inert biogenic minerals, primarily

calcium carbonate. Elements are permanently incorporated into their organic matrix, and

compositional changes across the layers reflect changes across an individual’s life [38]. Stron-

tium (Sr), a naturally occurring element derived from geologic material, has four stable iso-

topes (88Sr, 87Sr, 86Sr, 84Sr), in which only 87Sr is radiogenic. The ratio of 87Sr to 86Sr (87Sr/86Sr)

reflects Sr released into fresh water sources and is driven by differences in lithology, age, chem-

ical composition [39–41], and weathering rates of surficial geology [42–44]. For diadromous

fishes, the relative differences in 87Sr/86Sr between freshwater and isotopically uniform marine
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values help provide detailed information on the timing and duration of estuarine and marine

habitat use [45, 46].

Arctic Alaska is undergoing major landscape and ecosystem transformations from climate

change [47–51] and oil and gas development [52–54]. Arctic surface air temperatures are

warming at more than twice the rate of lower latitudes, which is exacerbated by Arctic amplifi-

cation—the feedback between air temperature and surface albedo in polar regions [55]. The

accelerated impacts of climate change at high latitudes [56, 57] are a major threat to Arctic

freshwater ecosystems [58], altering streamflow patterns [59–62], warming [63, 64] and drying

[65] aquatic habitats, causing eutrophication [66] and browning of lakes [67, 68], and allowing

for northward range expansion of eurythermic species [69]. Warmer air and fewer cold days

have led to numerous changes in the Arctic cryosphere [70], including degraded permafrost

[71] and increased active layer depth [72], ground subsidence and alterations in the patterned

ground features [54], and increasing retrogressive thaw slump activity [73, 74]. These changes

in permafrost and seasonally frozen ground have resulted in increased riverine nutrient [75]

and sediment loads [76, 77] in freshwater ecosystems.

Broad Whitefish (Coregonus nasus) is a primary subsistence resource for Indigenous peo-

ples in Alaska. Referred to as Aanaakliq in the Iñupiaq language, Broad Whitefish are valued

due to their relatively large size (up to 4.5 kg) and abundance during migrations, and account

for about half the total mass of fishes harvested across all Beaufort Sea communities [78, 79].

However, information on Broad Whitefish habitat use in Arctic landscapes is limited. Previous

research supports the theory of a highly mobile species that utilizes a variety of aquatic habitats

[80, 81]. To rapidly build energy reserves during the brief open water period, it is likely that

Broad Whitefish move across the landscape and use a variety of habitats (e.g., lakes, rivers,

streams, estuaries, lagoons, and nearshore marine areas) [80, 81] while feeding on a diversity

of benthic and pelagic prey across a range of trophic levels [12]. Connectivity between a variety

of habitats is, therefore, especially important for Broad Whitefish. Similar to other Arctic

fishes, habitat use across time and space results in a variety of life histories [81] with varying

amounts of time spent in freshwater, estuarine and marine habitats [80] to maximize growth,

survival, and reproduction. As such, Broad Whitefish can be considered a model species,

which can help us understand habitat use of other similar Arctic fish species (e.g., Humpback

Whitefish Coregonus pidschian).

Broad Whitefish populations use the Colville River watershed for foraging, rearing [82, 83]

and spawning [82]. With headwaters in the rugged Brooks Range, the Colville River is one of

the few rivers in the region that contains abundant gravel substrate and deep channels, which

are both likely essential for egg survival [84]. Due in part to its watershed size, the Colville

River also has the largest delta on the Alaskan Beaufort Sea coast, which provides abundant

rearing habitat for larval and juvenile fishes [80, 83]. Broad Whitefish can live for 30+ years

and return to the Colville River ecosystem regularly to reproduce [85], likely migrating from a

variety of productive foraging areas in rivers across the Beaufort Coastal Plain. Thus, by sam-

pling the Colville River’s spawning run, we were able to infer patterns of foraging behavior and

habitat use for Broad Whitefish at the regional scale.

Food resources are dispersed across space and time within high-latitude aquatic ecosystems,

which should favor fishes with generalist foraging strategies and the ability to exploit a variety

of habitat types [11, 12]. Extreme seasonal variation in climate and changing hydrologic condi-

tions, across a spectrum of freshwater to marine habitats, likely creates a variety of seasonally

productive habitats and a diversity of ecological niches for Broad Whitefish and other Arctic

fishes. We investigated the ecological niches utilized by Broad Whitefish—a highly mobile,

generalist fish species—in the Alaska Arctic. Our specific objectives were to (1) explore how

variation in δ13C and δ15N in Broad Whitefish muscle relates to Arctic freshwater and marine
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foraging niches (2) investigate whether diet changes across the summer by comparing tissues

with different isotopic turnover rates, (3) determine how variation in muscle δ18O and δD

relates to Arctic freshwater and marine niches (4) characterize isotopic niches using cluster

analysis of stable isotope ratios (δ13C, δ15N, δ18O, and δD) from muscle tissue and investigate

the relationship between the resulting isotopic cluster groups and potential niches utilized, and

(5) determine if stable isotope values from muscle tissue are predictive of life history strategy

by comparing to Sr isotopes in otoliths. Our research revealed new insights into Broad White-

fish isotopic niches and provided new information on important habitat and food resource use

by Broad Whitefish within the Beaufort Sea region. This information expands our understand-

ing of the mosaic of feeding habitats used and will better inform management and conserva-

tion decisions to protect this vital subsistence resource.

