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A B S T R A C T

Our study employed molecular dynamics (MD) simulations to assess the binding affinity between
short peptides derived from the tumor-associated antigen glypican 3 (GPC3) and the major his-
tocompatibility complex (MHC) molecule HLA-A*11:01 in hepatocellular carcinoma. We aimed
to improve the reliability of in silico predictions of peptide-MHC interactions, which are crucial for
developing targeted cancer therapies. We used five algorithms to discover four peptides
(TTDHLKFSK, VINTTDHLK, KLIMTQVSK, and STIHDSIQY), demonstrating the substantial po-
tential for HLA-A11:01 presentation. The Anchored Peptide-MHC Ensemble Generator (APE-Gen)
was used to create the initial structure of the peptide-MHC complex. This was followed by a 200
ns molecular dynamics (MD) simulation using AMBER22, which verified the precise positioning
of the peptides in the binding groove of HLA-A*11:01, specifically at the A and F pockets.
Notably, the 2nd residue, which serves as a critical anchor within the 2nd pocket, played a pivotal
role in stabilising the binding interactions.VINTTDHLK (ΔGSIE = − 14.46 ± 0.53 kcal/mol and
ΔGMM/GBSA = − 30.79 ± 0.49 kcal/mol) and STIHDSIQY (ΔGSIE and ΔGMM/GBSA = − 14.55 ± 0.16
and − 23.21 ± 2.23 kcal/mol) exhibited the most effective binding potential among the examined
peptides, as indicated by both their binding free energies and its binding affinity on the T2 cell
line (VINTTDHLK: IC50 = 0.45 nM; STIHDSIQY: IC50 = 0.35 nM). The remarkable concordance
between in silico and in vitro binding affinity results was of particular significance, indicating that
MD simulation is a potent instrument capable of bolstering confidence in in silico peptide pre-
dictions. By employing MD simulation as a method, our study provides a promising avenue for
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improving the prediction of potential peptide-MHC interactions, thereby facilitating the devel-
opment of more effective and targeted cancer therapies.

1. Introduction

Human adaptive cellular immunity relies on recognizing antigens presented on the major histocompatibility complex (MHC) [1,2].
Typically, these antigens are located on nucleated and antigen-presenting cells [1,2]. The interaction between the immunogenic
peptide bound to MHC and the T-cell receptor on T lymphocytes initiates T-cell activation and differentiation [1]. Based on their
antigen processing characteristics and T-cell activation function, MHCmolecules are divided into two classes [1]. MHC class-I presents
endogenous antigens to CD8+ cytotoxic T lymphocytes (CTLs), whereas MHC class-II processes and presents exogenous antigens taken
up by endocytosis to CD4+ helper T lymphocytes. Foreign proteins undergo processing by the immunoproteasome, producing a short
peptide suitable for binding within the cavity of the MHC molecule in the endoplasmic reticulum [1]. This process loads the antigen
onto the MHC molecule. The Ag-binding domain of the MHC comprises a beta-sheet (β-sheet) as the base and two alpha (α)-helices
positioned above the -sheet to form a cleft for the short peptide. MHC class-I molecules are derived from a single heavy chain, while
MHC class-II molecules comprise two chains (α-chain and β-chain) [3,4]. Beta-2-microglobulin (β2M) is required to stabilize MHC
class-I, whereas dimerization of the two chains stabilizes MHC class-II [3]. MHC molecules encoded by the human leukocyte antigen
(HLA) gene complex play a crucial role in disease and immune defense by discriminating between self and non-self-antigens. MHC
class-I is determined by six genes (HLA-A, -B, -C, -D, -E, -F, and -G), whereas MHC class-II is determined by five genes (HLA-DR, -DQ,
-DP, DM, and -DO) [5]. The high polymorphism of HLA genes results in further classification, such as HLA-A*11:01, HLA-B*15:02, and
HLA-DR1 (https://www.ebi.ac.uk/ipd/imgt/hla/stats.html), resulting in MHC molecules that are unique to each individual and affect
the conformation of the binding groove and determine the loaded peptide [1].

This study focuses on MHC class-I because of its essential function in activating CTLs that are responsible for destroying infected or
cancerous cells. The MHC class-I binding groove is divided into six pockets (A to F) that adhere to the immunogenic peptide [6]. Both
extremities of the groove are closed by conserved tyrosine residues, limiting the loaded immunogenic peptide to 8–10 residues [7].
Identifying the proper peptide for MHC loading remains a challenging task. Advanced predictive tools have been created to address this
issue. These techniques utilize intricate algorithms and data from the crystallographic structures of different peptide-MHC (pMHC)
complexes gathered from various sources [8]. Among these tools, motif-based prediction systems stand out as a prominent technique.
They rely on the binding propensity of specific amino acids to precisely defined positions on the MHC molecule, known as anchor
positions [8,9].

The SYFPEITHI database employs an algorithmic model that considers the anchor positions and factors, such as unusual and
auxiliary anchors within a given peptide [10]. This exhaustive methodology accurately predicts T-cell epitopes [10]. Significant
progress has been made in recent years by incorporating quantitative metrics into the predictive framework. KD, EC50, and stability
metrics have been developed to capture the affinity properties of peptides. Combining thesemetrics yields a comprehensive matrix that
captures the relative significance of each position in the peptide [9]. These vast datasets are currently used to train machine learning
models, employing advanced techniques such as artificial neural networks (ANN) and support vector machines [9]. This innovative
method identifies potential binding interactions between specific amino acid positions in a given peptide and an MHC molecule and
quantifies the strength of these interactions. A variety of cutting-edge prediction tools employing these quantitative metrics are
currently available. Among these, RankPep [11], NetMHC 4.0 [12], and NetCTL [13] occupy prominent positions. These tools provide
a robust method for determining the likelihood of a peptide’s binding to an MHC molecule by incorporating diverse factors into their
predictive models. It is essential to note that not all top-ranked predicted peptides successfully bind to the desired HLA or influence
T-cell stimulation [14]. In vitro, functional investigations, such as binding assays with transporter associated with antigen processing
(TAP)-deficient T2 cell lines expressing specific HLAs, cytokine response testing, and cytolytic activity assays, are required to confirm
successful T-cell stimulation. However, these in vitro investigations are both time-consuming and costly to conduct. Molecular dy-
namics (MD) simulations provide an alternative method for predicting potential peptides for MHC loading, thereby reducing the
number of peptides requiring in vitro functional testing [15]. While in vitro testing is still necessary for definitive results, MD simu-
lations can expedite the procedure significantly [15]. To date, however, data and information regarding the use of MD simulation to
predict pMHCs are limited.

