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Summary

The pandemic 2019 novel coronavirus disease (COVID-19) shares certain clinical
characteristics with other acute viral infections.We studied thewhole-blood tran-
scriptomic host response to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) using RNAseq from 24 healthy controls and 62 prospectively
enrolled patients with COVID-19. We then compared these data to non-COVID-
19 viral infections, curated from 23 independent studies profiling 1,855 blood
samples covering six viruses (influenza, respiratory syncytial virus (RSV), human
rhinovirus (HRV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-
1), Ebola, dengue). We show gene expression changes in COVID-19 versus non-
COVID-19 viral infections are highly correlated (r = 0.74, p < 0.001). However,
we also found 416 genes specific to COVID-19. Inspection of top genes revealed
dynamic immune evasion and counter host responses specific to COVID-19. Sta-
tistical deconvolution of cell proportions maps many cell type proportions
concordantly shifting. Discordantly increased in COVID-19 were CD56bright natu-
ral killer cells and M2 macrophages. The concordant and discordant responses
mapped out here provide a window to explore the pathophysiology of the host
response to SARS-CoV-2.

Introduction

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a

global pandemic, resulting in more than 47.9 million cases and 1,221871 deaths across 235 countries as we

write (WHO, accessed 5 Nov 2020) (Zhou et al., 2020). Contextually, this pandemic has surpassed the severe

acute respiratory syndrome coronavirus 1 (SARS-CoV-1) 2003 pandemic by almost 6000-fold in total cases

whereby SARS-CoV-1 resulted in 8,098 cases, took 12 months to contain, and had a 9.6% mortality rate

(World Health Organization (WHO) accessed 1 Jun 2020). The novel SARS-CoV-2 virus, the causative agent

for 2019 novel coronavirus disease (COVID-19), is highly communicable and despite urgent and resource-

intensive efforts globally, we have no proven vaccine or efficacious treatment available (Callaway, 2020).

Early in a pandemic, it is imperative to understand what is similar in the host response to the novel virus

when compared to other known viruses in order to rapidly rule in or rule out recyclable treatments and/

or vaccination strategies. At the same time, it is also critical to understand the differences in this disease

in order to search for novel therapeutics. The human immune system has evolved over millions of years

to protect the host from microbes (Medzhitov, 2007; Longo et al., 2015). Understanding the overlap, or

lack thereof for the most basic immunological features such as the virus’s ability to inhibit the interferon

response or to infect host cells with an antibody-dependent infection enhancement, can drive medicine

rapidly in a life-saving direction (Jaume et al., 2012; Wang et al., 2016; Mesev et al., 2019; Blanco-Melo

et al., 2020). In the last decade alone, we have already responded to pandemics of H1N1, chikungunya,

Zika, and near-pandemics of two other coronaviruses, SARS-CoV-1 and Middle East respiratory syn-

drome-related coronavirus (MERS), from which valuable insights can be applied (Morens and Fauci,
iScience 24, 101947, January 22, 2021 ª 2020 The Authors.
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2020). COVID-19 clearly shares immunological features with other viral responses, such as interferon acti-

vation, simultaneous repression of immune cells, and changes in metabolism including glucose and iron

regulation as shown by cytokine and cytometry studies (Drakesmith and Prentice, 2008; Blanco-Melo et

al., 2020; Catanzaro et al., 2020; Wilson et al., 2020). Notable features of COVID-19 include high rates of

acute respiratory distress requiring mechanical ventilation; clinical coagulopathy; features of a cytokine

storm and/or viral sepsis, and a high case fatality rate (Tay et al., 2020).

The COVID-19 pandemic has resulted in the halt of normal life across the globe in an attempt to slow the

spread of the virus. Computational methods leveraging data generated prior to the pandemic present an

advantage to push forward the aforementioned knowledge discovery. Studies comparing COVID-19 to

healthy controls (HCs) are useful; however, they do not explain the similarities and differences seen in

the COVID-19 syndrome versus other viral infections; hence, we have leveraged our multicohort, conorm-

alization method to execute a head-to-head comparison of COVID-19 to non-COVID-19 viral infections.

Our approach involves a multi-cohort analysis of transcriptomic host response data to investigate host

inflammation. The core discovery method leverages biological, clinical, and technical heterogeneity across

data sets to identify generalizable disease biomarkers. We have repeatedly demonstrated that host

response can be a generalizable sensitive and specific diagnostic and prognostic marker for presence,

type, and severity of infections (Sweeney et al., 2015, 2016b, 2018a), of note viral infections (Andres-Terre

et al., 2015) but also in autoimmune diseases, vaccination, tuberculosis, cancer, and organ transplant (Li

et al., 2012; Khatri et al., 2013; Chen et al., 2014; Andres-Terre et al., 2015; Sweeney et al., 2015, 2016a,

2016b, 2018a, 2018b; Sweeney and Khatri, 2015; Warsinske et al., 2018a, 2018b; Haynes et al., 2020;

Mayhew et al., 2020). We have shown in methodological work that this method produces results with the

greatest reproducibility in independent cohorts (Sweeney et al., 2017).

In this work, we used RNAseq to profile whole blood samples from 62 patients with COVID-19 prospectively

enrolled in Athens, Greece, together with 24 HCs. We simultaneously compiled a database of clinical viral

infections from 23 studies of >1,800 samples to represent the conserved immune response to a broad

range of viral infections including influenza, respiratory syncytial virus (RSV), human rhinovirus (HRV),

SARS-CoV-1, Ebola, and dengue. We here report on the results of a comparison of host responses to

SARS-CoV-2 and other viruses. Wemapped out their similarities and differences at the gene level, pathway

level, and cell proportion level, as a first step to gain a better understanding of this novel pandemic virus

and demonstrate that a large portion of the response is in fact similar to previous viral infections. This is

immensely valuable as it demonstrates that it is this conserved host response that allows for pandemic pre-

paredness and response. Our implementation of computational methods comparing SARS-CoV-2 to

known circulating viruses yields a COVID-19-specific gene signature for differentiating the host response,

which warrants further investigation.

Results

Differential expression analysis of transcriptome profiles of patients with COVID-19

We prospectively enrolled and sequenced RNAseq fromwhole blood from 62 patients with COVID-19 and 24

HCs (Table 1). Differential expression analysis of 86 peripheral blood samples identified 2,002 differentially ex-

pressed genes (771 over-expressed, 1,231 under-expressed; Figure 1A, Table S2A) with absolute Hedges’ g

effect size (ES) which is the difference between groups as a proportion of variability in the groups (Hedges’

g ES) R 1 and false discovery rate (FDR) %0.05%), referred to as the ‘‘COVID-19 signature’’. We performed

pathway enrichment analysis of the COVID-19 signature usingGeneOntology (GO) terms. The 30most signif-

icant pathways for 771 over-expressed genes included neutrophil activation, innate immune response, im-

mune response to viral infection, type-I interferon signaling, and cytokine production (Figure 1B) and for

1,231 under-expressed genes include lymphocyte differentiation and T-cell activation and regulation (Fig-

ure 1C). These results suggest that, in response to SARS-CoV-2 infection, T cells are suppressed, whereas neu-

trophils are activated as a hallmark of its overwhelming host response represented in the transcriptomic

changes. High neutrophil-to-lymphocyte ratios have been observed as a marker of severity in sepsis, cancer,

and pneumonia (Diao et al., 2020; Lagunas-Rangel, 2020; Liu et al., 2020; Qin et al., 2020).

