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Virtual Screening and Design with Machine Intelligence
Applied to Pim-1 Kinase Inhibitors
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Abstract: Ligand-based virtual screening of large com-
pound collections, combined with fast bioactivity determi-
nation, facilitate the discovery of bioactive molecules with
desired properties. Here, chemical similarity based machine
learning and label-free differential scanning fluorimetry
were used to rapidly identify new ligands of the anticancer
target Pim-1 kinase. The three-dimensional crystal structure

complex of human Pim-1 with ligand bound revealed an
ATP-competitive binding mode. Generative de novo design
with a recurrent neural network additionally suggested
innovative molecular scaffolds. Results corroborate the
validity of the chemical similarity principle for rapid ligand
prototyping, suggesting the complementarity of similarity-
based and generative computational approaches.

Keywords: artificial intelligence · crystal structure · de novo design · drug discovery · neural network

Molecular ‘scaffold hopping’ aims to identify sets of
molecules that have markedly different chemical structures
but share a certain function of interest, e.g., inhibition of
the same enzyme target.[1] Finding such isofunctional
compounds expedites fast-follower studies, promotes drug-
like compounds with potentially fewer side-effects, and
helps re-vitalize stalled discovery projects. There are several
computational approaches to facilitate this process by
means of virtually screening of large collections of readily
available compounds, and by de novo molecular design.[2]

Recent advances of computer-assisted molecular design
with ‘artificial intelligence’ (AI) raise the question to which
degree the scaffold hopping capabilities of straightforward
chemical similarity-based virtual screening, specifically sim-
ilarity searching, and AI-based generative molecular design
overlap.[3] We approached this challenge from a practical
perspective, aiming to rapidly identify new inhibitors of the
anticancer target Pim-1 (human proviral integration site for
MuLV) kinase,[4] a serine/threonine kinase broadly expressed
in bone marrow and other tissues.[5] The primary goal of
this study was to explore a pragmatic solution to speeding-
up hit and lead compound identification, by building on
chemical similarity methods and fast experimental valida-
tion.
There are many known inhibitors of human Pim-1,

rendering both chemical similarity searching and data-
hungry machine learning feasible. Therefore, an ensemble
similarity approach was pursued (Figure 1a). As a starting
point, we collected a reference set of 683 Pim-1 inhibitors
(Ki or IC50<0.5 μM) and 2377 experimentally confirmed
inactives (Ki or IC50�0.5 μM) from the ChEMBL database,

[6]

and 15,041 bioactive druglike compounds from the man-
ually curated Collection of Bioactive Reference Analogs
(COBRA).[7] All molecules were represented in terms of
cross-correlated, topological two-point pharmacophores
(Chemically Advanced Template Search, CATS method)[8] and

grouped into 200 clusters on a self-organizing map (SOM)
by unsupervised learning.[9] Visualization of the resulting
compound distributions pointed to cluster (20/9) as a Pim-1
‘hot spot’ in chemical space (Figure 1b). This cluster
contained 168 molecules, 81 of which were known Pim-1
actives and 32 known Pim-1 inactives, corresponding to an
active:inactive ratio of approximately 2.5. The centroid
vector of a SOM cluster may be interpreted as a consensus
pharmacophore of this particular molecular ensemble. This
vector has the same dimensionality and chemical meaning
as the molecular descriptors of the training compounds. It
may be considered a ‘virtual ligand’ representative of the
local compound ensemble. This virtual ligand (centroid)
formed by cluster (20/9) served as query for subsequent
similarity searching in a collection of 5.35 million commer-
cially available compounds (Table S1). Further analysis and
compound selection was restricted to the 100 top-ranking
virtual hits as an arbitrary cut-off, emulating a challenging
low-budget scenario (Figure 1c, Figure S1, Table S2).
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Molecular scaffold analysis revealed rich chemical diver-
sity among the set of virtual hits, with scaffold S1, a known
kinase binding substructure motif,[10] present in 15% of the
top-ranking screening compounds (Figure 1d). Importantly,
none of these molecular frameworks (‘Murcko’ scaffolds)[11]