Before conducting in vitro functional testing, this study seeks to evaluate the dynamic behavior and atomic-level binding affinity of
predicted peptides loaded onto MHC molecules using MD simulation. This investigation employed the tumor-associated antigen
glypican-3 (GPC3) in hepatocellular carcinoma (HCC) as a model. This study used the complete translated amino acid sequence of
GPC3 to determine the optimal nonamer peptide for loading onto the HLA-A*11:01 molecule, the predominant HLA subtype in most
world populations [16]. Prediction algorithms are utilized, including SYFPEITHI, IEDB-MHCI, Rankpep, NetMHC 4.0, and NetCTL. The
post-MD simulation evaluated and analyzed the intermolecular hydrogen bonds, free energy of decomposition, and binding affinity. In
addition to assessing the binding properties of predicted peptides to HLA-A*11:01 presented on T2 cells, the focus was predominantly
on peptide binding within the MHC groove. Through extensive in silico examination of the binding affinity of predicted peptides to
MHC molecules and subsequent in vitro binding testing, this study aimed to increase the precision and efficiency of identifying op-
timum peptides for MHC loading.
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2. Materials and methods

2.1. Ethics consideration

The MD simulations were performed in silico, and the binding affinity testing was conducted in vitro using a transporter associated
with antigen processing TAP-deficient T2 cell line. No experiments in this study involved either humans or animals. The protocol for
this study was approved by the Siriraj Institutional Review Board (SIRB) of the Faculty of Medicine Siriraj Hospital, Mahidol Uni-
versity, Bangkok, Thailand (COA no. 055/2022).

2.2. Epitope prediction

HLA-A*11:01-restricted epitopes from the GPC3 protein (NM_004484) were identified using five prediction tools with different
algorithms, including SYFPEITHI (http://www.syfpeithi.de) [10], IEDB-MHCI (http://tool.immuneepitope.org/mhci) [17], Rankpep
(http://imed.med.ucm.es/Tools/rankpep.html) [11], NetMHC 4.0 (http://www.cbs.dtu.dk/services/NetMHC 4.0) [12], and NetCTL
(http://www.cbs.dtu.dk/services/NetCTL) [13]. The top five GPC3 candidate epitope sequences (nonamers) were selected based on
the highest score and rank of binding percentage. Peptides that were consensus-predicted by at least three algorithms were chosen for
inclusion in the MD simulation.

2.3. Structure preparation

The initial step in preparing the pMHC structures for MD simulation was using the Anchored Peptide-MHC Ensemble Generator
(APE-Gen) [18]. We followed the instructions at https://github.com/KavrakiLab/hla-arena to integrate APE-Gen into the HLA-Arena
environment [19]. We implemented the program using Jupyter Notebook and Docker, ensuring that all necessary protocols were
followed for seamless execution.

To validate the reliability of the structures generated by APE-Gen, we subjected three X-ray crystallography-resolving structures
from the Protein Data Bank (PDB) to re-docking. This process involved re-docking the respective peptides and the MHCmolecule using
the APE-Gen algorithm. Specifically, we examined the structures 1X7Q, 6JOZ, and 7S8R, along with their corresponding peptides:
KTFPPTEPK, ATIGTAMYK, and SALEWIKNK.

Subsequently, we generated the pMHC complexes that comprised the four predicted GPC3 peptides listed in Table 1. Additionally,
we included the well-known peptide FVGFFTDV, which was recognized for its strong binding to HLA-A*02:01 [20] as a negative
HLA-A*11:01 control. The generation process was facilitated by APE-Gen, with the reference structure for the MHC molecule being
1X7Q [21]. This approach ensured consistency and enabled direct comparisons throughout the study.

2.4. Molecular dynamics (MD) simulation

All pMHC complexes, including the structures retrieved from PDB and their re-docking with APE-Gen for reliable evaluation, along
with the negative control peptide and the four HLA-A*11:01 loaded with the top four peptides, were subjected to independent trip-
licate MD simulations with random seeding using the AMBER 22 software package [22] (The Amber Project, San Francisco, CA, USA)
and an ff19SB force field [23]. The missing atoms were added using the LEaP module [24]. In all pMHC complexes, the protonation
state of all possible charged residues (arginine, lysine, histidine, aspartate, and glutamate) was assigned a pH of 7.0 by the PROPKA

Table 1
Summary of the top 5 predicted GPC3 peptides that could be successfully loaded onto HLA-Aa11:01 from each of the five prediction tools used for in
silico analysis. Only peptides predicted by at least 3 prediction tools were selected for MD simulation.

Peptides Positiona Prediction tools

SYFPEITHI IEDB-MHCI NetMHC 4.0 NetCTL Rankpep

TTDHLKFSK 242–250 ✓ ✓ ✓ ✓ ✓
VINTTDHLK 239–247 ✓ ✓ ✓
KLIMTQVSK 213–221 ✓ ✓ ✓
STIHDSIQY 325–333 ✓ ✓ ✓
KNYTNAMFK 123–131 ✓ ✓
LQSASMELK 93–101 ✓
KLKSFISFY 394–402 ✓
PVVSQIIDK 547–565 ✓
VSKSLQVTR 219–227 ✓
VSQIIDKLK 459–467 ✓
RTMSMPKGR 474–482 ✓
NQFNLHELK 443–451 ✓
IVVRHAKNY 117–125 ✓
LLRTMSMPK 472–480 ✓