Materials and methods

Study area

The central Beaufort Sea region study area (Fig 1) contains a diversity of foraging habitats for

Arctic fishes. Situated between the Ikpikpuk and Canning rivers, the coastline is a spectrum of

deep bays and inlets, tapped lake basins (lake basins that are breached by the sea due to ero-

sion), lagoons with barrier islands, and exposed bluffs [86]. River deltas of varying size are fre-

quent along the coast [87]. Thermokarst and riverine lakes that vary in size, depth, and

connectivity [87, 88] account for 30% of the region’s surface area [89]. Stream habitats vary by

watershed and geomorphic setting [90, 91], generally resulting in colluvial channels in foothill

and mountainous headwaters, beaded headwater streams in low-gradient coastal plains, and

meandering alluvial streams and rivers lower in watersheds [88].

The region, within the Arctic tundra biome, is characterized by permafrost, extreme cli-

mate, low-growing plants, and large variations in day length. The region’s stark seasonality can

be divided into a long cold season and a short warm season, but the former controls many of

the physical and biological processes. Cold season air temperatures are consistently well below

freezing, creating a landscape dominated by snow and ice for about eight months [92]. The

warm season is brief, but with 24 hours of daylight and moderate air temperatures [92], the

area becomes productive foraging and rearing habitat for many resident and migratory fishes,

mammals, and birds. Annual precipitation is generally low, with more falling in the foothills

than along the coast (30 and 20 cm, respectively) and about half falling as snow [92].

Fish sampling

We collected otoliths and tissue from adult Broad Whitefish migrating up the Colville River

during 2015. The Colville, the largest river in Arctic Alaska, flows about 560 km northward

from its headwaters in the partially glaciated Brooks Range to a large delta on the edge of the

central Beaufort Sea coast, near the Alaska Native village of Nuiqsut (Fig 1). We set gill nets ca.

30 m in length, composed of braided nylon and monofilament with 10-cm and 12-cm

stretched mesh, to target adult fish large enough to spawn (> 35 cm) [93]. We positioned nets

at gravel point bars, along eddy lines, and perpendicular to flow in low-gradient reaches at

three separate sites (Sites 1–3; Fig 1). We sampled at Puviksuk on July 23–27, at Umiat on

August 21–26, and at Itkillik on October 10–11. We euthanized captured Broad Whitefish

with a single sharp blow to the cranium and recorded fork length (n = 98, all of which were

adults� 42 cm; [84], total weight, gonad weight, and sex (44 males, 47 females, 7 undeter-

mined; S1 Table). We also collected liver and epaxial muscle samples with sterile 5-mm biopsy

punches (preserved with clay desiccant beads) from all individuals, except in cases where fish

organs were consumed by birds while caught in gillnets (n = 5). Liver and muscle tissue likely
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represent the integration of consumed food resources for ca. 37 and 88 days prior to capture

[26], respectively, providing records of fish foraging niches for differing periods during the

growing season. Adult Broad Whitefish are slow-growing fish and it is likely that integration

of isotopes into tissues is primarily through anabolism, which could mean that integration of

food resources is much longer [27]. Sagittal otoliths were collected from each individual using

the Guillotine method [94], rinsed in water, and stored in paper envelopes. The planned sam-

ple size of 50 individuals per site was lower than anticipated at Umiat (n = 23) and Itkillik

(n = 17), as opposed to Puviksuk (n = 57), due to unexpectedly high streamflow at the former

and an early freeze-up at the latter that inhibited our ability to capture fish. Research was con-

ducted under Bureau of Land Management NPR-A permit #FF097006 and the Alaska Depart-

ment of Fish and Game, Fish Resource permit #SF2015-200. All collections were performed

using methods in line with guidelines to minimize suffering.