Identification of host response genes to viral infections through multi-cohort analysis

Based on our previous results (Andres-Terre et al., 2015), we hypothesized that there is a conserved immune

response to respiratory viral infections irrespective of age andgenetic backgroundof a patient or a virus.We
2 iScience 24, 101947, January 22, 2021



Table 1. Baseline characteristics table for patients with COVID-19

Characteristic Patients with COVID-19

N 62

Age in years: median [IQR] (n) 61 [52,70] (61)

Gender = male (%) 40 (65)

SOFA (sequential organ failure assessment) score 2 [1,4] (61)

APACHE II (Acute Physiology And Chronic Health Evaluation II) 6.5 [4,9] (56)

Pneumonia severity index 89.5 [65,104.5] (48)

White blood cell (mm3) 6180 [4910,8420] (59)

Neutrophils 75.5 [65.43,84.13] (59)

Lymphocytes 15.69 [10.5,22.55] (59)

Platelets (k/mm3) 195.2 [158.8, 238.8] (58)

Lactate (mmol/L) 1.55 [1.04,2.08] (30)

pO2.FiO2 (mmHg) 255.35 [112.5,310.8] (50)

Creatinine (mg/dL) 0.9 [0.7,1.015] (58)

PCT (procalcitonin) (ng/mL) 0.1 [0.04,0.41] (49)

CRP (C-reactive protein) (mg/L) 78.85 [29.48,175.8] (60)

Days between onset symptoms and sampling 6 [4,8] (53)

Days between intubation and sampling 1 [0.5, 1.5] (23)

Days between hospital admission and intubation 2 [1, 3.5] (23)

All continuous variables are reported as median and interquartile ranges (IQRs) (n).
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identified 23 studies of acute viral infection and from these selected 14 as our discovery set for a non-COVID-

19 viral signature (Table 2) and 9 were held out for validation. Statistical power analysis (Hedges and Pigott,

2001) found that even with high inter-study heterogeneity, we had more than 80% statistical power at p

value = 0.01 for detecting absolute Hedges’ g ES > 0.43 in these data sets (Figure S2). Themulti-cohort anal-

ysis of 1,324 transcriptome profiles (652 patients with non-COVID-19 viral infections, 672 HCs) from these 14

studies usingMetaIntegrator (Haynes et al., 2017) identified 635 differentially expressed genes (314 over-ex-

pressed, 321 under-expressed). The area under the curve (AUC) of a receiver operator characteristics (ROC)

curve represents the discriminatory ability of the score to correctly identify true positive and/or true nega-

tives. The closer to 1 the value is, the better the performance of the test, for example, a test that can discrim-

inate if a patient or sample is virally infected or healthy. ROC plots for all of the discovery data sets using this

signature illustrate the high sensitivity and specificity this gene list possesses, indicating genes that are

highly discriminatory and hence likely to represent this conserved signature (Figure 2A, Table S2A).We refer

to these 635 genes in short as the ‘‘non-COVID-19 viral signature’’. Similar to the COVID-19 signature, GO

analysis of over- and under-expressed genes in the non-COVID-19 viral signature identified a similar set of

pathways highlighted by neutrophil and T-cell activation, respectively (Figures 2B and 2C).

Validation of host response genes to viral infections in multiple independent data sets

Next, we confirmed that the non-COVID-19 viral signature is conserved across viruses by validating it in

several independent data sets. We calculate the non-COVID-19 viral score for a sample as the difference

in geometric means of over-expressed and under-expressed genes. In four independent studies consisting

of 236 samples (178 viral infections, 58 HCs; Table 3), the score accurately distinguished patients with a res-

piratory viral infection (influenza, HRV, or RSV) from HCs (Figure 3A). Second, we investigated whether the

non-COVID-19 viral signature is observed in other severe viral infections including Ebola, dengue, and

SARS-CoV-1 in five independent studies (50 HCs, 54 SARS-CoV-1, 37 Ebola, 154 dengue). In each study,

the non-COVID-19 viral score also distinguished patients with a viral infection from HCs with high accuracy

(Figure 3B). Third, we tested whether the non-COVID-19 viral signature would also distinguish patients with

COVID-19 from HCs. We calculated the non-COVID-19 viral score for each of 62 patients with COVID-19

together with 24 HCs using the conormalized expression data. We found that non-COVID-19 viral score

separated patients with COVID-19 from HCs with an AUC of 0.96 (Figure 3C), similar to SARS-CoV-1

(AUC = 0.98).
iScience 24, 101947, January 22, 2021 3
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Figure 1. RNA-seq data for patients with COVID-19 versus healthy control and pathway analysis of the COVID-19 signature

(A–C) (A) Significance score [defined as -log10(FDR)] versus mean difference of co-normalized log2-transformed expression data between patients with

COVID-19 (n = 62) and healthy controls (n = 24). The chosen cutoff of ESR 1 or% �1 with FDR%0.05% yields the 2,002 COVID-19 signatures, including 771

positively regulated genes and 1,231 negatively regulated genes. GO term enrichment analysis of positive (B) and negative (C) gene sets reveals increased

neutrophil function enrichment and decreased T-cell-related pathways (gene ratios represent the number of genes in our gene set within that pathway). The

gene ratio (x axis) is the ratio of the number of genes in our data enriched in a given gene set (pathway) to the total number of genes in that pathway.
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Comparison of COVID-19 profile with non-COVID-19 viral infection profile

Next, we investigated similarities and differences in host response to SARS-CoV-2 and other respiratory

viruses by comparing change in expression with respect to HCs across 9,818 genes that were present

across all data sets. When considering the entire transcriptome, there was high correlation (r = 0.74,

p < 0.001) between change in expression in response to SARS-CoV-2 or other respiratory viruses (Hed-

ges’ ES from COVID-19 vs HC comparison is plotted against ES from non-COVID-19 vs HC comparison in

Figure 4A). We visualized ‘‘2,002 COVID-19 signature genes’’ and ‘‘635 non-COVID-19 signature genes’’

in the same ES scatterplot by different colors to highlight their relationships (Figure 4A and Table S2A).

We observe that 7,626 genes uncolored in the middle (gray, with higher density in the center shown by

contours) out of 9,818 profiled (77.7%) are not in the signature genes in either COVID-19 or non-COVID-

19 viral infections. Given the high correlation (r = 0.74), it is not surprising that 223 genes are concor-

dantly over-expressed (Hedges’ g ES R 1, FDR %0.05%), as well as 220 genes concordantly under-ex-

pressed with (Hedges’ g ES % �1, FDR %0.05%). Of the remaining genes from the ‘‘non-COVID-19

signature’’, there are 90 genes over-expressed and 100 genes under-expressed in non-COVID-19; how-

ever, these had ES between �1 and 1 in the distribution of the COVID-19 ESs. As well, of the remaining

genes from the ‘‘COVID-19 signature’’, there are 547 genes over-expressed and 1,010 genes under-ex-

pressed in COVID-19 that had ES between �1 and 1 in the distribution of the non-COVID-19 ESs. We

only found two genes that were completely discordant, thus completely oppositely regulated in

COVID-19 and non-COVID-19 viral infections: Aconitase1 (ACO1) is over-expressed in COVID-19 and un-

der-expressed in non-COVID-19 viral infections and Atlastin GTPase 3 (ATL3) is over-expressed in non-

COVID-19 viral infections and under-expressed in COVID-19. Interestingly, ACO1 is involved in iron

metabolism, and heme appears to be interlinked with COVID-19 pathophysiology (Hopp et al., 2020).