Abbreviations: GPC3, glypican-3; HLA-A*11:01, human leukocyte antigen-A*11:01; MD, molecular dynamics.
a NM_004484 was used to designate the amino acid position.
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server [25]. Total charges with a negative value for the pMHC complex were randomly neutralized using Na+ counterions. Individual
complexes were then solvated using TIP3P [26] water molecules, resulting in approximately 19,000 atoms for the entire model. The
simulation box dimensions used for all systems were 97 × 97 × 82 Å3. A periodic boundary condition was used with an
isothermal-isobaric ensemble and a simulation time step of 2 fs (fs). All energy minimizations and MD simulations were performed
using the SANDERmodule of AMBER 22. All bonds and angles specific to hydrogen atoms were constrained using the SHAKE algorithm
[27]. Long-range electrostatic interactions were treated using the particle mesh Ewald method, and the non-bonded interactions with a
cutoff distance of 12 Å were identified [28]. All MD simulations were run with a 12 Å residue-based cutoff for non-bonded interactions.
The particle mesh Ewald method was applied to treat long-range electrostatic interactions adequately [28]. Each system was subjected
to the four stages of a restrained MD simulation at 298 K (K) with force constants of 10, 7.5, 5, and 2.5 kcal mol− 1 Å2 for 500 ps (ps) in
each stage. These subsequent steps permitted the peptide to adopt its geometry and orientation from the initial model to fit better
within the peptide-binding groove. The constraints were then entirely removed, and wholly unrestrained MD simulations were per-
formed until 200 ns. The convergences of energies and root mean square displacement (RMSD) were used to verify the stability of the
systems. The MD trajectories were collected every 0.1 ps during the production phase for further analysis of the hydrogen bond
(H-bond), B-factor, decomposition free energy (ΔG), and other energy components.

2.5. Binding of predicted peptides with HLA-A*11:01 expressing TAP-deficient T2 cell lines

Four predicted peptides from this study and a nucleocapsid of a SARS-CoV peptide loaded onto HLA-A*11:01 revealed from the
crystalizing structure of references structure (KTFPPTEPK) and the negative control peptide (FVGFFTDV) were synthesized by Gen-
Script (Piscataway, NJ, USA). Different concentrations of peptides were incubated with transporter associated with antigen processing
(TAP)-deficient T2 cell line overexpressing HLA-A*11:01 (kindly provided by Prof. Dr. Maria Grazia Masucci of the Department of Cell
and Molecular Biology, Karolinska Institutet, Stockholm, Sweden) in the presence of 3 μg/ml of beta-2 microglobulin (β2M) (Merck
Millipore, Burlington, MA, USA). The cultivation was completed in Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco;
Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10 % fetal bovine serum (Gibco; Thermo Fisher Scientific), 50 units
of penicillin (Gibco; Thermo Fisher Scientific), and 50 μg of streptomycin (Gibco; Thermo Fisher Scientific). The incubation of peptides
with T2 cells was conducted in a cell culture incubator (model BB150; Thermo Fisher Scientific) with 5 % carbon dioxide (CO2) at 37o

Celsius (C) for 24 h.
Cells were collected, washed once with 1X phosphate-buffered saline (PBS), and then stained with anti-HLA-ABC conjugated with

fluorescein isothiocyanate (FITC) (clone W6/32) (eBioscience™; Thermo Fisher Scientific) for 30 min. The stained cells were then
washed twice with 1x PBS. After washing, the buffer was discarded, and the cell pellets were resuspended using 1 % paraformaldehyde
in PBS. The cell suspensions were subjected to flow cytometry using a BD Accuri™ C6 system (BD Biosciences, Franklin Lakes, NJ,
USA) to evaluate the fluorescence signal of the stained cells. The flow cytometry results were analyzed using FlowJo™ v10.0 software
(FlowJo, LLC, Ashland, OR, USA).

2.6. Statistical analysis

Raw data were recorded and analyzed using GraphPad Prism version 9.5.1 (GraphPad Software, Inc., San Diego, CA, USA). The
mean ± standard error of the mean (SEM) of data collected from at least three independent experiments was calculated. Statistical
comparisons were performed using one-way analysis of variance (ANOVA) with Tukey’s correction for analytical hypothesis testing in
multiple comparisons. A p-value of less than 0.05 was regarded as being statistically significant.

2.7. Data availability

The trajectory and topology files required for the MD simulation, the files necessary for evaluating the free energy changes (ΔGSIE
and ΔGMM/GBSA), and the additional datasets utilized and examined in the present investigation has been included in the Supplement
Material.

3. Results

3.1. Potential predicted peptides derived from GPC3 loaded onto HLA-A*11:01

This study aimed to identify potential peptides suitable for loading onto MHC class-I molecules with a peptide length of nine amino
acids. The complete amino acid sequence of GPC3 (NM_004484) was analyzed using five web-based prediction tools: SYFPEITHI,
IEDB-MHCI, Rankpep, NetMHC 4.0, and NetCTL. Specifically, HLA-A*11:01, the predominant HLA subtype in the Thai and world
populations [16], was selected as the specific MHC class-I molecule for prediction. This study was primarily carried out with the Thai
population to assist our population and simplify recruiting healthy volunteers for in vitro binding testing. Nevertheless, HLA-A11:01
exhibits the highest prevalence among the global population, making this study relevant worldwide. The binding groove of MHC class-I
is closed and contains two conserved residues, Y84 andW167, which line the A and F pockets, respectively. Therefore, the length of the
peptide repertoire that a specificMHC I molecule can effectively bind is limited. Most MHC class-I peptides consist of 8–10 amino acids,
with a preference for 9-mers. Longer peptides either bind in a zig-zag orientation within the groove or protrude from the middle of the
groove [29].

T. Chieochansin et al.



Heliyon 10 (2024) e36654

5

Consequently, the study focused on 9-mers in this study. Supplementary Table 1 presents the rankings and scores of the predicted
peptides with high binding potential to HLA-A*11:01 from all five prediction tools. The predicted peptides exhibited a binding affinity
with IC50 values less than 500 nM. Table 1 displays the top five peptides identified by each prediction algorithm. Only peptides
predicted by at least three algorithms were selected for further MD simulation. The most highly ranked predicted peptides were
TTDHLKFSK, VINTTDHLK, KLIMTQVSK, and STIHDSIQY (Table 1).