were contained in the set of known Pim-1 inhibitors used
for SOM training.
Compounds 1–4 were manually selected and ordered

from the respective suppliers (Figure 1c). Compound 1 was
the most similar to the virtual ligand model in terms of its
pharmacophore features (CATS method,[8] rank 1 on the list
of virtual hits, CATSDistance=0.81). Compounds 2 (rank 24,
CATSDistance=0.87) and 3 (rank 41, CATSDistance=0.88) contain

chemical scaffolds we considered surprising, especially
compound 3 because of its branched scaffold and positively
ionizable piperidine moiety. Compound 4 (rank 46,
CATSDistance=0.88) was selected to probe the effect of the
methoxy group present in compound 1.
To rapidly obtain experimental information about these

compounds as to their potential interaction with Pim-1,
label-free differential scanning fluorimetry (DSF) was per-
formed, immediately followed by X-ray crystallography. In
this way, sufficient experimental feedback could be ob-
tained without the necessity for extensive biochemical
testing during this initial phase of hit identification.

Figure 1. Schematic of the virtual screening approach (a). The self-organizing map (SOM) groups molecules according to their
pharmacophore features, implicitly forming pharmacophore models (‘virtual ligands’) of the compound ensembles for similarity searching.
The distribution of known Pim-1 inhibitors on a SOM of druglike chemical space reveals an activity ‘hot spot’ in cluster (20/9) (b). This map
consists of a toroidal array of 20×10 clusters (grid fields). Colouring indicates cluster occupancy (number of compounds per cluster). The
ensemble pharmacophore (‘virtual ligand’) of Cluster (20/9) was selected for similarity searching in the compound pool. Four top-ranking
screening compounds (‘virtual hits’) were tested for Pim-1 binding (c). Chart (d) presents the most frequent scaffold (S1) among the virtual
hits, the most similar known Pim-1 kinase inhibitor (5) to compound 3, and the only common scaffold (S2) among the set of known Pim-1
kinase inhibitors and the de novo generated molecules.
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Compounds 1 and 4 showed interfering fluorescence
that prohibited meaningful dose-response determination,
and compound 1 was poorly soluble. These were therefore
not considered further. DSF revealed stabilization of human
Pim-1 by compounds 2 and 3 (ΔTm=2–3 °C), suggesting
direct ligand interaction. Compound (RS)-3 concentration-
dependently stabilized Pim-1 kinase (Figure S2). Compound
5 (IC50=25 nM, ChEMBL-ID: CHEMBL2037202, CATSDistance=
0.96) is the most similar known Pim-1 inhibitor to com-
pound 3.[12] The molecular scaffolds of these two Pim-1
ligands are markedly different, constituting a successful
scaffold hop.
For experimental validation of the preliminary DSF result

compound (RS)-3 was soaked into apo crystals of human
Pim-1 protein. X-ray structure determination confirmed the
ligand bound to the canonical ATP binding site of the
kinase with a resolution of 1.86 Å (Figure 2). The core
structure of the (R)-3 enantiomer could be fitted to the
observed electron density in the binding site. In the crystal
structure the temperature factors for compound 3 are
higher around the pyridine and piperidine moiety, indicat-
ing greater flexibility of these rings. The piperidine moiety
is positioned with the nitrogen pointing towards Asp128. In
this binding mode the pyridine nitrogen of (R)-3 is solvent-
exposed. A charge-charge interaction is formed between
the positively ionized piperidine nitrogen and Asp128, and
the ligand’s carbonyl oxygen forms a potential (d=3.5 Å)
hydrogen bridge to Lys67. In the ATP-bound state of Pim-1,
the function-relevant amino acid residue Lys67 participates
in canonical nucleotide binding.[13] A second, water-medi-
ated hydrogen bridge seems feasible between the ligand
carbonyl and the Asp186 main-chain amide.
Having confirmed the ATP-competitive binding mode of