ATL3 is required for endoplasmic reticulum (ER) membrane junctions and may be linked to viral replica-

tion sites (Monel et al., 2019).

Therefore, in order to identify a statistically significant set of genes differentially expressed in patients with

COVID-19 compared to those with other viral infections, we employed COCONUT to conormalize the two

disease types into a single matrix for comparison of 62 patients with COVID-19 versus 652 patients with

non-COVID-19 viral infection. Conormalization with COCONUT allows for pooling of data across data

sets while simultaneously removing batch-to-batch technical variance in a bias-free manner (Sweeney

et al., 2016b). At Hedges’ g | ES| R 1 with FDR %0.05%, we found 416 genes we refer to as the ‘‘COVID-

19-specific gene signature’’, 114 over-expressed and 302 under-expressed in patients with COVID-19

than in those with non-COVID-19 viral infection (Figures 4B, Tables S2A and S2B). To illustrate the gain

in identification of genes to investigate and re-iterate the value in this statistical method, this set of genes

from (b) is highlighted in the same scatterplot from panel a (Figure 4C).
4 iScience 24, 101947, January 22, 2021



Table 2. 14 Data sets used for discovery of the non-COVID-19 viral immune response

Accession Platform First author PMID

Timing of

diagnosis Disease

Total

sample

number

N healthy

controls N viral Age

GSE60244 GPL10558 Suarez NM 25637350 Within 24 hr of

admission

Respiratory viral infection 111 40 71 Adults

GSE40012 GPL6947 Parnell GP 22898401 On admission to

intensive care

unit (ICU)

H1N1 influenza A 24 18 8 Adults

GSE40396 GPL10558 Hu X 23858444 On hospitalization Febrile children with viral

infection

44 22 22 Infants

GSE64456 GPL10558 Mahajan P 27552618 On hospitalization Febrile children with viral

infection

130 19 111 Infants

GSE42026 GPL6947 Herberg JA 23901082 On hospitalization H1N1, RSV 74 33 41 Children

GSE67059 GPL6947 Heinonen S 26571305 Within 48 hr of

admission to

emergency

department(ED)

HRV +/� symptoms 101 21 80 Infants

EMEXP3589 GPL10332 Almansa R 22852767 Within 24 hr of

admission to ICU

Infected chronic

obstructive pulmonary

disease (COPD) in ICU

with viral infections

9 4 5 Adults

GSE82050 GPL21185 Tang BM 28619954 Within 24 hr of

admission

Influenza 39 15 24 Adults

GSE68310 GPL10558 Zhai Y 26070066 Within 48 hr of

acute respiratory

infection onset

Influenza and other

respiratory viral infections

347 243 104 Adults

GSE73461 GPL10558 Wright VJ 30083721 On presentation of

symptoms

Viral infection 149 55 94 Children

GSE111368 GPL10558 Dunning J 29777224 Within 24 hr of

admission

Seasonal flu study,

acute timepoints

163 130 33 Adults

GSE77087 GPL10558 de Steenhuijsen

Piters WA

27135599 Within 24 hr of

hospitalization

RSV 59 18 41 Infants

GSE66099 GPL570 Alder MN;

Sweeney TE

27635771;

25972003

Admission to ICU Viral infection 58 47 11 Children

GSE27131 GPL6244 Berdal J 21781987 On hospitalization Severe flu A 14 7 7 Adult

Total 1324 672 652
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Unlike the ‘‘COVID-19 and non-COVID-19 viral signatures’’, the pathway analysis of this gene set did not

identify any statistically significant GO terms, potentially indicating novel pathophysiology unique to

COVID-19. This combination of genes may include those less well annotated within pathways and thus

less likely to result in statistically significance assignment to a pathway. Nonetheless, top ranked but sta-

tistically insignificant GO terms include muscle contraction, regulation of epithelial cell proliferation, and

biological processes involved in lung and respiratory development for 114 positive genes, as well as path-

ways related to T-cell homeostasis and T-cell differentiation for 302 negative genes. The significance of

these pathways in connection with clinical manifestation needs to be investigated further.
Similarities and differences in pathways between COVID-19 and non-COVID-19 viral infection

We expanded our comparison of significant pathways in response to SARS-CoV-2 versus non-COVID-19

viruses by including all pathways instead of only 30 most significant pathways. We found pathways for

over-expressed genes are highly concordant between patients with COVID-19 and non-COVID-19 viral in-

fections (Figure 5A), pathways for under-expressed genes are discordant (Figure 5B).
iScience 24, 101947, January 22, 2021 5
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Figure 2. Metaintegration of 14 non-COVID-19 viral disease data sets and pathway analysis of non-COVID-19 signature genes

(A–C) (A) ROC plots of the 635 non-COVID-19 viral signatures discovered using multicohort analysis with a cutoff of ES R 1 or % �1 and FDR %0.05%

resulting in 314 positively regulated genes and 321 negatively regulated genes then plotted individually for each of the 14 data sets of viral infections (n =

652) and healthy controls (n = 672) identified. The consistent and high AUC values indicate that the signature is representative of all data sets, thereby

embracing the heterogeneity which will increase generalizability. GO term enrichment analysis of positive (B) and negative (C) gene sets reveals increased

neutrophil function enrichment and decreased T-cell-related pathways, similar to those in Figure 1 (gene ratios represent the number of genes in our gene

set within that pathway).
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To amalgamate these findings, we performed hierarchical clustering of all pathway analysis results of all

gene sets of interest including ‘‘three signature sets’’: (1) COVID-19 vs HC (771 over- and 1,231 under-ex-

pressed), (2) non-COVID-19 viral vs HC (314 over- and 321 under-expressed), and (3) COVID-19 vs non-

COVID-19 viral (114 over- and 302 under-expressed), as well as gene lists from the 9 groups by quadrant

in Figure 4A (Figure 5C, Table S2A). To check the dependency of GO term enrichment results on the cutoffs

for selecting signature genes, we tested three additional cutoffs (less or more stringent than the chosen

one) each for COVID-19 vs HC, non-COVID-19 vs HC, or COVID-19 vs non-COVID-19 comparison. The re-

sults for over-expressed, under-expressed, and all genes from each cutoff together with the 9 gene sets

from Figure 4A show amerging and comprehensive picture of pathway analysis results (Table S3, Figure S3),

allowing one to focus on pathways of interest, either commonly significant across gene sets or uniquely sig-

nificant in a gene set or a combination of genes of interest.