3.2. Starting structure preparation for molecular dynamics (MD) simulation of peptide-loaded MHC (pMHC)

The initial structures for MD simulations of pMHC complexes were generated using the Anchored Peptide-MHC Ensemble
Generator (APE-Gen). APE-Gen efficiently produces diverse pMHC conformations by anchoring the terminal residues of peptides to
specific pockets within the MHC binding site, leveraging prior structural knowledge for precise initial positioning. The methodology
involves iterative loop modeling and energy minimization to optimize peptide and MHC conformations. Initially, peptide ends are
aligned to the MHC binding site using a template structure, followed by peptide backbone sampling with the Random Coordinate
Descent algorithm, which introduces randomization for efficient conformational exploration. Sidechains are added using PDBFixer,
and energy minimization is performed with SMINA to optimize electrostatic, hydrogen bonding, solvation, and hydrophobic in-
teractions. Multiple rounds of these steps allow APE-Gen to explore diverse conformations, starting each new round with the highest
quality conformation from the previous one. APE-Gen’s effectiveness is validated by reproducing native-like conformations with an
average RMSD of 2.02 Å across a dataset of 535 pMHC structures, supported by successful reproduction of crystal structures, accurate
generation from sequence information, and effective modeling of non-canonical peptides [18].

To evaluate the viability of the initial structures created by APE-GEN for further MD simulation, three pMHC complexes from the
Protein Data Bank (PDB) were selected for analysis: 1X7Q [21], 6JOZ [30], and 7S8R [31]. X-ray crystallography with respective
resolutions of 1.45, 1.35, and 2.95 Å confirmed the accuracy of these structures, respectively (Fig. 1A). Using the APE-GENmethod, the
HLA-specific peptides KTFPPTEPK for 1X7Q (Fig. 1B and C), SALEWIKNK for 7S8R (Fig. 1D), and ATIGTAMYK for 6JOZ (Fig. 1E) were
three independently replicated re-docked. Compared to the original PDB structure, it was determined that the structure with the lowest
optimized binding energy was the most suitable. Compared to the original crystal structure, the results indicated that the APE-GEN
model aligns exceptionally well, particularly at the center of all three peptides (Fig. 1C–E). This discovery was further supported
by the small root mean square deviation (RMSD) between the PDB database structure and the APE-Gen generated structure (Fig. 1F).

Fig. 1. The HLA-A*11:01 complex is loaded with the GPC3 peptide structure. (A), comprising a single heavy α-chain and associating with β2M. (B)
defines the binding pockets on the MHC class-I groove, distinguished by colors such as blue, pink, yellow, green, purple, and red for pockets A to F,
respectively. (C) showcases the peptide embedded in the MHC blind groove of 1X7Q (KTFPPTEPK), characterized by two α-helices and a β-sheet
forming the binding groove base. Peptide alignments from the crystal structure and three independently generated structures using APE-Gen are
color-coded, with red, blue, yellow, and green representing distinct alignments. (D) and (E) present the alignment of loaded peptides on the MHC
binding groove of 7S8R (SALEWIKNK) and 6JOZ (ATIGTAMYK), respectively. (F) illustrates the average RMSD of the loaded peptides on their
desired MHC binding groove, calculated from three independent experiments and presented as mean ± SEM. Statistical analysis employing one-way
ANOVA with Tukey’s correction demonstrates no significant differences (ns: not significantly different) among the samples.

T. Chieochansin et al.



Heliyon 10 (2024) e36654

6

APE-Gen performed a vital role in producing trustworthy starting structures of pMHC for MD simulation. Among the examined pMHC
complexes, 1X7Q, which contains the peptide sequence KTFPPTEPK, displayed the lowest RMSD relative to the equivalent APE-Gen
structure.

Consequently, 1X7Q was chosen as the reference structure for APE-Gen to generate the HLA-A*11:01 complex loaded with the four
predicted GPC3 peptides: TTDHLKFSK, VINTTDHLK, KLIMTQVSK, and STIHDSIQY. In addition, the GPC3 peptide FVGEFFTDV, which
has been shown to bind to HLA-A*02:01 precisely [20], acted as a negative control for HLA-A*11:01 binding in this work. The
construction of the pMHC with each individual predicted peptide involved the addition of missing hydrogen atoms, and minimization
was performed. A water molecule was then added to the simulation box as a solvent. The pMHCs were subsequently ready for further
MD analysis.

3.3. Stability of the pMHC

The MD simulations were conducted for each predicted peptide pMHC complex, with 200 ns (ns) duration in three simulation
replicas with random seeding numbers. The stability of the pMHC complex was assessed by calculating the RMSD of atomic positions,
considering the loaded peptides, binding grooves, and the entire HLA molecule, including the heavy α chain and β2M. Fig. 2 displays
the RMSD plots for the four predicted peptide pMHC complexes, the reference structures (KTFPPTEPK), and the negative control
(FVGEFFTDV). RMSD values were obtained by comparing the geometric coordinates of the MHC backbone throughout the simulation
to its initial configuration (Fig. 2). The deviation of all atoms in the seven systems examined ranged from approximately 1.0 to 1.5 Å.
Throughout the MD simulation, a consistent pattern of stability was observed for all six pMHC complexes. The binding groove of the
MHC molecule (residue 1 to 180) and the loaded peptide, all six pMHC systems displayed highly stable fluctuations of less than 1 Å
throughout the simulation. Equilibrium was attained by all six pMHC systems after 150 ns, with fluctuations of approximately 0.5 Å.
Consequently, the trajectories obtained during the last 50 ns (150–200 ns) of the MD simulation were deemed representative of the
production phase, and the data were recorded and collected for further analysis.

3.4. The flexibility of the loaded peptide into the MHC binding groove

The flexibility of the loaded peptide within each pMHC complex was evaluated by analyzing the B-factor obtained during the
generation phase of the MD simulation (last 50 ns, Fig. 3). In all structures, the coupling of β2M to pMHC exhibited moderate flexibility
(data available upon request). Across all structures, the results revealed a consistent pattern of flexibility. KTFPPTEPK displayed
average flexibility in the α-helix region of the F pocket at the end of the binding groove (Fig. 3A). Similarly, all four predicted peptides
and the negative control (FVGFFTDV) loaded onto the MHC displayed the most flexibility in the α-helix region surrounding the F
pocket. This observation indicates that VINTTDHLK, KLIMTQVSK, and FVGFFTDV exhibited tremendous flexibility within these

Fig. 2. The RMSD of all atoms of peptides loaded onto an MHC molecule with three independent MD simulations. The loaded peptide movement
was relatively stable when analyzing the binding groove of the MHC molecule.