Fig 1. Study area. The central Beaufort Sea region in Arctic Alaska, situated between the Ikpikpuk River and the Canning River, contains a diversity of

aquatic habitat. The large Colville River, AK, USA (ca. watershed area 60,000 km2), located in the middle of the central Beaufort Sea coast, contains

minor tributaries that drain from the Brooks Range (thin grey lines) and main tributaries (thick dark grey lines) that flow toward a large delta on the

edge of the Beaufort Sea, near the community of Nuiqsut, AK. Fish were collected at three sites (black triangles) within the Colville River (site

1 = Itkillik, site 2 = Puviksuk, site 3 = Umiat). Data sources: USGS National Map Viewer (http://viewer.nationalmap.gov/viewer/), Natural Earth (http://

www.naturalearthdata.com/), National Hydrography Dataset (https://www.usgs.gov/national-hydrography/national-hydrography-dataset).

https://doi.org/10.1371/journal.pone.0270474.g001
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Tissue stable isotope analyses and data analysis

We selected stable isotopes δ13C, δ15N, δ18O, and δD due to their combined ability to discern

Broad Whitefish diet, trophic position, and habitat use [22–25, 30, 95, 96]. We analyzed tissues

with different turnover rates (e.g., muscle, liver) to understand change in stable isotopes over

different time spans [26–28]. Both δ13C and δ15N have remained important stable isotopes for

reconstructing foraging ecology patterns due to their exclusive association with diet, limited

fractionation, and ability to reflect sources of primary production and trophic position [22, 97].

While relatively new to food web studies, tissue δ18O and δD, when used in combination

with modeled isoscapes, can offer additional insights into diet and habitat use [18, 30, 95, 97].

We analyzed liver and muscle tissue at the University of Alaska Anchorage’s Environment

and Natural Resources Institute (ENRI) Stable Isotope Facility. Samples were dried, ground to

a fine powder, and weighed to 0.001 g prior to analysis. Liver and muscle samples were ana-

lyzed for δ13C and δ15N using a Costech ECS 4010 elemental analyzer (Costech, Valencia CA)

in line with a Thermo Finnigan™ Delta V continuous-flow isotope ratio mass spectrometer

(Thermo Scientific™, Bremen, Germany). Muscle samples were analyzed for δD and δ18O

using a Thermo Finnigan TC/EA in line with a Thermo Finnigan™ Delta Plus™ XP continu-

ous-flow isotope ratio mass spectrometer (Thermo Scientific™, Bremen, Germany). Due to the

reduced size of dried liver samples, we were unable to analyze liver tissue for δD and δ18O.

Instruments were calibrated against international reference standards from the International

Atomic Energy Agency and the United States Geological Survey. Stable isotope compositions

were referenced relative to international standards; atmospheric N for nitrogen, Vienna Pee

Dee Belemnite (VPDB) for carbon and Vienna standard mean ocean water (VSMOW) for

oxygen and deuterium. Stable isotope ratios were expressed in δ notation in units of per mil

(‰) relative to international standards where: δX = [(Rsample—Rstandard)/Rstandard]�1000‰,

where R is the ratio between the isotopes (i.e., 13C/12C, 15N/14N, 18O/17O, 2H/1H). Long-term

records of internal standards yield an analytical precision of 0.11 ‰ for δ15N, 0.12 ‰ for δ13C,

0.2 ‰ for δ18O, and 1.8 ‰ for δD.

To account for a subset of values with carbon to nitrogen ratios (C:N) greater than 3.5, we

lipid-normalized δ13C samples following an approach outlined in Skinner et al. (2016) [98].

Using their approach, we adjusted δ13C using the Kiljunen et al. (2006) [99] mathematical nor-

malization model (δ13Cˈ(normalized δ13C) = δ13C + D (I + (3.90)/(1 + 278/L)) with difference

in carbon isotopic composition between protein and lipid (D) equal to 7.018 and the constant

(I) equal to 0.048. We calculated percent lipid (L) using the Post et al. (2007) [100] equation (L

= -20.54 + 7.34 × C:N). We statistically analyzed the stable isotope ratios from Broad Whitefish

tissue samples through a hierarchal clustering approach to characterize ecological niches

[101]. Hierarchal clustering builds a hierarchy of clusters more similar to each other and, in

this instance, our approach clustered individuals into groups with similar isotopic ratios,

which represented an individual’s habitat and food resources in multivariate space. Assigning

clusters is complicated due to the high-dimensional nature of biological data, which makes it

difficult to visualize, but overall, clustering can help gain insights [101]. We conducted a hier-

archal agglomerative clustering analysis on normalized-rescaled values following methods out-

lined by Charrad et al. (2014) [102] within R statistical program using the NbClust package,

average link method, and Euclidian distance. Next, we generated 30 cluster validity indices

available within the NbClust package to assess the optimal number of clusters (groups) and

used the majority rule to determine the best number of clusters [102].