Similarities and differences in changes in immune cell proportions between COVID-19 and

non-COVID-19 viral infection

We estimated proportions of 25 immune cell types in bulk gene expression in blood samples from patients

with COVID-19 or non-COVID-19 viral infections using immunoStates. In patients with COVID-19, we found

immune cells from myeloid lineage (M1 macrophages, neutrophils, and MAST cells) increased significantly

(FDR %10%) and lymphoid cells (CD4+ and CD8+ alpha-beta T cells, B cells) decreased significantly (FDR

%10%) during viral infection (Figure 6A, Table S4). These results are in line with recent reports demon-

strating increased neutrophil and decreased T-cell counts in patients with COVID-19 (Diao et al., 2020;

Liu et al., 2020; Qin et al., 2020). In patients with non-COVID-19 viral infections, we observed significant in-

crease in proportion for myeloid cells (M1 macrophages, CD14 + monocytes, MAST cells) and significant

decrease in proportion for lymphoid cells (CD4+ and CD8+ T cells, gamma-delta T cells, B cells) (Figures

6B and S4). Indeed, when considering changes within each data set, M1 macrophages, plasmacytoid den-

dritic cells, CD14 + monocytes, CD4+ T cells, and total T cells showed change consistently in the same di-

rection across all viral infections including COVID-19 (Figure 6B).

We observed an overall correlation of 0.493 (p = 0.017) for change in cellular proportions in patients with

COVID-19 compared to non-COVID-19 viral infections (Figures 6C, Table S4), where all but 6 cell types

changed in the same direction, though not all changes were statistically significant. We again observed

increased neutrophil and decreased T-cell counts in COVID-19 which is in line with a recent study that

compared COVID-19 to the 2009 H1N120. Cell types that increased in COVID-19 relative to non-COVID-

19 were CD56bright natural killer (NK) cells, M2 macrophages, and total NK cells. Those that decreased in

non-COVID-19 relative to COVID-19 were CD56dim NK cells, memory B cells, and eosinophils. Although

change in memory B cells was not statistically significant, the direction of change is expected as patients
6 iScience 24, 101947, January 22, 2021



Table 3. Data sets for validation of the non-COVID-19 viral versus healthy signature

Accession Platform First author PMID Timing of diagnosis Disease

Total

sample

number

N healthy

controls N viral Age

GSE117827 GPL23126 Yu J 30339221 Within 24 hr of

hospitalization

HRV 24 6 18 Children

GSE20346 GPL6947 Parnell G 21408152 At peak symptoms Influenza 37 18 19 Unknown

GSE34205 GPL570 Ioannidis I 22398282 Within 42–72 hr of

hospitalization

Influenza/

RSV

101 22 79 Infants

GSE103842 GPL10558 Rodriguez-

Fernandez R

29045741 Within 24 hr of

hospitalization

RSV 74 12 62 Infants

Total 236 58 178

GSE5972 GPL4387 Cameron MJ 17537853 Within 24 hr of

hospitalization

SARS (CoV1) 64 10 54 Adults

GSE122692 GPL16686 Reynard S 30626757 Within 24 hr of

hospitalization

Ebola 45 8 37 Adults

EMTAB3162 GPL570 van de Weg CA 25768297 On admission Dengue 36 15 21 Adults and

children

GSE51808 GPL13158 Kwissa M 24981333 On admission Dengue 37 9 28 Adults and

children

GSE38246 GPL15615 Popper SJ 23285306 Within 24 h of

hospitalization

Dengue 113 8 105 Children

Total 295 50 245

aindicates data sets not eligible for COCONUT
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with non-COVID-19 infection are highly likely to have memory to those viruses, whereas SARS-CoV-2 is a

novel coronavirus with no pre-existing memory in the population. Similar findings are reported when the

absolute cell counts were measured by flow cytometry in smaller patient populations20.
Discussion

Understanding the pathophysiology of COVID-19 is critical to finding new treatments. Defining the portion

of the host response to a novel pandemic virus that is similar to current circulating viral infections is imper-

ative as treatment options are unknown and vaccines non-existent in the early months and thus repurpos-

ing drugs that have passed the United States Food and Drug Administration (FDA) safety trials can poten-

tially be informed here. Simultaneously, identifying the biology of the host response that is not similar to

circulating viruses may help rank the order with which drugs are repurposed if they do not bolster areas

of the immune system succumbing to a virus for which we have no direct immune memory or offer novel

targets for new drugs. Here, we take a host response transcriptomics approach using peripheral blood

transcriptomics of the immune response to COVID-19 (n=62) compared to 652 non-COVID-19 viral infec-

tions spanning 6 viruses. While the vast majority of the host immune response appears to be similar be-

tween COVID-19 and other viruses, valuable information under pandemic circumstances, our study high-

lights some key differences.

The scatterplot of the correlation of the differential expression (relative to HCs) of non-COVID-19 viral in-

fections versus COVID-19 infections illustrates this large proportion of concordance and seemingly small

amount of discordance (Figure 4). We found only two genes,ACO1 andATL3, that were expressed in oppo-

site directions using this method. ACO1 was over-expressed in COVID-19 versus HC and under-expressed

in non-COVID-19 viral infections versus HC, whereas ATL3 entirely oppositely regulated (Figure 4). Viral

replication can occur in infected cells due to a hinderance of the function of the immune cells drawn in

to kill infected cells; as well, there are reports of SARS-CoV-1 and SARS-CoV-2 directly infecting immune

cells themselves (Gu et al., 2005; Hu et al., 2012; Pontelli et al., 2020). As our data are from whole blood

RNA, we cannot conclude precisely which of these mechanisms are responsible for the shifts in these

genes’ expression; however, prior reports suggest that both genes may be involved in viral replication
iScience 24, 101947, January 22, 2021 7
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Figure 3. Validation of a global host immune response to viral infections

(A) ROC performance of 635 non-COVID-19 signatures in 4 independent respiratory viral infection data sets including HRV, RSV, picornavirus, and influenza.

(B) ROC performance in 5 additional cohorts of other viral infections to illustrate that this signature is broadly applicable to many viruses [Ebola (GSE122692),

SARS CoV-1 (GSE5972), and dengue (GSE38246, EMTAB3162, GSE51808)].

(C) The signature is also tested in the 62 patients with COVID-19 and 24 HCs.
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and immune evasion. ACO1 is an iron-sulfur protein that regulates ferritin and transferrin. When cellular

iron levels are low, the protein binds to iron-responsive elements, which represses translation of ferritin

(a protein that stores iron), and simultaneously stabilizes the normally rapidly degraded transferrin receptor

mRNA allowing for translation of the receptor and more cellular uptake of iron, which is required for pro-

liferation (Koeller et al., 1989). High levels of ferritin are also indicative of macrophage activation syndrome

and have been observed in patients with COVID-19 (Ravelli, 2002; Bataille et al., 2020; Dimopoulos et al.,

2020; Giamarellos-Bourboulis et al., 2020). ATL3 is a member of the integral membrane GTPases. Proper

formation of ER tubules is affected by mutations in this gene. Viruses are known to target host organelles

to enter a host cell and avoid destruction (Inoue and Tsai, 2013). Lack of ATL3 results in delayed cargo exit

and coat assembly for budding from the ER which is necessary for export of cytokines and chemokines in

response to infection; ATL3 has been linked directly to viral replication in Zika (Monel et al., 2019), although

Zika was not studied here.

