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Abstract: This work used the natural ingredient stigmasterol as an oleogelator to explore the effect of
concentration on the properties of organogels. Organogels based on rapeseed oil were investigated
using various techniques (oil binding capacity, rheology, polarized light microscopy, X-ray diffraction,
and Fourier transform infrared spectroscopy) to better understand their physical and microscopic
properties. Results showed that stigmasterol was an efficient and thermoreversible oleogelator, capa-
ble of structuring rapeseed oil at a stigmasterol concentration as low as 2% with a gelation temperature
of 5 ◦C. The oil binding capacity values of organogels increased to 99.74% as the concentration of
stigmasterol was increased to 6%. The rheological properties revealed that organogels prepared with
stigmasterol were a pseudoplastic fluid with non-covalent physical crosslinking, and the G’ of the
organogels did not change with the frequency of scanning increased, showing the characteristics of
strong gel. The microscopic properties and Fourier transform infrared spectroscopy showed that
stigmasterol formed rod-like crystals through the self-assembly of intermolecular hydrogen bonds,
fixing rapeseed oil in its three-dimensional structure to form organogels. Therefore, stigmasterol can
be considered as a good organogelator. It is expected to be widely used in food, medicine, and other
biological-related fields.

Keywords: organogel; rapeseed oil; stigmasterol; network structure

1. Introduction

Traditional hydrogenated fats or saturated fats contain many saturated fatty acids
(SFAs) and trans-fatty acids (TFAs) which have an impact on human health [1]. Their
excessive intake increases the risk of cardiovascular and cerebrovascular diseases [2],
obesity [3], diabetes [4], and other related diseases, making consumers aware of their
serious threats to dietary health [5]. Numerous studies have focused on exploring ways
to reduce the harmful content of SFAs and TFAs in foods [6–8]. Organogels have been
considered as an appropriate strategy to reduce SFAs and eliminate TFAs in the diet while
increasing the content of unsaturated fats [9].

Organogels are semi-solid systems; their liquid phase is fixed in a thermo-reversible
three-dimensional network using various oleogelators which lead to the formation of lipid
structures with obvious macroscopic properties (such as oil binding capacity, rheologi-
cal properties, and thermostability) [10]. As a substitute for saturated fatty acids, and
because of their properties, organogels have been widely applied in the food industry
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and for shaping food products such as cakes, biscuits, meat products, chocolate, and ice
cream [11]. Additionally, organogels can be utilized to stabilize and control the release of
nutraceuticals and medicines [12]. They can be divided into low-molecular and polymeric
organogels by the types of gelators used [13]. The former are called physical organogels
formed by the low-molecules which can self-assemble to form supramolecular structures
through weak non-covalent bond interactions such as hydrogen bonds, van der Waals
forces, hydrophobicity, and π-π interactions [14]. The latter are referred to as chemical
organogels, wherein the strong chemical bond between polymer chains form a swelling
system with a cross-linked structure in organogels [15]. The physical organogels are more
commonly used than the chemical organogels because they can provide a network structure
to vegetable oils and are edible. However, as physical organogels have only recently been
investigated, detailed information on gelation phenomena and intermolecular interactions
is not yet available [16]. Moreover, the types of physical oleogelators are limited, mainly
including natural waxes [17], fatty acids, fatty alcohols [18], and compounds of sterols and
glutamine [19]. Therefore, a new oleogelator is required for further development.

Stigmasterol (ST), a natural 6-6-6-5 tetracyclic phytosterol [20], is a biosynthesized
triterpene sterol. It is commonly found in various plants and deodorized distillates due to
the refining of vegetable oils [21]. Recent studies have shown that stigmasterol exhibits a
variety of biological activities as an antioxidant [22], anti-inflammatory [23], anti-tumor [24],
and anti-diabetic [25]. Stigmasterol (Figure 1) has an amphiphilic structure with a large
oleophilic surface and polar OH head group. It can be used as a gelator to immobilize
liquid oil in the network structure by the self-assembly method [26].