To determine if an individual’s diet remained stable or changed over the summer period, we

visually and quantitatively compared the difference between muscle and liver tissues (i.e., mus-

cle minus liver) for both δ15N and δ13C. We also conducted a statistical correlation analysis in
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R statistical program using the ggpubr package. To assess the data for normality we used quan-

tile-quantile plots and the Shapiro-Wilk’s test. Then, we conducted a Pearson correlation analy-

sis between muscle and liver δ15N and δ13C to determine the linear correlation between the

muscle and liver tissues. Last, we conducted a linear regression analysis for the muscle and liver

δ15N and δ13C to determine the slope and statistical significance of the best-fit line.

Otolith microchemistry and life history classification

We measured Sr isotope concentrations (88Sr, 87Sr, 86Sr, 84Sr) across a subset of the otoliths (69

of 98 individuals sampled). In preparation for isotope analysis, we mounted otoliths prepared

in the transverse plane on petrographic slides following methods outlines in Leppi 2021 [82].

We used an Analyte G2 Excimer 193-nm Laser Ablation System (LA; Teledyne Photon

Machines, Bozeman, USA) with a Helex cell coupled to a Neptune Plus™ multi-collector induc-

tively coupled plasma mass spectrometer (MC-ICP-MS; Thermo Scientific™, Bremen, Ger-

many) for strontium isotope analyses at the University of Alaska Fairbanks, Alaska Stable

Isotope Facility following methods outlined in Leppi 2021 [82]. Briefly, we selected samples to

prioritize for laser ablation with the goal of analyzing otoliths across a gradient of δ13Cˈ, δD,

and δ18O, which was expected to represent time spent in different habitat types (e.g., freshwa-

ter, estuarine, marine) over the three months prior to capture [82]. Subsampled otoliths were

roughly proportional to the number of samples collected at each field site [82]. Compared to

freshwater habitats, 87Sr/86Sr in marine habitats is generally lower, homogenous, and constant

due to the long residence time and mixing of oceans [45, 46].

We calculated Sr concentrations (Sr mg/kg) by dividing the concentration of Sr in the

FEBS-1 standard (i.e., 2055 mg/kg) by the average 88Ca FEBS-1 standard value during ablation

and multiplying by otolith 88Ca at individual points across the ablation path. We considered

otolith 88Sr below 6.13 voltage V (ca. 850 mg/kg) to be time spent in freshwater, greater than

12.26 V (ca.1700 mg/kg) to be marine habitat use [45, 46], and intermediate values to reflect

time spent in estuarine habitat. The 88Sr concentrations systematically increase with water

salinity, with lower values found in freshwater compared to marine habitats. For diadromous

fishes, these relative differences in Sr isotopes between distinctive freshwater, estuarine, and

marine values can be used to indicate the timing and duration of habitat use [45, 46]. If Sr data

were highly variable or contained unreliable values due to cracks, otoliths were removed from

the dataset (n = 6).

We visually compared the 88Sr and 87Sr/86Sr across each otolith core-to-edge chronology

and used a supervised classification approach to group otoliths into three life history groups.

Life history types included anadromous, semi-anadromous, and nonanadromous. We consid-

ered individuals with maximum 88Sr above 12.26 V and 87Sr/86Sr near the global mean oceanic

value (GMV = 0.70918 ± 0.00006 2 standard deviations (SD)) anadromous. We classified indi-

viduals as semi-anadromous if 87Sr/86Sr at the natal region was near GMV. Semi-anadromous

individuals had no detectable age-0 freshwater otolith signature, likely spending limited time

in freshwater as larvae and frequently moving between freshwater, estuarine, and marine habi-

tats [82]. Nonanadromous individuals had 88Sr concentrations lower than 12.26 V and
87Sr/86Sr consistently below global marine 87Sr/86Sr, indicating that they did not enter marine

habitats.

Results

δ13Cˈ and δ15N in isotope space

Stable isotope ratios measured in Broad Whitefish muscle tissue overlapped with those previ-

ously observed from a variety of Arctic plants, invertebrates, and fish species (Fig 2). Previous
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research has shown that species that inhabited inland lakes and rivers had more depleted δ13C,

compared to marine species (See S2 Table). Broad Whitefish normalized muscle values (δ13Cˈ)
ranged from -31.8 to -21.9‰ and overlapped with δ13C observed in Arctic lakes and rivers,

estuaries, and nearshore marine habitats (Fig 2) [103–105]. The mean δ13Cˈ of -25.8‰ was

roughly between values observed in several riverine and estuarine species (Fig 2; S2, S3 Tables).

Muscle δ15N was less variable than observed δ13Cˈ (δ15N range = 6–13.1‰; Fig 4) and was gen-

erally higher than that of invertebrates and lower than other fishes (Fig 2) [103–105].