The power of using COCONUT to combine heterogeneous data sets allowed for a pooled, head-to-head

comparison of COVID-19 with non-COVID-19 viral infections, resulting in a 416 gene ‘‘COVID-19-specific

gene signature’’ (Table S2B). Interestingly, the differentially expressed genes in this analysis were not en-

riched for any GO terms. However, there is bias in the annotation of gene ontologies to those that are

heavily annotated and studied, often referred to as the ‘‘streetlight effect’’, so absence of evidence does

not denote evidence of absence of coordinated differential response (Haynes et al., 2018a, 2018b; Tomczak

et al., 2018). Conversely, this novel combination of genes with these particular effect sizes warrants further

investigation as a potential route for novel discoveries (Damelin et al., 2017; Haynes et al., 2018b). Simply

reviewing what is known of the immunological function of the top two over- and top two under-expressed

genes ranked by Hedges’ g ES contextualizes ACO1 and ATL3 further with hints of a battle of host versus

‘‘novel’’ pathogen, never encountered by the immune system before. The impact on the function of host

immune cells during SARS-CoV-1 and MERS infection is driven by their non-structural proteins and affects

the normal production of cytokines compared to that of currently circulating viral infections, such as the

repression of interferon proteins/ interferons (IFNs) (Hu et al., 2012; Shah et al., 2020). Recently, Blanco-

Melo et al. revealed a dysregulated host response indicative of reduced innate antiviral defenses coupled

with excessive cytokine production using cell lines, ferrets, and correlating with two deceased patients with

COVID-19 (Blanco-Melo et al., 2020), a phenomenon of novel virus escapemechanisms from host defenses,

of which we complement here with even larger numbers of entirely human data.

The most under-expressed gene in the ‘‘COVID-19-specific gene signature’’ is ZC3H13. Knocking this gene

down was associated with less RNA methylation N6-methyladenosine (m6A), an epigenetic modification

commonly found in the viral RNA genomes of hepatitis C virus (HCV), Zika, dengue, yellow fever, and

West Nile virus (Wen et al., 2018). Depletion of m6A methyltransferases increase HVC viral particle
8 iScience 24, 101947, January 22, 2021



Correlation coefficient = 0.74 (p < 0.001)

ES  Non−COVID−19 Viral vs HC

E
S 

C
O

V
ID

−
19

 v
s 

H
C

1 547 223

100 90

220 1010 1

ACO1

ATL3

E
S 

C
O

V
ID

−
19

 v
s 

H
C

114 genes

302  genes

ACO1

ATL3

COVID-19 vs non−COVID-19COVID-19 vs non-COVID-19

−
Lo

g
10

(F
D

R
)

302 genes 114  genes

ACO1

ATL3

A B C

Figure 4. Comparison of COVID-19 signature with non-COVID-19 signature

(A) Scatterplot of effect size for all 9,818 genes commonly present in all data sets between non-COVID-19 vs HC (x axis) and COVID-19 vs HC (y axis). Two

thousand two COVID-19 signature genes from Figures 1 and 635 non-COVID-19 signature genes from Figure 2 are overlayed and colored, each of the 9

quadrants have a different color to allow for easy visualization of the overlap of Hedges’ g ES from each signature. For example, teal in the top right quadrant

are the genes that have an Hedges’ g ES R 1 for both the 2,002 COVID-19 signature genes and the 635 non-COVID-19 signature genes. Concordant host

response between COVID-19 and other viral infections is reflected by 223 commonly positively (teal, top right) and 220 negatively (blue, bottom left)

regulated genes in both. Discordant response is only seen in ACO1 whose expression is positively regulated in COVID-19 but negatively regulated in non-

COVID and in ATL3 whose expression is negatively regulated in COVID-19 but positively regulated in non-COVID-19.

(B) Using COCONUT conormalized data combined with a head-to-head comparison of COVID-19 and non-COVID-19 viral infections using Hedges’ g ESR 1

or % �1 with FDR %0.05% yields 416 COVID-19-specific signatures, including 114 positively regulated genes and 302 negatively regulated genes.

Significance score [defined as -log10(FDR)] vs mean difference of co-normalized log2-transformed expression data between patients with COVID-19 (n = 62)

vs other viral infections (n = 652).

(C) To illustrate the overlap of (A) and (B), the 416 COVID-19-specific signature genes from head-to-head comparison in (B) are shown in the same scatterplot

in (A).
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production (Gokhale et al., 2016), which would implymore SARS-CoV-2 viral replication.ATL3 asmentioned

is also included in the ‘‘COVID-19-specific gene signature’’ and is under-expressed in COVID-19. When

ATL3 was knocked down, there was less Zika replication, implying that the under-expression is a host coun-

teractive protective mechanism. The secondmost under-expressed gene is AMIGO1, a gene for which very

little is known; however, recent studies on this family of genes (Kuja-Panula et al., 2003) suggest a cell adhe-

sion function. Cell adhesion molecules are a key component of combatting pathogen infections, without

which the host may not mount an appropriate response (Etzioni, 1996). Since the ‘‘COVID-19-specific

gene signature’’ is derived from direct comparison of COVID-19 versus non-COVID-19 infections,

ZC3H13, AMIGO1, and ATL3 under-expressed in COVID-19 equates to higher expression in non-COVID-

19 infections. One possible interpretation of this under-expression of ZC3H13 and AMIGO1 in COVID-19

that could be investigated in future studies is that this novel virus may be inhibiting their expression to

escape the host responses that are otherwise functional for previously circulating viral infections.

If indeed the under-expression of ATL3 in the ‘‘COVID-19-specific gene signature’’ illustrates the tipping

scales between the microbe and host and similar to Zika infections, less of this gene expression results

in less viral replication; this would imply a protective mechanism rather that host immune evasion. In

fact, coronaviruses bud into the ER-Golgi intermediate compartment and in MERS, the C-terminal domain

of the M protein was found to contain a trans-Golgi localization signal (Perrier et al., 2019); thus, the role of

ATL3 as a way to control viral protein budding presents an exciting avenue for future work. Further to which,

the top two over-expressed genes of the ‘‘COVID-19-specific gene signature’’ are coiled-coil and C2

domain containing 2A (CC2D2A) and human homeostatic iron regulator or high FE2+ (HFE). CC2D2A plays

a critical role in cilia formation (Veleri et al., 2014). Primary cilia microtubule-based sensory organelles that

detect mechanical and chemical stimuli are found in almost all cells in the body (Garcia-Gonzalo and Reiter,

2012). Following T-cell receptor signaling, the ciliary trafficking machinery is used to provide spatial control

of immune synapses at the interface with the antigen-presenting cell for signaling (Stephen et al., 2018).