T. Chieochansin et al.
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particular regions of the MHC binding groove during the production phase of the MD simulation, as depicted by the blue-to-red color
(Fig. 3). Intriguingly, all structures exhibited a highly rigid region at the β-sheet in the pMHC structure’s binding groove. Notably, the
flexibility of the loaded predicted peptides corresponded to the flexibility of their respective MHC molecules. The second amino acid
position (T, I, L, and V) tightly occupied the A pocket of the binding groove, resulting in the structures’ most rigid region.

3.5. Per-residue decomposition (DC) energy of the complex

A comprehensive investigation was conducted to determine how particular residues within the MHC binding grooves and the
loaded peptides affect the binding free energy. This evaluation used the molecular mechanics/generalized Born surface area (MM/
GBSA) method, utilizing 500 snapshots obtained from the equilibrium state of the MD simulation’s production phase. Notably, the
reference and predicted pMHC complexes displayed significant interactions at the anchor residues (precisely, the second and third
amino acid positions), as indicated by the total energy values (Fig. 4 and Supplementary Fig. S1). Additionally, each peptide displayed
a unique level of binding energy and residue pattern at other positions. Among the investigated structures, only the second position of
the negative control peptide, FVGFFTDV, exhibited significant binding energy.

The energy profile of the binding groove for all seven pMHC complexes is depicted in Fig. 5 and Supplementary Fig. S2. To evaluate
the residue binding of MHC to loaded peptides, we focused on ΔGbindingresidues values less than − 2 kcal/mol, according to established pro-
cedures [32]. Each of the seven pMHC structures exhibited a distinct decomposition of the free energy pattern, with the interaction

Fig. 3. The flexibility of the pMHC in each peptide was evaluated using the B-factor obtained from the last 50 ns of the MD simulation production
phase. The degree of flexibility is displayed as the structure’s color gradient and radiance. For the color gradient, deep blue indicates the most
rigidity, and deep red indicates the most flexibility. The radiance of the structure ranged from zero to one to reflect the most rigidity to most
flexibility, respectively.

Fig. 4. Averaged decomposition energy contributions in HLA-A*11:01 binding to predicted GPC3 peptides. The ΔGbindingresidues The loaded peptides are
indicated using a rainbow color gradient from blue to white, reflecting the lowest to highest decomposition energy.

T. Chieochansin et al.



Heliyon 10 (2024) e36654

8

between the MHC molecule and the loaded peptide primarily centered on the α1 and α2 of MHC molecules. Nevertheless, specific
residues from the β-sheet also contributed to capturing the loaded peptide (Fig. 5 and Supplementary Fig. S2). Among the amino acid
residues found within the binding grooves of all six evaluated MHC systems, including Y7, Y9, E63, D66, Q70, Y99, K146, W147, Y159,
and W167, there was a noticeable level of ΔGbindingresidues. However, in the negative control structure FVGFFTDV, despite exhibiting nearly
the same positively charged amino acids responsible for binding the loaded peptide, the ΔGbindingresidues values for those positions within the
binding groove were shallow compared to the other structures, particularly compared to the reference structures (Fig. 5 and Sup-
plementary Fig. S2). Therefore, the binding affinity involves the free energy decomposition at each position on the loaded peptide and
the position responsible for binding on the MHC molecule.

3.6. H-bond patterns between the groove of the MHC and the loaded predicted peptides

The intermolecular hydrogen bonding between the MHC groove and the loaded predicted peptides was thoroughly examined using
snapshots captured during the production phase, specifically the last 50 ns of the MD simulation. To identify hydrogen bond occu-
pation, we considered a distance of less than 3.5 Å and an angle greater than 120◦ between the donor (D) and acceptor (A) atoms. Fig. 6
and Supplementary Fig. S3 present only the hydrogen bonds that occupied over 40 % during the production phase. Interestingly, we
observed that the preferred hydrogen bonds predominantly formed at the anchor positions of the loaded peptides. Furthermore, upon
analyzing all predicted pMHC structures, we found that amino acid positions 1, 2, 3, and 9 displayed the majority of hydrogen bonding
interactions with the surrounding amino acids of the MHC molecule (Fig. 6 and Supplementary Fig. S3).

Moreover, each subsequent amino acid residue exhibited a robust formation of hydrogen bonds with the binding groove of its
corresponding MHC molecule. For instance, L5 of TTDHLKFSK, T5, and L8 of VINTTDHLK, T5, and S8 of KLIMTQVSK, and S6 and Q8
of STIHDSIQY displayed such interactions (Fig. 6 and Supplementary Fig. S3). Interestingly, even in the negative control structure

Fig. 5. Energy contributions of HLA residue fingerprint plots. The ΔGbindingresidues The binding grooves are indicated using a rainbow color gradient from
blue to white, representing the lowest to highest decomposition energy, respectively. The structure also mentions the potential residues that
interacted with the peptide. The loaded peptide is presented in a purple stick-and-ball structure.

Fig. 6. Hydrogen bond interactions between the peptide and the HLA molecule. H-bonding between loaded peptides and their counterpart residues
of the MHC binding groove. The peptide residues are shown in light blue, and residues of the MHC molecule that provided the H-bond are shown in
light pink. Oxygen and nitrogen atoms are indicated in red and blue, respectively.
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FVGFFTDV, hydrogen bond occupation was observed at amino acid positions 1, 2, 7, 8, and 9. However, the number of atoms involved
in forming these bonds was significantly lower than the other structures, particularly when compared to the KTFPPTEPK.

The majority of H-bonds on the MHC molecule were mainly concentrated in the α1 (N63, N66, Q70, T73, and D77) and α2 (T143,
W147, Y159, and Y171) of the binding groove (Fig. 6 and Supplementary Fig. S3). These specific positions correspond to the A pocket
(N63, N66, Q70, Y99, Y159, and Y171) and F pocket (D77, D116, T143, and W147) of the MHC binding groove. Interestingly, Y99 and
D116, situated on the β-sheet of the MHC binding groove, showed the potential to form hydrogen bonds with the loaded peptides.
Particularly noteworthy, we observed a significantly high percentage of hydrogen bonding for Y159 and Y99 of the MHC molecule
with the amino acid position 1 and 3, respectively, among all peptides included in this study. Moreover, it is essential to highlight that
the abundance of hydrogen bond occupancies in the pMHC structures (Fig. 6 and Supplementary Fig. S3) correlated with the crucial
amino acid positions responsible for binding to the loaded peptides, as evidenced by the low ΔGbindingresidues of decomposition-free energy
(Fig. 5 and Supplementary Fig. S2).