Rapeseed oil is the second most abundantly produced edible oil in the world and is
rich in unsaturated fatty acids such as oleic acid, linoleic acid, and linolenic acid [27]. The
type and proportion of fatty acids are more in line with the dietary nutrition standards
which can effectively reduce cholesterol and cardiovascular disease [28]. Therefore, we
chose rapeseed oil as the base oil to prepare the edible organogels with stigmasterol as
the gelator. The effects of different stigmasterol concentrations on the oil binding capacity
(OBC), rheological properties, and microstructure of the organogels were researched. The
mechanism of gel formation of organogels was studied by polarized light microscopy, X-ray
diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results of this
study can provide theoretical and technical support for the development and application
of phytosterol organogels.
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2. Materials and Methods
2.1. Materials

Stigmasterol (90%) was obtained from Source Leaf Biotechnology (Shanghai, China);
commercial grade rapeseed oil (approximately 6% saturated, 58% monounsaturated, and
36% polyunsaturated) was acquired from a local supermarket. The rest of the chemicals
and reagents utilized in this experiment were of analytical grade.
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2.2. Methods
2.2.1. Organogel Preparation

The organogels were prepared by mixing a certain concentration of stigmasterol (1%,
2%, 3%, 4%, 5%, 6%, and 7% (w/w)) to rapeseed oil. The mixture was heated and stirred at
100 ◦C for 40 min in oill bath at 200 rpm. After that, the hot mixtures were cooled at 5 ◦C
for 24 h to form a gel. Physical properties of the samples were measured after this storage
as described below.

2.2.2. Gelation Temperature Phase Diagram

The organogel samples prepared by mixing stigmasterol at different concentrations
(1%, 2%, 3%, 4%, 5%, 6%, and 7% (w/w)) with rapeseed oil were poured into a serum bottle.
After that, they were stored at 5, 10, 15, 20, 25, and 30 ◦C for 24 h. The self-sustaining
ability of the samples was assessed visually by inverting the serum bottle. Samples were
categorized as a gel, thickened liquid, or liquid, based on the appearance of behavior [29].

2.2.3. Oil Binding Capacity

By measuring the oil loss of organogels after centrifugation, the oil binding capacities
(OBC) of the organogels were obtained. First, the weight of the Eppendorf tube (a) was
measured and the Eppendorf tube containing 2 g of the melted organogel samples was
weighed (b); after that, the tubes were stored at 5 ◦C for 24 h. Second, the tubes were
centrifuged at 10,000 rpm for 15 min and then inverted to drain the separated rapeseed
oil. The remaining organogel samples in the tube were then weighed (c). The oil binding
capacity was calculated using the following formula:

OBC(%) =
(c − a)
(b − a)

× 100% (1)

where a denotes the weight of the empty container, b represents the weight of the container
containing the primary sample, and c denotes the weight of the container containing the
sample after centrifugation. All the measurements were conducted in triplicate; the results
were reported as mean ± standard deviation (SD).

2.2.4. Rheological Characterization

The rheological properties of the organogels were analyzed by a Kinexus pro advanced
rheometer (Malvern Instruments Ltd., Malvern, UK) with a stainless steel cone-plate
geometry (40 mm, 1◦ angle, 1 mm truncation). All the rheological tests were conducted
within the linear viscoelastic range. Specifically, the frequency sweep experiments were
carried out at 25 ◦C under a constant strain within the linear viscoelastic domain, ranging
from 0.1 Hz to 100 Hz. The temperature sweeps tests were carried out at a constant
frequency of 1 Hz and a heating rate of 2 ◦C/min in the 25–100 ◦C range. The apparent
viscosity was measured with a constant shear strain with varying shear rates (from 0.01 s−1

to 100 s−1) at 25 ◦C.

2.2.5. Polarized Light Microscopy

Polarized light microscopy (#CX31., Olympus, Japan) was used to observe organogel
crystal morphology. The organogel samples were lightly smeared on a microscope slide
and a coverslip was carefully overlaid on the sample. After that, pictures were obtained
with 100× magnification using OLYCIA Series Imaging Analysis Software.

2.2.6. X-ray Diffraction Analysis

The XRD pattern was employed to analyze the crystallization patterns forms of the
organogels by XRD spectroscopy (SHIMADZU., Kyoto, Japan) with reflection geometry
and the Cu Kα radiation (λ = 1.542 Å) operating at 40 kV and 30 mA. The organogel samples
were scanned at a scan rate of 2◦/min with a 0.02◦ step size utilizing a 2θ range of 5◦ to 50◦.
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Each sample was tested in triplicate. The diffractograms were analyzed using MDI Jade 6.0
software (Materials Data Ltd., Livermore, CA, USA).