HFE is a non-classical major histocompatibility (MHC) protein (HLA-H). Mutations disable the ability of

this protein to bind b2-microglobulin, a component of the HLA class I molecule, which normally present

peptides derived from cytosolic proteins; stagnating presentation of peptide loaded MHC class I
iScience 24, 101947, January 22, 2021 9
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Figure 5. Summary of pathway analysis results

Scatterplots of the significance level from pathway enrichment analysis between COVID-19 and non-COVID-19 viral infections obtained for positive genes in

(A) and negative genes in (B), respectively. Significance is defined as -log10(BH-corrected p value) for each pathway. The concordance is seen in results for

up-regulated genes between COVID-19 and non-COVID-19, while a degree of discordance is evident in down-regulated genes between COVID-19 and non-

COVID-19. (C) Heatmap summary of pathway enrichment analysis for 15 gene sets of interest including COVID-19 vs HC (+) and (�), non-COVID-19 viral vs

HC (+) and (�), COVID-19 vs non-COVID-19 viral (+) and (�), as well as gene lists from 9 groups segmented in Figure 4A as labeled in the legend key box.

Values between 1 and 10 of -log10(BH-corrected p value) are plotted. ur, up-regulated; dr, down-regulated.
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molecules at the cell surface (Hollerer et al., 2017). While largely responsible for presenting ‘‘endogenous’’

peptides, during viral infection, this class of HLA is responsible for loading of viral peptides at the ER and

trafficking those to the cell surface (Hollerer et al., 2017). HFE is essential in this function as these peptides

are presented to T cells or NK cells. The two genes, therefore, are both involved in an effective immune

signaling between virally infected cells and the host. HFE is pleotropic in function, and it binds with the

transferrin receptor thus reducing affinity for iron loaded transferrin, resulting in less cytoplasmic iron (Ta-

neri et al., 2020). ACO1 is bifunctional as well, a key modulator of mitochondrial iron metabolism, and it is

also an essential enzyme in the Krebs cycle (Wood, 2006). Iron metabolism and ATP production are essen-

tial for the function of the cell and the proliferation of immune cells. Here, we observe over-expression of

CC2D2A, HFE, and ACO1 in COVID-19 infections and lower expression in non-COVID-19 previously circu-

lating infections. We interpret this COVID-19 over-expression of genes not intensely involved in non-

COVID-19 infections as avenues for future exploration as possible counteractive measures for the novel im-

mune evasion eluded to by the under-expression of ZC3H13 and AMIGO1 described above.
10 iScience 24, 101947, January 22, 2021
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Figure 6. Statistical deconvolution of bulk transcriptome profiles using immunoStates of COVID-19 versus non-COVID-19 viral infections

(A) Changes in cell proportions when comparing patients with COVID-19 to healthy controls. Note the trends of increased neutrophil and decreased T-cell

proportions (median and interquartile range [IQR]).

(B) Heatmap of changes in cell proportions of all data sets: non-COVID-19 and COVID-19.

(C) Concordant and discordant changes in cellular proportions comparing COVID-19 to non-COVID-19 viral infections. Cell types that increased in COVID-

19 (hence decreased in non-COVID-19) were CD56bright NK cells, M2macrophages, and total NK cells. Those that decreased in non-COVID-19 but increased

in COVID-19 were CD56dim NK cells, memory B cells, and eosinophils.
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All of these genes and their functions need to be molecularly investigated to determine their true role;

here, we use them as an illustration of both novel immune evasion and immune defense systems. These

measures and counter measures will likely be somewhat different for each patient as they progress through

the disease. We see in this cohort gene expression indicative of a beneficial host response whereby HLA

class I molecules present viral peptides to the host response for identification and destruction via over-

expression of HFE and CC2D2A, carefully managed iron metabolism and energy production via HFE

and ACO1. However, how much over-expression is needed in order to overcome the SARS-CoV-2 virus

is not known, and not surprisingly, there are trials underway for the use of pegylated interferon alpha in pa-

tients with COVID-19 (2020). This drug is FDA approved for treatment of viral infections such as HCV (Tan et

al., 2004; Nile et al., 2020) and showed promise in combination with ribavirin in patients with MERS (Omrani

et al., 2014), as one of its mechanisms of action increases MHC class I function (Nile et al., 2020).

Within this signature, we also find genes commonly studied in cancer (e.g. TP53, AKT, VEGF, and CYCS).

Interestingly, primary cilia house a number of oncogenic molecules including smoothened, KRAS,
iScience 24, 101947, January 22, 2021 11
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epidermal growth factor receptor, and platelet-derived growth factor receptor (Jenks et al., 2018), and

thus, the role in the immune response to COVID-19 would need further investigation. Of the 416

COVID-19-specific genes, we also observe multiple superfamily members of ATP-binding cassette trans-

porters, which facilitate the interaction of multiple immune cells with various classes of lipids. In macro-

phages and lymphocytes, this alters the plasticity of the cell, dampening the immune response to viral in-

vasion (Hubler and Kennedy, 2016). As well as ZC3H13, this gene set includes many other zinc finger

proteins. Zinc (Zn2+) homeostasis in the cell is tightly regulated as viruses need Zn2+ for newly synthesized

viral proteins (Lazarczyk and Favre, 2008).

In place of GO terms directly derived from our ‘‘COVID-19-specific gene signature’’, Figure 5 illustrates the

comparison of COVID-19 versus HC to non-COVID-19 versus HC GO terms. We found many downregu-

lated pathways are discordant when comparing to HCs. Within these, a cluster of pathways that are high

in COVID-19 and low in non-COVID-19 viral infections involve ribosome-related processes. In SARS-

CoV-1 infections, it was determined that viral nsp1 disrupts ribosomal translation of host mRNA while al-

lowing viral translation to continue (Huang et al., 2011). An opposite cluster of pathways that are high in

non-COVID-19 viral infections and low in COVID-19 positively regulate cell-cell adhesion, cell activation,

leukocyte activation, and immune response-activating cell surface receptor signaling, suggesting a less

effective immune response in patients with COVID-19. Of particular interest was the observation that while

both diseases had enriched GO terms for type-1 interferon signaling pathways, the significance of this

enrichment was lower in COVID-19 (Figure 5). The inspection of the 6 genes abovemirrors these discordant

pathway findings, supporting the concept of novel biology specific to COVID-19 within a largely similar

response to other viruses.

Interestingly, the immune cell proportions are mostly consistent across COVID-19 and non-COVID-19 data

sets. Our results are in line with several recent studies that found high neutrophil-lymphocyte ratio in pa-

tients with COVID-19 (Diao et al., 2020; Lagunas-Rangel, 2020; Liu et al., 2020; Qin et al., 2020). Expansion

of CD56bright NK cells is common in many viral infections, as part of recognizing and killing virally infected

cells while orchestrating adaptive immune responses (Vivier et al., 2008). Comparing patients with COVID-

19 to HCs shows an increase in NK cells (Figure 6A), largely driven by the CD56bright population. When

compared to non-COVID-19 viral infections, the increase in NK cell (via CD56bright NK cell) proportion re-

mains high in the COVID-19 infections. This phenomenon was also directly observed using mass spectrom-

etry to measure cell abundance over time in patients with COVID-19 and when considering factors most

explanatory in those that recovered the cells that were the most dynamic included CD56dim NK cells

(Sun et al., 2020).