3.7. In silico binding affinity evaluation of the predicted peptides on HLA*11:01

The in-silico binding affinity of predicted peptides within the HLA*11:01 molecule’s groove was evaluated using two distinct
approaches. Firstly, data from 500 snapshots during the production phase were used to calculate the binding free energy, employing
solvated interaction energy (SIE) calculations (Supplementary Table S2) and molecular mechanics/generalized Born surface area
(MM/GBSA) measures (Supplementary Table S3) [33]. The conformational entropy change in pMHC complexity during MD simu-
lation was considered by incorporating the entropy term (TΔS), which was further calculated through normal-mode (N) analysis [34].
The binding energy (ΔGbind) was subsequently derived by combining the solute entropy term and ΔGtotal, as assessed by MM/GBSA
(Fig. 7). The results showed that the binding free energy values from SIE and MM/GBSA for the KTFPPTEPK were − 14.43 ± 0.77 and
− 26.40 ± 5.18 kcal/mol, respectively. Conversely, the negative control structure, FVGFFTDV, exhibited the highest ΔGbind values for
both SIE (− 12.34 ± 0.48 kcal/mol) and MM/GBSA (− 19.63 ± 1.95 kcal/mol). The affinity of KTFPPTEPK is significantly higher than
that of the negative control.

Regarding the predicted GPC3 peptides, the binding free energy values indicated that the pMHC complexed with VINTTDHLK
demonstrated the most potent binding ability among the four peptides predicted. The ΔGbind for VINTTDHLK was estimated to be
− 14.46 ± 0.53 kcal/mol and − 30.79 ± 0.49 kcal/mol for SIE and MM/GBSA, respectively. In contrast, TTDHLKFSK was found to be
the least favorable peptide for loading onto HLA*11:01, with the lowest binding free values of − 12.00 ± 0.24 kcal/mol and − 19.63 ±

1.95 kcal/mol for SIE and MM/GBSA, respectively. The ΔGbind value indicated that VINTTDHLK was comparable to STIHSIQY but had
amore remarkable ability to bind to the target MHCmolecule than KLIMTQVSK. Consequently, the rank of GPC3 peptides predicted by
the selected web-based algorithms, based on their binding abilities from strongest to weakest, was VITTDHLK ≈ STIHSIQY >

KLIMTQVSK > TTDHLKFSK (Fig. 7).
Furthermore, MM/GBSA proved to be more suitable for evaluating the binding energy of the pMHC than SIE, as it could statistically

Fig. 7. Evaluating predicted peptides’ binding affinity on HLA-A*11:01: insights from in silico and in vitro analyses. The total free energy of the
predicted peptides bound to HLA-A*11:01 was computed based on data obtained from 500 snapshots during the production phase. This compre-
hensive evaluation employed SIE (A) and MM/GBSA (B) methods. To validate the binding affinity of the peptides in an experimental in vitro setting,
we utilized the TAP-deficient T2 cell line, known for expressing HLA-A*11:01. Quantitative assessment of the pMHC complex presentation on the T2
cell surface was performed using flow cytometry, with specific staining involving an antibody against the pan-HLA-ABC family, conjugated with
FITC. The in vitro binding affinity of the peptides was determined by assessing the IC50 (C). All bar graphs depict the mean ± SEM, with data
obtained from three independent experiments. The statistical analysis employed one-way ANOVA with Tukey’s correction, effectively identifying
significant differences among the samples (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), while instances of non-significant differences were
denoted as “ns” (not significantly different).
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differentiate potential binder peptides for the desired MHC molecule. While SIE indicated the trend of the predicted peptides’ binding
range to the MHCmolecule, it lacked the statistical confidence to rank their binding effectiveness definitively. Therefore, MM/GBSA is
the preferred method for assessing pMHC binding energy.

3.8. The binding ability of predicted peptides with HLA-A*11:01 on TAP-deficient T2 cell line

The ability of predicted peptides to bind to HLA-A*11:01 presented on the TAP-deficient T2 cell line was also determined in this
study. Different concentrations of peptides were incubated with TAP-deficient T2 cell line overexpressing HLA-A*11:01 in the presence
of 3 μg/ml of β2M. Flow cytometry was used to evaluate the stability of each pMHC after incubating the peptides with the T2 cell line
for 24 h to determine the binding ability of the predicted peptides. To quantify the binding ability of the peptides to the MHC mol-
ecules, we utilized the half-maximal inhibitory concentration (IC50). For the reference peptide (KTFPPTEPK), the IC50 value was
determined to be 0.22 ± 0.02 mM, whereas the IC50 was not able to be evaluated in the negative control peptide (FVGFFTDV) (Figs. 7
and 8). Among the predicted peptides, VITTDHLK displayed a low IC50 value (0.45 ± 0.01 nM), indicating its strong potential for
binding to HLA-A*11:01 on T2 cells. Similarly, STIHSIQY exhibited favorable binding to the MHC molecule, with no significant
difference in IC50 value (0.35± 0.02 nM) compared to VITTDHLK (Figs. 7 and 8). Next in line for favorable binding was KLIMTQVSK,
with an IC50 value of 1.15 ± 0.02 nM. Conversely, TTDHLKFSK demonstrated the highest IC50 value (2.80 ± 0.33 nM), suggesting its
lower binding ability than the other predicted peptides in this study (Figs. 7 and 8). Hence, the binding capabilities of the predicted
peptides to the T2 cell line, as determined by their IC50 values, ranked as follows: VITTDHLK ≈ STIHSIQY > KLIMTQVSK >

TTDHLKFSK, aligning with the results from the MM/GBSA binding energy evaluation.

4. Discussion

The growing understanding of how antigens are presented on the MHC molecule and their crucial role in triggering human im-
munity has led to promising advancements in peptide vaccines for cancer treatment, especially in early-phase clinical trials [35].