Tissue comparison

The difference between muscle and liver tissues (i.e., muscle minus liver) was generally minor,

with most individuals having a disparity of< 2.0‰ for both δ13Cˈ and δ15N. Differences for δ
13Cˈ ranged from -6.75 to 2.29‰ (mean -0.13‰; S.D. = 1.24‰; Fig 3) while differences for

δ15N ranged from -1.50 to 3.97‰ (mean 0.29‰; S.D. = 0.81‰; Fig 3). Delta13Cˈand δ15N were

significantly correlated (p-value< 0.05, R = 0.85 and 0.82, respectively) and indicated a mod-

erately strong positive relationship between muscle and liver isotope ratios (δ 13Cˈ = p-

value < 0.001, β = 0.9, R2 = 0.73; δ15N = p-value < 0.001, β = 0.85, R2 = 0.66). However, the

disparity between muscle and liver isotope ratios suggests that the diet of two individuals

shifted toward prey items more depleted in δ13C, while that of two others shifted toward items

more enriched in δ15N (Fig 3).

Fig 2. Arctic isoscape. Cross-section of Arctic aquatic ecosystems. Circles with error bars represent the mean and standard deviation of the organism

from each type of ecosystem (Dark blue = marine, light blue = estuarine, green = riverine, gold = lacustrine). Error bars on estuarine species and

benthic particulate organic matter values represent the standard error. Circles without error bars represent a single sample. For comparison, data from

outside the study area is shown: marine samples are from Admiralty Inlet in the Northwest Territories, CA; lagoon samples are from sites along the

eastern Beaufort Sea coast, Alaska, USA; riverine samples are from the lower MacKenzie River, Yukon, CA, and Lacustrine samples are from Toolik

Lake, Alaska, USA. Additional isotope sources: See S2, S3 Tables.

https://doi.org/10.1371/journal.pone.0270474.g002
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δ18O and δD

Muscle δ18O ranged from 4.5 to 10.9‰ with a mean of 7.5‰ (S.D. = 1.33‰; Fig 4) and fit

within the range of modeled isotopic values for nearshore marine to inland Arctic regions

[29]. Muscle δD was much more variable, ranging from -237.6 to -158.9‰ with a mean of

-191.0‰ (S.D. = 12.89‰; Fig 4).

Isotopic niche identification

Cluster analysis of muscle δ13Cˈ, δ15N, δ18O, and δD indicated that grouping samples into four

levels was best supported by the data (Fig 5A), explained 76.7% of the information on the first

two dimensions, and provided good separation of clusters on dimension one (Fig 5B). Fish

within cluster group one (n = 55) contained a broad range of δ13Cˈ that were all greater than

-27‰, had δ15N between 7 and 10‰, and had δ18O and δD that overlapped with other groups

Fig 3. Isotope tissue differences. The difference in δ15N and δ13Cˈ (muscle minus liver) for each Broad Whitefish (Coregonus nasus) sampled in the

Colville River, AK, USA. Scatter plot shapes represent the collection site locations (Itkillik = circle, Puviksuk = triangle, Umiat = square) and the color

represents the individual fish’s length (blue� 40 cm, purple = 50 cm, red� 60 cm). For both isotope ratios, positive values indicate a shift from

foraging food sources from more enriched (e.g., marine gastropod) to a food source with more depleted values (e.g., lacustrine amphipod), while

negative values indicate the opposite.

https://doi.org/10.1371/journal.pone.0270474.g003
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(Fig 6; S4 Table). Individuals within cluster group two (n = 14) contained the most enriched

δ13Cˈ, δ18O, and δD relative to the other groups (Fig 6; S4 Table). Cluster group three (n = 24)

contained a broad range of δ13Cˈ that were all less than -26.3‰, mean δ18O that was lower

than group 2 and higher than group 1, mean δ15N that was similar to group 2, and mean δD

were similar to group 1 (Fig 6; S4 Table). Cluster group four (n = 4) were the most depleted in

δ13Cˈ, δ18O, and δD but had δ15N similar to group 1 (Fig 6; S4 Table).

Variation in isotopic values within life history strategy

Stable isotope values (δ13Cˈ, δ15N, δ18O, δD) within otolith-derived life history groups (anadro-

mous, semi-anadromous, and nonanadromous) show differences, but also considerable over-

lap. Nonanadromous individuals (n = 8) had mean δ13Cˈ, δ18O, and δD that were depleted

compared to semi-anadromous (n = 17) and anadromous (n = 36) individuals (Fig 7; S5

Table). Mean δ15N was similar for the three life history groups and significant overlap was

present (Fig 7B; S5 Table). Anadromous and semi-anadromous individuals had higher mean

δD than nonanadromous individuals, but there was substantial overlap among groups (Fig 7C;

S5 Table).