the new Pim-1 inhibitor found by similarity-based virtual

screening of readily available screening compounds, we
performed generative de novo molecular design of poten-
tial Pim-1 inhibitors. This machine learning approach
provides access to a virtually infinite chemical space and
offers the possibility to computationally obtain novel
molecules.[2] In contrast to rule-based molecule construc-
tion, the generative model samples new molecules from a
learned statistical distribution of the training data.[14] Here,
we employed a recurrent neural network with long short-
term memory (RNN-LSTM) for molecule generation.[15] The
underlying chemical language model captures the syntax of
bioactive molecules represented as SMILES strings, and
emits new SMILES strings that satisfy the constraints of the
training set. This approach previously led to the identifica-
tion of novel compounds with desired bioactivity.[16]

For the present study, an RNN-LSTM model trained on
approx. 400k SMILES strings of bioactive compounds[17] was
fine-tuned on the set of 683 Pim-1 kinase inhibitors from
ChEMBL, and a total of unique SMILES strings were sampled
from this optimized generative model. The computer-
generated molecules were ranked according to their CATS
pharmacophore similarity to the virtual ligand model
representing SOM cluster (20/9) (Figure 1b), and the 100
top-ranking molecules were kept for further analysis.
A single common scaffold (S2, Figure 1d) was found

among the top-ranked de novo generated molecules and
the known Pim-1 inhibitors. The nearest neighbour 5 of the
confirmed virtual screening hit 3 also features this scaffold
S2. One might speculate that this particular molecular
framework epitomizes essential features of Pim-1 inhibitors.
In fact, scaffold S2 had been optimized as the core structure
of potent antiproliferative pan-Pim kinase inhibitors, form-
ing polar interactions with Asp128 in the nucleotide binding
site.[12] It is noteworthy that compound 3 also contains this

Figure 2. Binding mode of compound (R)3 in the nucleotide pocket of human Pim-1 kinase (PDB ID: 6YKD). Cartoon representation of the
structural complex (left) and direct ligand-protein interactions (right). The crystallographically determined electron density (2FoFc map),
contoured at 1σ within 2 Å of highlighted residues, is represented as mesh. Directed polar interactions are shown as yellow dotted lines.
Solvent-exposure is indicated by the dotted arc.
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particular structural feature. The scaffolds of the top-ranking
screening compounds and the de novo designs contain
several known kinase hinge-binding moieties (Figure 3),
embedded in new structural context. The respective
compounds may be worthwhile exploring in future kinase
drug discovery projects.
Analysis of CATS pharmacophore distances revealed

that the known actives from ChEMBL (CATSDistance mean�
SD=1.15�0.06) are most dissimilar to the virtual ligand
model, followed by the de novo generated molecules
(1.02�0.03), and the screening compounds (0.88�0.2). The
respective top hits have markedly different chemical
structures (Figure 4), which is in agreement with the statisti-
cally significant dissimilarity of the distance distributions
(Mann-Whitney test, P value <10� 4). This result corrobo-
rates computational similarity searching for first-pass hit
identification in drug discovery.
In conclusion, machine learning methods enabled

straightforward virtual screening of existing and computa-
tionally-generated molecules. The newly identified Pim-1
inhibitor 3 highlights the efficiency of this ensemble
similarity approach. In combination with a fast biophysical
binding assay (DSF), the ‘virtual ligand’ method enabled
rapid crystallographic determination of the kinase-ligand

complex. With the X-ray structural data and the de novo
designs at hand, hit-to-lead expansion and optimization of
the initial hit compound by structure-based modeling and
design seems straightforward. Importantly, these molecules
provide motivated working hypotheses for experiment
planning. Given a set of reference compounds, the
approach may serve as a template for rapid hit and lead
finding in medicinal and biological chemistry, complement-
ing the various methods suitable in ‘low-data’ scenarios.[17,18]