Fig. 8. The binding ability of the peptide to the MHC molecule in the T2 over expressing HLA-A*11:01 cell line. The antibody against the pan-HLA-
ABC family conjugated with FITC was used to evaluate the binding affinity of the peptide to the MHC molecule. The stained cells were then
subjected to flow cytometry for signal detection. No peptide condition was used for subtraction, which influenced positive binding activity between
the peptide and the MHC molecule, as shown in the left image under each of the six peptides. The IC50, to reflect the degree to which the peptide
binds to the MHC, is shown as the standard error of the mean in the right image under each of the five peptides.
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Various computational algorithms have been developed to identify short peptides derived from antigens of interest that can specifically
bind to MHC molecules [8,9]. However, not all predicted peptides effectively bind to the desired MHC molecules and activate T-cells.
Therefore, to validate the functionality of these predicted peptides, extensive and time-consuming in vitro evaluations, including
binding assays and other functional studies, are essential. Our primary objective in this study was to employ MD simulation to
comprehensively analyze the dynamic behavior and atomic-level binding affinity of predicted peptides loaded onto the MHC before
conducting in vitro functional testing. By establishing a robust correlation between in silico and in vitro binding affinity, we can
significantly enhance our confidence in peptide prediction through MD simulation, thus reducing the number of peptides that need
expensive and unnecessary in vitro functional testing. Our study focused on GPC3, a tumor-associated antigen in hepatocellular car-
cinoma, loaded onto HLA-A*11:01.

MHC-binding peptide prediction systems employ several methodologies for predicting the binding of peptides to MHC molecules.
None of the MHC class-I binding predictors showed superior performance compared to others in a previous investigation of 13 pre-
dictors. The performance of each approach varied depending on the HLA type and peptide length. Prior research has shown that
methods based on ANN have performed better than those based on matrices. Despite being considered the top predictor, NetMHCpan
4.0 did not surpass other methods in accuracy for all HLA types and peptide lengths. As the study did not assess prediction models, it is
impossible to determine a single model that is the best for all situations [36]. Given the context-dependent nature of prediction tools,
the majority vote technique cannot determine the most effective strategy. Instead, we propose implementing a consensus approach
that utilizes many highly ranked predictors in each prediction tool to enhance the accuracy of MHC class-I binding predictions.
Therefore, this study employed five prediction algorithms, namely SYFPEITHI, IEDB-MHCI, Rankpep, NetMHC 4.0, and NetCTL, to
predict peptides that have the potential to bind to HLA-A*11:01 [10–13,26]. As shown in Table 1, the algorithms generated
intriguingly diverse peptide predictions. All five prediction algorithms assigned the peptide TTDHLKFSK a high score and rank.
However, at least three algorithms gave high levels and scores to other peptides, including VINTTDHLK, KLIMTQVSK, and STIHDSIQY.
Due to their high binding potential with the HLA-A*11:01 molecule, these four predicted peptides were selected for inclusion in the
subsequent MD simulation.

For the MD simulation, we used the positive control of the pMHC complex of a nonamer peptide derived from the SARS protein,
loaded onto HLA-A*11:01. The crystal structure of this specific pMHC complex (KTFPPTEPK, PDB ID: 1X7Q) served as the reference
structure. Prior research has validated its reliability regarding binding capability and atomic properties after the MD simulation and
additional analyses [32]. Additionally, the application of APE-Gen in our study has been demonstrated to be highly effective in
generating initial structures for MD simulations of peptide-loaded MHC complexes. According to the validation results, APE-Gen can
accurately reproduce native-like conformations with minimal RMSD, which suggests that the initial structure generation process is
highly precise. The robustness of APE-Gen is further bolstered by the successful reproduction of crystal structures, accurate generation
from sequence information, and effective modeling of non-canonical peptides [18].

To compare the reliability of the structure generated by APE-Gen and the structure resolved by X-ray crystallography, both
structures underwent a comparable RMSD analysis of the loaded peptide and the MHC molecule during 200 ns of MD simulation. This
assessment was also confirmed for two other structures retrieved from the PDB database (ATIGTAMYK for 6JOZ and SALEWIKNK for
7S8R). Furthermore, the subsequent evaluation of atomic interactions and binding free energy during the productive phase indicated
that the stability shown by RMSD (Figs. 1 and 2) exhibited no significant differences. These findings suggest that APE-Gen is well-
suited for preparing initial structures for MD simulations in studies such as ours, where the precise modeling of peptide-MHC in-
teractions and the subsequent evaluation is essential.

In the present study, we utilized APE-GEN to generate an initial MD simulation model of four anticipated peptides bound to HLA-
A*11:01. We acquired theMHCmolecule from the reference structure (KTFPPTEPK). We employed APE-GEN to dock the four expected
peptides. This allowed us to generate the four pMHC structures that were utilized in this investigation. For the negative control in
assessing HLA-A*11:01 binding, we employed the GPC3 peptide (FVGFFTDV), which demonstrated positive binding to HLA-A*02:01
[20]. APE-GEN subsequently formed the pMHC complex. Following the addition of the solvent, we conducted a 200-ns MD simulation
after the minimization process. The peptides remained firmly and securely within their pMHC binding grooves during the MD sim-
ulations. During the last 50 ns of the manufacturing phase (as shown in Fig. 2), a slight fluctuation in RMSD of less than 1.0 Å was seen
in the binding groove of all pMHCs. Prior studies have demonstrated a correlation between reduced variability in peptide binding
within the MHC groove and the binding of peptide-MHC molecules [37].

We comprehensively evaluated the in silico binding properties of the predicted peptides to the HLA-A*11:01 molecule, considering
total binding energy and H-bonding. The results demonstrated that all peptides’ amino and carboxyl termini were firmly located in the
A and F pockets of the HLA-A*11:01 binding groove, respectively (Figs. 4–6). Notably, throughout the MD simulation, the second
amino acid position exhibited strong binding to the A pocket of the MHC molecule, resulting in a significant reduction in the total per-
residue decomposition of the free energy (Fig. 4) and a substantial occurrence of H-bonding around this specific position across all
peptides (Fig. 6). Even the additional third amino acid position of the predicted peptides KLIMTQVSK, STIHDSIQY, and the reference
peptide KTFPPTEPK showed potential binding to the A pocket of the MHC (Figs. 4 and 6). In contrast, the final amino acid position at
the carboxyl terminus of every peptide interacted with the F pocket of the MHC binding groove. These specific amino acid positions in
the peptides have previously been identified as anchor sites, which are known to facilitate binding to the grooves of diverse MHC class-I
molecules [3,9,21,38,39]. Additionally, it is notable that only the second position of the negative control peptide FVGFFTDV exhibited
significant binding energy (Fig. 4). Nonetheless, additional research is required to evaluate the functional testing, specifically T-cell
activation in HLA-A*11:01 molecules presenting the four predicted peptides analyzed in this study.