2.2.7. Fourier Transform Infrared Spectroscopy

The FTIR spectra of the samples were measured using an IRAffinity-1 model FTIR
instrument (SHIMADZU, Kyoto, Japan) coupled with an attenuated total reflection (ATR)
sampling accessory. The organogel samples, pure stigmasterol, and rapeseed oil were
scanned within the 4000–400 cm−1 range to explore the interactions of the gel compo-
nents [30].

2.2.8. Statistical Analysis

All experiments were performed in duplicate or triplicate. The data was analyzed
using SPSS 20 (SPSS Inc., Chicago, IL, USA) software, calculating mean value and standard
deviation (SD), the results were expressed as mean ±SD. The datasets were subjected to
analysis of variance, and Duncan’s multiple range test was used to assess the significant
differences between the mean values (a difference of p < 0.05 was regarded as substantially
different). Furthermore, the figures were drawn using Origin 2018 (OriginLab Corporation,
Northampton, MA, USA) for basic data processing and mapping.

3. Results and Discussion
3.1. Gelation Phase Diagram

Visual observation of appearance was performed to ascertain the gelation of the
organogels by simply inverting the serum bottle containing the samples. The systems that
did not flow under the influence of gravity were named organogels [31]. Figure 2 shows the
appearance and gelling behavior of organogels with different stigmasterol concentrations.
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Figure 2. Temperature of Gelation Phase Diagram for different concentrations of stigmasterol
organogels at different temperatures: gel (i.e., freestanding gel), thick liquid (liquid was clearly
thickened, but freestanding gel was not observed), and liquid (i.e., no gelation observed).

It can be seen from Figure 2 that the formation of organogels was simultaneously
affected by gelling temperature and stigmasterol concentration. The samples thickened at
all temperatures under the stigmasterol concentration of 1%. When the stigmasterol con-
centration was ≥2%, the mixtures of stigmasterol and rapeseed oil could form organogels
at low temperatures (5 ◦C). When the stigmasterol concentration was ≥4%, the organogels
occurred at room temperature (25 ◦C). These results showed that the organogels only need
a small amount of stigmasterol (2%) to fix rapeseed oil with a 5 ◦C gelling temperature.
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With the increase in gelling temperature, the critical gelling concentration of stigmasterol
required for the formation of organogels gradually increases. It was possible that the
crystallization behavior and crystal structure of stigmasterol in rapeseed oil were extremely
sensitive to gelling temperature. The internal structure of organogels by the intermolecular
brownian motion decreased with the increasing gelation temperature [26]. According to
this result, we could gather the critical concentration of stigmasterol to form organogels
at different gelling temperatures. The organogels were prepared within the concentration
range of 2–7% at a gelation temperature of 5 ◦C to further understand the physicochemical
and microstructure properties of the organogels.

3.2. Physicochemical Properties of Stigmasterol Organogels

The physicochemical properties of stigmasterol organogels were studied by measuring
the OBC and rheological properties.

3.2.1. Oil Binding Capacity

The oil binding capacity (OBC) is used to characterize the strength and ability of the
organogels to decrease vegetable oil migration [32]. The OBC values of the organogels
with different stigmasterol concentrations are shown in Figure 3. The OBC values were
increased significantly from 50.74% to 99.74% when the concentration increased from 2% to
6%. It may be that with the increase in stigmasterol concentration, the internal system of
the organogels could form more crystal structures through molecular interactions [33]. This
further formed a three-dimensional network structure to fix up the rapeseed oil, resulting
in significantly increased OBC values. It was worth noting that the OBC value (99.93%) of
organogels did not change significantly with a 7% stigmasterol concentration.
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organogels. (Means with different letters in the same classification significantly differ at p < 0.05).

The self-assembled structure of stigmasterol may reach its saturation point [34] at 7%
concentration with rapeseed oil at 100 ◦C. These results were similar to those obtained by
Zefang Jiang, et al. It has been reported that the formation of organogels highly depends
on the ability of the solubility to the gelator, it must be relatively dissolved in solution so
that it can crystallize or self-assemble to form a microstructure in a solvent [7].