Fig 4. The scatterplot shows stable isotopes δ18O versus δD along with the associated boxplot for each isotope measured in muscle of Broad

Whitefish (Coregonus nasus) from the Colville River, AK, USA. Boxplots show median values (horizontal black line), interquartile range (IQR)

(box with blue outline), the maximum value within 1.5 times the IQR (vertical black line), and outside values are greater than 1.5 times the IQR (black

dots).

https://doi.org/10.1371/journal.pone.0270474.g004
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Discussion

Our research revealed that Broad Whitefish utilized numerous isotopic niches and suggests

that various successful foraging strategies exist (e.g., residency, migration) to track seasonally

Fig 5. Hierarchal clustering. Cluster dendrogram (A) shows the individual Broad Whitefish (Coregonus nasus) from the Colville River, AK, USA,

clusters (coded by color; purple = cluster 1, blue = cluster 2, turquoise = cluster 3, yellow = cluster 4), and height of the dendrogram. Cluster plot (B)

shows each cluster (purple circle = cluster 1, blue triangle = cluster 2, turquoise square = cluster 3, yellow plus = cluster 4) overlaid across two principal

components.

https://doi.org/10.1371/journal.pone.0270474.g005
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available Arctic food resources. The use of a spectrum of freshwater to marine habitats suggests

a generalist foraging strategy at the population level, but specialization of foraging habitats

where individuals tended to remain in their respective isotopic niches at least for the summer

period. Otolith microchemistry demonstrated that Broad Whitefish could switch isotopic

Fig 6. Isotope values and hierarchal clustering groups. Scatterplots (A, C, E) show stable isotopes δ18O, δ15N, and δD versus δ13Cˈ along with the

associated cluster group (purple = cluster 1, blue = cluster 2, turquoise = cluster 3, yellow = cluster 4) of Broad Whitefish (Coregonus nasus) from the

Colville River, AK, USA. Boxplots (B, D, F) show stable isotopes δ18O, δ15N, and δD by cluster group (purple = cluster 1, blue = cluster 2,

turquoise = cluster 3, yellow = cluster 4) along with median (horizontal black line), interquartile range (IQR) (box with colored outline), and maximum

value within 1.5 times the IQR (vertical colored line).

https://doi.org/10.1371/journal.pone.0270474.g006
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niches, suggesting that prey profitability may change in certain habitats, which could be driven

by environmental changes or behavioral fitness decisions. We found otolith microchemistry to

be a reliable method to infer Broad Whitefish life history strategies and, when coupled with

stable isotope analysis of tissues, provided integrated information on long-term life history

patterns, diet, and habitat occupancy for several months prior to capture. This level of diversity

and flexibility suggests that the population is ecologically intact and presumably confers some

resilience to localized habitat change and disturbance but, as for any fish population, rapid and

large-scale landscape changes pose a risk to the long-term stability of Colville River Broad

Whitefish.

Variation in δ13Cˈand δ15N among Broad Whitefish

Broad Whitefish exhibited a large range in δ13Cˈand δ15N within muscle and liver tissue,

which suggests fish in this population are consuming food resources across a diversity of habi-

tats and trophic levels. Our data aligns with previous research documenting the importance of

freshwater, lagoon, nearshore marine, and marine carbon for anadromous fish food webs

[103–105]. Research on Broad Whitefish diet has also revealed that fish are generalist foragers,

consuming a variety of benthic and pelagic prey items depending upon age and prey

Fig 7. Isotope values and life history group. Boxplots (A, B, C, D) showing δ13Cˈ, δ15N, δ18O, and δD by Broad Whitefish (Coregonus nasus) life

history group (anadromous (black), semi-anadromous (purple), nonanadromous (pink), along with median (horizontal black line), interquartile range

(IQR) (box with colored outline), and maximum value within 1.5 times the IQR (vertical colored line).

https://doi.org/10.1371/journal.pone.0270474.g007

PLOS ONE Broad Whitefish foraging strategies and habitat use in Arctic, Alaska

PLOS ONE | https://doi.org/10.1371/journal.pone.0270474 July 26, 2022 13 / 24

https://doi.org/10.1371/journal.pone.0270474.g007
https://doi.org/10.1371/journal.pone.0270474


abundance [12, 27]. In Arctic lentic and lotic ecosystems, food availability can be limited

across space and time and generalist foraging strategies, in which individuals feed on a variety

of prey items, promote improved survival, rapid growth, and resilience to environmental vari-

ability [106]. For example, Broad Whitefish in Arctic Alaska have been shown to consume a

variety of pelagic and benthic invertebrate prey items within a single lake, which had similar

δ13C [12]. Conversely, individuals caught in a lake with connection to a stream network exhib-

ited a larger range in δ13Cˈand δ15N, suggesting that individuals may be accessing a broader

range of prey options [12]. Our results show a slightly larger range of values, supporting the

concept of a highly migratory generalist foraging strategy. A flexible foraging strategy in which

both benthic and pelagic prey items are utilized enables individuals to efficiently shift between

prey items and rapidly accumulate necessary energy reserves prior to a long and cold winter

period [107]. Differences among individuals suggest that there is a diversity of foraging special-

izations, but since we did not analyze stomach contents for each individual we can not draw

conclusions about an individuals diet. Therefore, we do not know if individuals are consuming

isotopically similar prey items or many prey items with different isotopic values that average to

a middle δ13Cˈand δ15N [17].