This study assessed howwell the predicted peptides can bind to the HLA-A*11:01molecule. We utilized the Gibbs free energy (ΔG◦)
formula and employed SIE and MM/GBSA to analyze the binding energy. While the ΔGbind values from SIE showed slight variations
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among the peptides, the summation with the solute entropy term of MM/GBSA revealed more significant differences (Fig. 7).
Nevertheless, all the energy evaluation methods consistently identified VINTTDHLK and STIHDSIQY as having a strong binding af-
finity to the desired MHC molecule among the predicted peptides (Fig. 7). Interestingly, despite receiving high scores and ranks from
all prediction algorithms, the peptide TTDHLKFSK exhibited the lowest binding affinity. The difference in in silico predictions fromMD
simulation and the scores generated by the prediction tools can be attributed to factors like simulation time and the interactions of the
binding groove in solvent environments. The foundation of the prediction algorithms employed by the prediction tools used in this
study is the structural base of the binding pocket and the potential amino acid anchor positions on the loaded peptides [10–13,26]. The
peptides are scored or ranked based on the snapshot of the relevant structures deposited in the database [9]. However, the MD
simulation in the present study evaluated the interaction between peptides and the binding groove of the MHC in the solvent box at an
atomic level. Simulations are also conducted for a specified time, which was 200 ns in our study. Differences in these factors among
studies may explain why our study’s prediction scores by MD simulation for some peptides were lower than the ratings generated by
the five prediction tools that we used in this study.

To confirm the actual binding affinity of the predicted peptides in vitro, we conducted experiments using the TAP-deficient T2 cell
line, which overexpresses HLA-A*11:01. While most prediction tools use a default IC50 cutoff value of <500 nM to select peptides that
bind to a specific MHC molecule, a previous study reported no significant correlation between IC50 values from prediction tools and in
vitro experimental data [40]. Our study similarly found higher IC50 values in vitro. Notably, the T2 cell line evaluation consistently
demonstrated an excellent binding affinity for VINTTDHLK and STIHDSIQY, resulting in a low IC50 value, which agreed with the low
ΔGbind value obtained from the MD simulation (Figs. 7 and 8). The peptides KLIMTQVSK showed moderate binding affinity in the T2
cell line (Figs. 7 and 8). On the other hand, the TTDHLKFSK peptide displayed the lowest binding affinity, consistent with the MD
simulation results (Figs. 7 and 8). The lower binding affinity for TTDHLKFSK can be attributed to its low total pre-residue decom-
position energy and fewer H-bond occupations (Figs. 4 and 6). Nevertheless, further investigation is necessary to comprehensively
understand the concordance in binding affinity between in silico and in vitro results for this specific peptide.

In contrast, the counterpart interaction with the T-cell receptor, crucial for T-cell activation, was not included. Some previous
studies reported that peptides did not constantly activate T-cells, which are thought to have a high affinity for binding to the MHC
molecule [41,42]. Therefore, further investigation is warranted to explore T-cell activation in response to these predicted peptides.

5. Limitations

The findings of our MD simulation significantly contribute to the confidence in predicting peptides that can effectively bind to the
desired MHC molecule. Although extending the MD simulation time from 500 ns to 1 μs (μs) may yield more precise results, it requires
considerable computing resources and time. As an alternative, SIE may offer a faster evaluation of binding energy, but statistical
evaluation is crucial for reliable support. MM/GBSA, commonly used to assess relative binding affinities, has consistently aligned with
in vitro T2 binding results and is recommended as a criterion for selecting peptides suitable for loading onto the MHC molecule. MM/
GBSA has been widely used to evaluate the relative binding affinities between proteins and peptides and between proteins and small
molecules, particularly in the study of peptide and MHC molecule binding [43–45]. Together, these methods effectively differentiate
binding energy among the predicted peptides and largely correlate with in vitro binding affinity results. However, it’s essential to
acknowledge that this study mainly focused on the peptide-MHC interaction. The differences between the IC50 values and binding
energy obtained from our experiments and the earlier screening results can be attributed to the inherent changes in methodology.
Prediction techniques rely on static images of peptide-MHC interactions, while our MD simulations provide a dynamic evaluation over
a specified period. The application of this dynamic approach can reveal discrepancies that are not considered by static forecasting
systems. The significance of our research lies in using a combination of predictive algorithms and dynamic simulations to improve the
accuracy of peptide binding predictions. The information obtained from this approach emphasizes the importance of considering both
static and dynamic assessments to understand peptide-MHC interactions thoroughly.

Our study provides important insights into the binding affinity and structural dynamics of GPC3 peptides with the HLA-A*11:01
MHC molecule using MD simulations. However, the study does not include an Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) analysis, which is essential for assessing the safety and effectiveness of these peptides in clinical settings. ADMET
properties such as toxicity, allergenicity, half-life, and bioavailability are critical for determining whether these peptides can be safely
used in patients. Addressing the comprehensive ADMET evaluations in future studies is crucial to advance these peptides toward
potential clinical application. This will ensure that the peptides are effective and safe for patient treatment, thus supporting their
potential use in cancer immunotherapy.

6. Conclusion

This study demonstrates the successful use of MD simulation and related calculations, such as analyzing atomic interactions and
binding free energy, to accurately identify predicted peptides suitable for loading onto specific HLA molecules of interest. The strong
concordance observed between the in silico and in vitro binding affinity outcomes enhances our confidence in the efficacy of in silico
peptide prediction using MD simulation. Consequently, this approach can potentially diminish the necessity for resource-intensive and
time-consuming in vitro functional testing, specifically by reducing the number of peptides that require such testing. Additionally, the
application of MD simulation shows promising potential in advancing the development of peptide-based vaccines for cancer treatment.
This progress holds significant importance in pursuing more efficient and targeted cancer therapies.
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