3.2.2. Rheological Properties

Rheological properties are also important physical and chemical characteristics of
organogels. It is essential to understand these rheological properties for the application of
organogels. In this experiment, the mechanical stability of the organogel was studied by
the oscillatory rheological experiment and the variation law of the apparent viscosity of the
organogels with the shear rate was studied by the static rheological experiment.
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The viscoelasticity of the sample was reflected by frequency scanning. In rheological
analysis, the G’ is the elastic modulus of the sample and the G” is the viscous modulus of
the sample. Frequency scanning is utilized to reflect the correlation between the viscoelastic
modulus and frequency. If the G’ > G” with the increase in frequency, the sample mainly
exhibits elastic deformation, indicating that the sample presents solid state. If the G’
= G”, the sample presents a semi-solid state. If the G’ < G”, the viscosity modulus of
the sample mainly has viscous deformation, indicating that the sample presents a liquid
state. All organogel samples showed a solid-state behavior with the elastic modulus
(G’) higher than the viscosity modulus (G”) within the frequency range of 0.1–100 Hz
(see Figure 4). Additionally, the G’ and G” values of organogels were independent of
the increase in scanning frequency. These results showed that the organogels prepared
from different concentrations of stigmasterol had a good tolerance in the test range of
deformation frequency and were formed by a non-covalent physical cross-linked gel
network structure [32]. Furthermore, the G’ value was closely related to the stigmasterol
concentration, the G’ value increased notably when the concentration was increased from
2% to 6%, but the result was reversed at a concentration of 7%.
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Those results in rheology follow the same tendency observed in the oil binding capacity,
that is, as the concentration of stigmasterol increased, G’ values and the oil binding capacity
increased. However, the G’ value decreased at the stigmasterol concentration of 7%, which
could mean that when the stigmasterol concentration reached 7%, the organogel system
was under a supersaturated state. This supersaturation may affect the change of crystal
structural units in the organogel [35], leading to the decrease in its structural integrity,
decreasing the G’ value. It was reported that the supersaturated state could increase
the nucleation rate of crystals in the organogels [36], resulting in the formation of more
individual networks in the organogels system; however, those crystal structures from
different single networks were usually less entangled than the permanent junction of
crystal structure in an organogels network. Therefore, the integrity of the structure and
the overall mechanical properties decreased with the increasing nucleation rate and the
number of structural elements. The results of frequency scanning showed the formation of
a gel network and the physical interaction between organgeltor and vegetable oil.

A temperature ramp test of organogels is illustrated in Figure 5 to study the temperature-
dependent flow behavior of the stigmasterol organogels. As the scanning temperature
increased, the G’ and G” values of organogels were significantly reduced and the critical
phase transition temperature (G’ = G”) gradually emerged at the stigmasterol concentration
of 2–6%. This result indicates that the organogels showed a viscous behavior at high
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temperatures in a completely molten state. The critical phase transition temperature
increased prominently from 45 ◦C to 95 ◦C with the increasing concentration. However,
the absence of the critical phase transition temperature was found in the organogels at
a 7% stigmasterol concentration, which showed the organogels did not undergo a gel-
sol transformation [37]. Therefore, the organogels have high thermal stability with a 7%
stigmasterol concentration. This may be because the number of crystals was increased with
the increase in the stigmasterol concentration; a higher temperature was needed to destroy
the organogel structure [38].
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Figure 5. Different stigmasterol concentrations (2–7%) of stigmasterol organogels had viscoelastic
properties in the temperature range of 25 to 100 ◦C.

Figure 6 shows that the initial apparent viscosity of organogels increases with the
increasing stigmasterol concentration, forming stronger organogel structures. However, the
complex viscosity of the organogel samples decreased exponentially as the shear rate was
enhanced, reflecting its shear-thinning behavior [39]. This was likely due to the dynamic
forces generated in the shearing process causing the fracture of the crystalline structure
of stigmasterol organogels [40]. Similar results have been reported in many organogel
structures with pseudoplastic properties [40–42]. The relationship between the apparent
viscosity and shear rate of organogels prepared with different concentrations of stigmasterol
is consistent with the power-law equation.

η = Kγ(n−1), 0 < γ ≤ 1 (2)

where η denotes the apparent viscosity, γ represents the shear rate, K denotes the flow
consistency index, and n is the degree of pseudo-plasticity index [43]. The fitting results
(see Table 1) were shown that the organogels with a higher concentration of stigmasterol
have higher consistency, the K value reached the maximum at 253.6 Pa·s at a stigmasterol
concentration of 7% (see Table 1). More crystals were formed and cross-linked with
increasing concentration; therefore, a stronger crystalline structure was provided to the
entrapped oil molecules, resulting in higher resistance to shearing. The flow behavior
index (n) < 1, between 0.03 to 0.47, indicated that organogel samples were a pseudoplastic
fluid in this shear range. The crystal particles’ gradual and orderly arrangement along the
direction of shear depolymerization with the shear rate increased [44], which explained
why the organogel system became more pseudoplastic and stronger with the increase in
stigmasterol concentration. Additionally, the square value of the correlation coefficient (R2)
of the fitting function was between 0.991 and 0.999, indicating that the relationship between
the apparent viscosity and shear rate test data conforms to the power-law equation.
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Table 1. Values of power-law parameters (K, n) of the stigmasterol organogels at different stigmasterol
concentrations in the range of 0.01–100 s−1.