When comparing COVID-19 to non-COVID-19 viral infections, we see M1 macrophage proportions are

similar to those of other viral diseases, but the elevated M2 response is discordant. M1 macrophages

are pro-inflammatory and kill invaders, whereas M2 macrophages are considered anti-inflammatory and

reparative. A large body of work in bacterial sepsis found that individuals with high M1 profiles had

increased mortality, whereas those with a more evenly balanced M1/M2 were more likely to survive (Benoit

et al., 2008). However, in general, monocytotropic viruses including SARS-CoV-1 have evolved mechanisms

to interfere with effectivemacrophage polarization (Hu et al., 2012), favoring theM2 population for immune

evasion. For example, virus-inducedmacrophage depletion is executed by viruses that carry pro-antiapop-

totic proteins, thus initially reducing the number of M1s to skew population to M2 and avoid attack, and

then further suppress the production and action of type I IFNs, stunting the progression of M1macrophage

polarization (Laura C Miller, 2015). This shift we see in the proportion of M2 macrophages in COVID-19

versus non-COVID-19 viral infections indicates that this novel pathogen may be executing these immune

evasion techniques with a high degree of success. We see that eosinophils and CD56dim natural killer

(NK) cells are lower in COVID-19 versus non-COVID-19 infections, which replicated in a system-level study

over time using mass cytometry and Olink assays where both cell types increased in abundance from a low

level at the acute phase to a normal level in the recovery phase (Rodriguez et al., 2020). As well, decreased B

cell and increased M2 macrophage cells were observed in a study of 3939 patients with COVID-19 from

China and pose many avenues for novel therapies (Wang et al., 2020).

In conclusion, we here provide bulk RNAseq profiling of peripheral blood in COVID-19 in comparison to

HCs which we derived a signature of 2002 genes for investigation of the biology and potentially pathophys-

iology of this disease, the ‘‘COVID-19 signature genes’’. We compiled an extensive database of
12 iScience 24, 101947, January 22, 2021
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non-COVID-19 viral infections across many platforms, ages, diseases, and locations globally to compare to

HCs using metaintegration to derive a set of 635 genes representing the host response to known viral path-

ogens, the ‘‘non-COVID-19 signature genes’’. We then used COCONUT to conormalize all of the data and

directly compare COVID-19 to non-COVID-19 viral infections resulting in a signature of 416 genes, the

‘‘COVID-19-specific gene signature’’. We used all of these analyses to identify both the similarities and dif-

ferences in the underlying host response. While we found that a large proportion of the host response is

similar to that of other infections, we also identified key differences in individual genes, pathways, and

cellularity that are suggestive of the clinical differences observed in COVID-19. The genes ACO1 and

ATL3 were identified as an intersect of gene signatures for COVID-19 versus HCs and non-COVID-19 versus

HCs, which were further contextualized when considering the top ranking genes of the novel ‘‘COVID-19-

specific gene signature’’, suggesting we have illuminated novel biology of the host immune response to a

totally novel viral infection, but our findings will need to be replicated in further clinical studies. In summary,

COVID-19 gene expression is highly correlated with known viral infection gene expression and has similar

shifts in the immune cell proportions known to play a role in viral response but also shows discordant shifts

in immune cells that are novel and reflect other recent publications, key information at the onset of a

pandemic to leverage our prior and mounting viral infection knowledge. Our computational methods al-

lowed for a head-to-head comparison of COVID-19 and non-COVID-19 viral infection resulting in a novel

416 gene signature, of which many of the genes with the largest Hedges’ g ES have well-known immune

functions; however, GO terms were not significant suggesting the magnitude and combination of

the genes that discriminate the host response to this novel virus can be disseminated to the scientific

community at large to investigate whether this novel combination of genes yields any targetable

pathophysiology.
Limitations of the study

Our study has some limitations due to the design of using public data for non-COVID-19 comparison. First,

due to the limited nature of clinical studies during a pandemic, we had just 62 patients with COVID-19

compared to >650 with other viral infections, creating class imbalance in their comparison. Second, we

did not investigate effects of severity on host response as this was mostly unavailable. It is possible that

differences in severity between this COVID-19 cohort and the other viral cohorts was a confounder in

our analysis. Third, we analyzed differential expression at single pre-set significance and effect size thresh-

olds. Choosing different thresholds (e.g., thresholds based on 80% statistical power in each analysis) would

have identified different sets of differentially expressed genes. We provide Hedges g ES and FDR values for

all genes (Table S2A) to enable re-analysis of these genes based on thresholds that others may deemmore

appropriate. Figure S3 is also provided to show the GO term enrichment results by varying cutoffs.
Resource availability

Lead contact

Timothy E Sweeney, MD, PhD, tsweeney@inflammatix.com, 863 Mitten Rd, Suite 104, Burlingame, CA

94010.

Material availability

This study did not generate any new unique reagents and/or materials.

Data and code availability

The publicly available studies can be accessed on GEO under their respective study IDs. The COVID-19

cohort is deposited in the Gene Expression Omnibus (GEO) database: GSE152641. Results were generated

using R packages COCONUT and MetaIntegrator; both methods have been published and are publicly

available R packages. The RNAseq pipeline used to process COVID-19 cohort is described in the methods

section.

Additional supplemental items including Transparent Methods are available from Mendeley Data: https://

doi.org/10.17632/t4twwtvv7r.1.
Methods

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101947.
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Supplementary Figure 1. Effect size of DESeq and post COCONUT voom transformed 
expression data correlate, related to Figure 1. 
Supplementary Figure 2. Power Analysis. non-COVID-19 (n=652) versus healthy 
controls (n=672), related to Table 2 and Figure 2. 
Supplementary Figure 3. Heatmap of significance score defined as -log10(P-adjusted) 
from GO term enrichment analyses. Columns contain 45 gene sets including three gene 
gets (pos, neg, and all) each from COVID-19 vs HC, non-COVID-19 vs HC, or COVID-19 
vs non-COVID-19 comparisons with the chosen cutoff and 3 more or less stringent 
cutoffs, together with 9 gene sets from Figure 4A (see Supplementary Table 4). Rows 
represent 252 GO terms filtered from a total 8422, in 10 groups by k-means. Related to 
Figure 4.  
Supplementary Figure 4. Forest plots of cell deconvolution estimates for all studies 
where estimation was possible (median and interquartile range (IQR)), related to Figure 
6.



Supplementary Figure 1. Effect size of DESeq and post COCONUT voom transformed 
expression data correlate.
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term enrichment analyses. 
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Supplementary Figure 4. Forest plots of cell de-
convolution estimates for all studies where esti-
mation was possible (median and interquartile 
range (IQR))
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    ALL POS NEG Comment 
COVID vs 
HC 
comparison           

Chosen 
cutoff 

|ES|>= 1.0 & 
FDR < 0.05% 2,002 771 1,231 

 COVID-19  
signature 

Test cutoff 
|ES|>= 1.2 & 
FDR < 0.05% 1,062 418 644   

Test cutoff 
|ES|>= 1.5 & 
FDR < 0.05% 338 148 190   

Test cutoff 
|ES|>= 1.8 & 
FDR < 0.05% 88 38 50   

non-COVID 
vs HC 
comparison           

Test cutoff 
|ES|>= 0.8 & 
FDR < 0.05% 1,251 559 692   

Chosen 
cutoff 

|ES|>= 1.0 & 
FDR < 0.05% 635 314 321 

non-COVID-
19 viral 

signature 

Test cutoff 
|ES|>= 1.2 & 
FDR < 0.05% 317 179 138   

Test cutoff 
|ES|>= 1.5 & 
FDR < 0.05% 84 59 25   

COVID vs 
non-COVID 
comparison           

Test cutoff 
|ES|>= 0.6 & 
FDR < 0.05% 1,750 643 1,107   

Test cutoff 
|ES|>= 0.8 & 
FDR < 0.05% 830 272 558   

Chosen 
cutoff 

|ES|>= 1.0 & 
FDR < 0.05% 416 114 302 

COVID-19-
specific 
genes 

Test cutoff 
|ES|>= 1.2 & 
FDR < 0.05% 199 45 154   

 
 