Differences in δ13Cˈand δ15N between tissues

Differences in δ13Cˈ between muscle and liver suggest that most individuals fed on prey with

similar δ13C (+/- 2.5‰) over weeks and months, while a few individuals switched to prey

sources or locations with different δ13C. Previous research demonstrates differences in isotope

turnover rates between liver and muscle tissue in fish [108–110] due to the association with

metabolism rather than growth in liver tissue [108]. Hesslein et al. estimated the half-life of

δ13C and δ15N to be 101 days in juvenile Broad Whitefish muscle tissue, but due to slow

growth in adult fish, it is likely that the turnover rate for muscle tissue could be years [27].

Consequently, the turnover rates remain unknown for Broad Whitefish and our data may

reflect the integration of prey resources over longer periods. Interestingly, the two individuals

that had larger muscle-liver disparity each had semi-anadromous life histories that may facili-

tate feeding within habitats with isotopically different δ15N. Combined, these results suggest

that multiple generalist-foraging strategies and potentially life histories [82] exist among the

population, likely taking advantage of a variety of non-overlapping habitats and variations in

the spatial abundance of prey.

Muscle δ18O and δD and habitat use

The observed range of δ18O (4.5–10.9‰; Fig 5) suggests that a spectrum of habitat, from low

elevation nearshore and estuary habitat to inland higher elevation lakes and rivers, are being

utilized by Broad Whitefish. Broad Whitefish δ18O overlap those of Pink Salmon (Oncor-
hynchus gorbuscha) caught in the Colville River, confirming that some individuals utilize simi-

lar nearshore marine habitat leading up to entering freshwater (S3 Table). However, local

processes associated with waterbody (e.g., depth, groundwater flow) and origin of water

sources (i.e., precipitation, snowmelt, glacier, spring) as well as evaporative effects influence

δ18O, which transfer up the food web, further complicating interpretations [96, 111]. Deute-

rium isotopes are influenced by both isotopic exchange with water during protein syntheses

and metabolic water and therefore are a better trophic tracer of aquatic food webs [96]. The

large range in δD found here (-237.6– -158.9‰) suggests that food is consumed across a range

of habitats. Our results show that individuals with nonanadromous life history types had more

depleted δD compared to anadromous individuals. However, even within individuals that only

spent time in freshwater, δD had considerable variation, suggesting that some combination of
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local environmental water and dietary source effect are likely influencing the variation in val-

ues. This is supported by previous research, which documented that water δD had minor influ-

ence on chironomid and fish tissue δD [96]. These isotopic fractionation processes make it

challenging to assign fine-scale habitat use of Broad Whitefish based on isotopes but are useful

in differentiating between certain habitats (e.g., freshwater vs. marine habitats) and aquatic

ecosystems that have distinct differences in primary producer energy sources (e.g., clear shal-

low lakes dominated by algae sources vs. turbid rivers dominated by terrestrial sources).

Broad Whitefish isotopic niches

Our results show the greatest support for four isotopic niches, but variation within cluster

groups suggests a more complex interpretation of physical and biological resources utilized by

Broad Whitefish. The hierarchal clustering approach partitioned Broad Whitefish into groups

with similar muscle isotopic signatures and provided integrated records of aquatic habitat occu-

pied and prey resources consumed. The isotope cluster groups identified here represent gener-

alized ecological niches utilized by Broad Whitefish over the growing season (ca. three months).

The vast majority of individuals had isotopic signatures representative of coastal river,

stream, and lake habitat (Group 3) or coastal lagoon and delta habitat (Group 1) which, as cor-

roborated by previous research (e.g., [12, 27, 112]), signifies the importance of these two eco-

logical niches. Within these cluster groups, it is likely that individuals with more negative

values inhabited river deltas that receive significant terrestrial inputs while those with less neg-

ative values use coastal lagoon areas and consume prey items that incorporate more marine

sources [104]. Cluster group four contained the most depleted δ13Cˈ and is representative of

freshwater food webs where terrestrial (e.g., peat, detritus, soil organic matter) and freshwater

carbon (e.g., algae, macrophytes) sources form the base of the food web. Individuals within

cluster group four also contained the lowest δD and δ18O, which suggests these fish are using

freshwater habitats more inland, and potentially at higher elevations. However, it is also possi-

ble that evaporative processes in shallow water bodies are depleting water isotopic values,

which then transfer up through the food web [30]. Conversely, individuals within cluster

group two had enriched δ13Cˈ, δD, and δ18O relative to the other groups. These values suggest

that individuals within this group spent the majority of their time in nearshore marine areas

and consumed prey that primarily utilize marine-based carbon [113].