ST Concentration K/Pa·s n R2

2% 0.42 ± 0.027 0.47 ± 0.087 0.997
3% 12.71 ± 0.088 0.42 ± 0.068 0.991
4% 39.49 ± 0.069 0.25 ± 0.025 0.991
5% 63.66 ± 0.032 0.14 ± 0.017 0.998
6% 81.59 ± 0.019 0.08 ± 0.022 0.997
7% 253.60 ± 0.048 0.03 ± 0.046 0.999

Note: Values are means ± standard of deviations.

3.3. Microstructure Properties of Stigmasterol Organogels

Morphology of the stigmasterol organogels was studied using a polarized light micro-
scope (PLM), XRD, and FTIR.

3.3.1. Polarized Light Microscopy

The three-dimensional network structure is the basis of the mechanical properties of
organogels [45]. The influence of gelator concentration on the crystal morphology and
microstructure in the organogel system was observed using a polarizing microscope im-
age. The results for the organogels are shown in Figure 7. The stigmasterol crystals were
uniformly dispersed in the oil phase, appearing as birefringent patches against a black
background [46]. The organogel prepared with 2–4% stigmasterol showed a randomly
distributed rod-like crystal structure, while the organogels prepared from 5%–6% stig-
masterol showed a rod-like crystal structure with close distribution, the crystal units of
stigmasterol formed the three-dimensional structure of the organogels. The number of
crystals increased significantly and the internal crystal size of the organogels gradually
decreased from random crystal to tightly distributed rod structure with the increase of
stigmasterol concentration. However, when the stigmasterol concentration was 7%, the
crystal structure of organogels partially overlapped [47]. This is probably because a high
oleogelator concentration leads to a higher degree of supersaturation which can accelerate
nucleation and restricted the further growth of stigmasterol crystals.
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The polarized light results of stigmasterol organogels further confirm that the crystal
structure of the organogels can self-assemble to form a compact rod-like fiber structure as
the concentration of stigmasterol increases. This structure shows a stronger combination
ability of the oil phase and can affect the mechanical resistance of the OBC and create a
higher complex module (G’) in the rheological behavior, proving the correlation between
the microstructure of the organogel and its mechanical resistance [48]. The crystal net-
work formed by the independent assembly was rearranged when the concentration of
stigmasterol reached the supersaturated state, leading to the instability of the organogel
structure and the decline of the macroscopic properties. The concentration of the oleoge-
lator plays a key role in controlling the non-covalent interaction-driven self-assembly of
fibrillar networks in most cases.

3.3.2. X-ray Diffraction

The microstructure diagram of the gel system can only analyze the changes in crystal
units in the gel system. However, the changes in cell parameters and crystal types can be
obtained more accurately by XRD analysis. The d-spacing distance in the XRD analysis
parameter represents the distance between two diffraction crystal planes of the sample
and is used to reflect the crystal type of the sample and the homogeneous polycrystalline
phenomenon of fat [49].

The diffraction patterns of rapeseed oil, neat stigmasterol, and organogels prepared
with different concentrations of stigmasterol are shown in Figure 8a,b. Two major peaks
at 4.52 Å and 4.26 Å were observed in pure stigmasterol and stigmasterol organogels,
respectively. In the wide-angle region, the peak around 4.5 Å is usually considered as the
characteristic peak of β-polymorph, and peak around 4.2 Å is the characteristic peak of
α-polymorph [50]. In other words, the major peaks corresponding to pure stigmasterol
and organogels reveal two distinct modes of parallel stacked arrangements, namely α and
β. The organogel samples contained the positions and d-spacing of the main peaks corre-
sponding to stigmasterol which indicated that the diffraction pattern of stigmasterol did not
change during the formation of organogels. The diffraction patterns of both stigmasterol
and organogel samples showed the existence of long and short spacing peaks. According
to reports, the presence of long-spacing peaks provides information about the order of the
molecular layers, while the presence of short-spacing peaks provides information about
the lateral stacking of molecular layers [51]. Compared with the spectra of stigmasterol,
the intensity of long-distance peaks in the organogel changed and the positions of some
peaks shifted. This indicated that the addition of rapeseed oil in the stigmasterol caused
a rearrangement of stigmasterol molecular packaging [52]. In addition, the long-distance
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peak of organogels enhanced with increasing concentrations of stigmasterol, indicating that
the number of crystal structures of organogels increased. This corresponds to the results
presented by polarizing microscopes. The variation of the spacing peak of organogels
increases with the increasing stigmasterol concentration which further explains the effect
of stigmasterol concentration on the structure of organogels.
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3.3.3. Fourier Transform Infrared Spectroscopy