Experimental

Software. Software for molecular descriptor calculation
(CATS),[8] self-organizing map training and analysis
(POOMA),[19] target prediction (TIGER),[20] and similarity
searching (inSili.com LLC, Zurich, Switzerland) was run on
an iMac workstation. Parameter settings: CATS: feature
correlation over 0–9 bonds, with type scaling; POOMA: 20×
10 toroidal map, Gaussian neighborhood, random initializa-
tion, linear decay of the learning rate (τinitial=1), 10

9 learning
cycles. De novo design: The RNN-LSTM model for SMILES
generation was obtained from GitHub[21] and optimized for
Pim-1 kinase, as described.[17] Fine tuning was performed

Figure 3. The most frequent atom scaffolds of known Pim-1 kinase inhibitors (left panel), the scaffolds of the 100 top-ranking screening
compounds (middle panel), and the scaffolds of the 100 top-ranking de novo generated molecules (right panel). The relative frequency of
each scaffold is given in percent.
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over 40 epochs with 10-fold data augmentation; up to
5,000 new SMILES strings were sampled from each model
state after 10, 20, 30, and 40 epochs, at a sampling
temperature of 0.7. Generated SMILES strings were stand-
ardized and duplicates removed. Data analysis was per-
formed with Prism 8.4.0 software (GraphPad Software LLC,
San Diego, CA, USA).

Screening compounds. Compounds 1, 2, and 4 (cat. no.
E157-4091, L010-0223, G952-3305) were ordered from
ChemDiv Inc. (San Diego, CA, USA, www.chemdiv.com),
compound 3 (cat. no. LEG 22312959) was ordered from
Asinex Corp. (Delft, The Netherlands, www.asinex.com).
Solid compound samples were dissolved in 100% dimethyl
sulfoxide and used without further purification (>90+

/� 5% purity as specified by the supplier).
Differential scanning fluorimetry (DSF). Compounds were

tested for stabilizing 0.1 mgml� 1 of recombinant human
Pim-1 kinase (SARomics Biostructures AB, Lund, Sweden),
using a Stratagene MX3000P qPCR instrument (Thermo-
Fisher, Waltham, MA, USA) with SYPRO Orange (Thermo-
Fisher, cat. no. S6650) as reporter dye.

Crystallography. Crystallization of Pim-1 kinase was
performed at a concentration of 20 mgml� 1 in a buffer
consisting of 50 mM Tris pH 7.5, 250 mM NaCl and 5 mM
DTT. The crystal was grown within a couple of days at 4 °C
using an MRC 3-well plate and in a 150+100 nl drop under
the following condition: 1 M sodium acetate, 0.1 M
imidazole pH 6.3. Apo crystals were soaked with 5 mM of
compound 3 for 1 h before they were transferred to a cryo-
solution containing additional 20% glycerol, and then
transferred to liquid N2 for cryo-cooling. A data set of a

soaked Pim-1 crystal was collected at station ID29 in the
European Synchrotron Radiation Facility (ESRF, Grenoble,
France). The diffraction data were processed using Auto-
PROC software to 1.86 Å.[22] The published Pim-1 kinase
structure (PDB ID: 3R04)[23] served as the search model for
structure determination with compound 3, using Phaser
crystallographic software.[24] The structure was refined to
convergence using REFMAC5 software,[25] and model build-
ing was carried out in Coot.[26] The restraints file for the
ligand was generated using Grade [1.2.19] software (Global
Phasing Ltd., Cambridge, UK). Data collection and refine-
ment statistics are provided as Supplementary Information.

Supporting Information

Supporting Information to this article is available online
from the publisher’s site. The X-ray structure of human Pim-
1 in complex with compound 3 is available from the Protein
Data Bank[27] (www.rcsb.org, PDB ID: 6YKD).
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Figure 4. Pharmacophore similarity (CATS topological feature pairs) distributions of the 100 nearest neighbors to the virtual ligand model.
The top-ranking chemical structures from the sets of known actives, screening compounds, and the de novo designs are shown. Box plots
with median, 50% quartile range, min./max. values (known actives, black; screening compounds, red; de novo designs, blue).
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