We suspect that the within-and among-cluster variation was caused by the influence of

aquatic habitat heterogeneity that influences stable isotopes within Arctic food webs. Freshwa-

ter habitats are influenced by their position in the landscape (e.g., geographic and elevational),

physical properties of the waterbody (e.g., morphometry), and biogeochemical processes

within the waterbody, which cumulatively influence the isotopic composition of food webs

from primary producers up [22, 95]. For example, if a waterbody is shallow and clear, it is

likely that autochthonous pathways (e.g., algae) will provide greater support to the food web

base [114] and consequently, δ13C and δD in primary consumers will tend to be more negative

compared to sites that depend upon terrestrial peat, or marine-derived carbon inputs [22, 30,

113]. The variation in isotopes suggests that a range of allochthonous and autochthonous car-

bon from freshwater, terrestrial and marine sources is creating a diversity of food resources

with different isotopic values within and between similar waterbody features. For example, the

δ13C can reflect the pelagic-benthic primary production continuum in larger lakes, the terres-

trial-aquatic continuum in rivers and riverine lakes, or the freshwater-marine continuum. The

range of values could also be caused by a variety of ecological niches utilized by fish, with indi-

viduals centered in a cluster more dependent on one specific niche or prey item, while individ-

uals near the periphery may migrate between and utilize multiple niches or switch between
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isotopically different prey items, thereby utilizing a portfolio of resources across the Arctic, as

seen in other locations [115, 116].

Life history strategies

Comparing muscle tissue stable isotope ratios within otolith-derived life history strategies

revealed high isotopic niche diversity. Otolith microchemistry confirms that individuals with

more enriched muscle tissue δ13Cˈ, δD, and δ18O tend to use marine habitats (except for over-

wintering), while individuals that frequently move between habitats (i.e., freshwater, estuarine,

marine) had less enriched values. Both of these patterns are supported by evidence for diverse

anadromous and semi-anadromous life history patterns [45, 117]. Numerous individuals with

tissue isotopic values reflective of freshwater habitats were revealed by otolith microchemistry

to be anadromous or semi-anadromous. These individuals utilized fresh water for months or

years prior to capture but had also previously spent significant time in marine habitat as anad-

romous or semi-anadromous individuals [82]. Therefore, if only tissue samples were used to

classify life history strategy, they would have been misclassified. Such abrupt shifts from

marine to freshwater habitat use by long-lived anadromous fish has been documented for Cor-

egonids [34, 117, 118]. Conversely, our results show that δ13Cˈ, δD, and δ18O are generally pre-

dictive of nonanadromous individuals, with δ13Cˈ and δ18O reflecting the proportion of time

spent in freshwater versus estuarine habitats, with individuals that spent their entire lives in

fresh water having the most depleted values.

Conservation implications

The isotopic niches identified here represent the important habitats utilized by Broad White-

fish across the Beaufort Sea region. The variation within and among isotopic niches suggests

that Broad Whitefish utilize a diversity of habitats within freshwater, estuarine, and marine

habitats. For example, an individual may exclusively use freshwater lake habitat or move

between river, stream, and lake habitats to forage. Diverse foraging behaviors and life history

strategies have evolved to maximize foraging efficiency and adapt to dispersed and a shifting

heterogeneous mosaic of food resources in the Arctic [12]. Climate change is rapidly altering

the Arctic landscape [50–54], causing eutrophication [66] and browning of lakes and rivers

[67, 68], altering food web dynamics and potentially reducing fitness for Broad Whitefish that

utilize benthic prey items, which could lead to reduced diversity of foraging strategies, slower

growth, or lower survival. Arctic riverscapes contain a myriad of stream and lake networks

that are at risk from anthropogenic fragmentation that could create barriers (e.g., perched

road culverts, drying of channel segments), hindering movement patterns and reducing Broad

Whitefish access to food resources. Arctic oil and gas development infrastructure has caused

cumulative impacts to permafrost [53, 54], which can cause stream flow modifications that can

affect fish access to important habitats. Arctic development fragments and disrupts aquatic

ecosystems [119], which can further introduce stressors to juvenile and adult fishes [52, 119]

that include increased sedimentation [120–123], modifications of streamflow [124], obstruc-

tions to fish passage [125–127], reduced instream habitat quality [128], and pollution [129].

To help buffer populations, it will be necessary for land managers and conservation plan-

ners to maintain natural flow regimes, limit barriers along nearshore areas, and preserve

aquatic habitat complexity. Preserving connectivity is also important for reducing impacts

from infrastructure like roads and from streamflow changes associated with ongoing climate

change. Maintaining a diversity of connected niches will facilitate long-term population stabil-

ity, buffering populations from future environmental and anthropogenic perturbations [130–

132].
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