FTIR spectroscopy is necessary to understand the interaction between the packing
arrangements of organogelator molecules. The FTIR spectra of rapeseed oil, original
stigmasterol, and the organogel samples prepared by different concentrations of stigmas-
terol are shown in Figure 9a,b. The spectra show the absorption bands of organogel
owing to the functional groups in rapeseed oil and stigmasterol. The infrared absorption
band of rapeseed oil ranged between 400–1800 cm−1 and 2800–3100 cm−1. The peaks
of C-H emerged at approximately 3000 cm−1. Furthermore, the bands below 3000 cm−1

(2920 cm−1) are attributed to the symmetric and anti-symmetric stretching of C-H in -
CH3 and -CH2 functional groups [53], respectively. The characteristic absorption peak
around 3346 cm−1 is the spectra of original stigmasterol, linked to the stretching of -OH
groups [54]. The organogel samples only showed the characteristic peak around 3338 cm−1,
suggesting that the intermolecular hydrogen bonding observed in the oleogels comes from
stigmasterol [55]. Furthermore, new covalent bonds did not form, which is consistent
with the results of rheological frequency scanning. However, the characteristic peak of
stigmasterol in the organogel samples shifted to a lower wavenumber with the stigmas-
terol increasing concentration. These results showed that the three-dimensional network
structure of organogels was formed by stigmasterol aggregates through intermolecular hy-
drogen bonding and that the supramolecular aggregates are spontaneously formed through
aggregation-nucleation-growth pathways of the stigmasterol crystals [56]. Stigmasterol
was a kind of low molecular oleogelator that required the formation of a self-assembled
network structure before supramolecular aggregation in an organogel structure could
occur. Therefore, the self-assembly pathway of the stigmasterol determined the internal
structure of the organogel which further affected its macroscopic properties. This is in
line with previous research by Meng, Z et al. which showed that hydrogen bonds may
have been responsible for the formation of the crystal structure that fixed the sunflower
oil and provided the favorable physical characteristics of the PGE organogel [46]. Similar
results were also observed in the SMS-PO organogels [57] reported by Suzuki, M. We thus
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conclude from the FTIR measurements that the hydrogen bonds play a significant role in
the formation of the stigmasterol organogels.
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4. Conclusions

We prepared the rapeseed oil-based organogels using stigmasterol as a self-assembly
oleogelator. The formation of the organogel was related to the gelling temperature and
the concentration of the oleogelator which had a critical gelation concentration of 2% at a
gelling temperature of 5 ◦C. The results of macroscopic characteristics showed that the oil
holding capacity increased to more than 99.74% when the stigmasterol concentration was
6%. The rheological properties revealed that the organogels prepared with stigmasterol
were a pseudoplastic fluid with shear thinning. The results of microscopic characteristic
tests showed that the stigmasterol concentration had a significant effect on the integrity and
fineness of the crystal structure of the organogels, playing a key role in the densification of
crystal network units and crystal size of the organogels. Stigmasterol impregnates rapeseed
oil with intermolecular hydrogen bonding to form the crystal network structure, further
proving that the concentration of stigmasterol had an important effect on the physical
properties and microstructure of the rapeseed oil-based organogels.
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This study demonstrates that stigmasterol is a preferable oleogelator to provide an
effective approach for the preparation of highly unsaturated organogels. Stigmasterol traps
liquid oil in its thermoreversible gel network through gelation, resulting in an organogel
with plastic solid properties. Because these liquid oils have specific consistency and hard-
ness without changing their chemical composition, they have great application potential for
replacing saturated fats with plastic fats. More extensive applications of rapeseed oil-based
organogels should be investigated in order to generate healthier and more spreadable food
products in the future.
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