 
 
 
 
 



 
 
 
 
 
 

Concordant and discordant between COVID vs HC and non-COVID vs HC 

Group 

Change 
in  COVID 

vs HC  

 Change 
in COVID 
vs HC  

 # 
Genes Comment 

G1 
 under-

expressed 
 over-

expressed 
                            
1  

under- in non-COVID and over- in 
COVID: gene ACO1 

G2 
un-

changed 
 over-

expressed 
                      
547  over-expressed only in COVID 

G3 
over-

expressed 
 over-

expressed 
                      
223  concordantly over-expressed in both 

G4 
 under-

expressed 
un-

changed 
                      
100  under-expressed only in non-COVID 

G5 
un-

changed 
un-

changed 
                 
7,626  unchanged in both 

G6 
over-

expressed 
un-

changed 
                         
90  over-expressed only in COVID 

G7 
 under-

expressed 
 under-

expressed 
                      
220  

concordantly under-expressed in 
both 

G8 
un-

changed 
 under-

expressed 
                 
1,010  under-expressed only in COVID 

G9 
over-

expressed 
 under-

expressed 
                            
1  

over- in non-COVD and under- in 
COVID: gene ATL3 
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Cell_type effectSize_Vvs
HC_discovery 

effectSizePval_V
vsHC_discovery 

effectSizeFDR_V
vsHC_discovery 

effectSize_CO
VID_RNAseq 

effectSizePval_
COVID_RNAseq 

effectSizeFDR_
COVID_RNAseq 

hematopoietic_
progenitor -0.100 4.69E-01 5.10E-01 na na na 

monocyte 0.333 7.55E-02 8.99E-02 0.037356319 0.87652478 0.87652478 

CD14_positive_
monocyte 0.643 2.49E-08 1.56E-07 0.252959215 0.294325632 0.350616078 

CD16_positive_
monocyte -0.592 2.38E-03 4.97E-03 -0.046220905 0.8475549 0.87652478 

macrophage_m
0 -0.133 6.62E-01 6.78E-01 -0.717995492 0.003630674 0.010438188 

macrophage_m
1 1.686 1.46E-06 4.44E-06 0.778568269 0.001690821 0.005555553 

macrophage_m
2 -0.860 6.23E-03 1.20E-02 0.277036473 0.251080557 0.320825156 

myeloid_dendrit
ic_cell 1.176 4.82E-02 6.69E-02 0.147697164 0.539442115 0.590817555 

plasmacytoid_d
endritic_cell 1.729 1.19E-07 5.97E-07 0.247456957 0.304883546 0.350616078 

granulocyte 0.461 3.06E-02 4.77E-02 0.862896132 0.000547814 0.002099952 

MAST_cell 0.346 1.22E-06 4.34E-06 1.05765339 3.17E-05 0.000243023 

basophil -0.110 6.78E-01 6.78E-01 -0.386601363 0.110580827 0.195643002 

eosinophil 0.185 2.55E-02 4.25E-02 -0.64034035 0.009112743 0.02328812 

neutrophil 0.486 2.00E-02 3.57E-02 0.88885828 0.000381853 0.002099952 

natural_killer_c
ell -1.242 3.54E-07 1.47E-06 0.358153451 0.138925266 0.211711188 

CD56bright_nat
ural_killer_cell -1.212 1.60E-06 4.44E-06 0.427431699 0.078226784 0.149934669 

CD56dim_natur
al_killer_cell 0.353 5.79E-02 7.62E-02 -0.28855208 0.232075462 0.313984449 

B_cell -1.017 1.00E-04 2.28E-04 -0.574249089 0.018865325 0.043390247 

memory_B_cell 0.452 6.36E-02 7.96E-02 -0.351391802 0.146437667 0.211711188 

naive_B_cell -1.323 1.04E-15 1.30E-14 -0.446724386 0.065922016 0.137836942 

plasma_cell 0.162 1.23E-01 1.40E-01 0.350652985 0.147277348 0.211711188 

T_cell -1.234 9.76E-18 2.44E-16 -1.909044387 1.48E-11 2.48E-10 

CD4_positive_a
lpha_beta_T_c

ell 
-1.072 3.02E-13 2.52E-12 -1.887953367 2.15E-11 2.48E-10 

CD8_positive_a
lpha_beta_T_c

ell 
-0.476 3.59E-02 5.28E-02 -0.864275406 0.000537496 0.002099952 

gamma_delta_
T_cell -1.546 2.46E-05 6.15E-05 na na na 
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Transparent Methods 

SAMPLE ACQUISITION AND PROCESSING 

COVID-19 samples from Hellenic Sepsis Study Cohort 

A total of 76 adult patients with SARS-CoV-2 pneumonia were prospectively enrolled 

from April 1st to May 4th by department participating in the Hellenic Sepsis Study 

Group (www.sepsis.gr).  Patients were enrolled within the first 24 hours of hospital 

admission using inclusion criteria of identification of  a new lower respiratory tract 

infection due to COVID-19 defined as the presence of new infiltrate in chest X-ray or 

chest computed tomography indicative  of COVID-19 in a patient without any contact 

with any healthcare facility the last 90 days. SARS-Cov-2 was detected by positive 

molecular testing of respiratory secretions. For patients who required mechanical 

ventilation (MV), blood sampling was performed within the first 24 hours from 

MV(Giamarellos-Bourboulis et al., 2020). Exclusion criteria were infection by the human 

immunodeficiency virus, neutropenia, and any previous intake of immunosuppressive 

medication (corticosteroids, anti-cytokine biologicals, and biological response 

modifiers). The studies were conducted under approval number 30/20 by the National 

Ethics Committee of Greece. Written informed consent was provided by patients or by 

first-degree relatives in cases where patients were unable to consent. 

Whole blood was drawn in PAXgene tubes at enrollment along with other standard 

laboratory parameters. Data collection included demographic information, clinical 

scores (SOFA, APACHE II), laboratory results, length of stay and clinical outcomes. 

Patients were followed up daily for 30 days; outcomes were defined as severe 

respiratory failure (PaO2/FiO2 ratio less than 150 requiring MV) or death. PAXgene 

Blood RNA samples were shipped to Inflammatix for processing.  

Healthy control sample sourcing 

Blood RNA tubes were prospectively collected from healthy controls (HC) through a 

commercial vendor (BioIVT) under IRB approval (Western IRB #2016165) using 

informed consent. Donors were verbally screened to have no inflammation, infection, 

illness symptoms, (including no fever or antibiotics within 3 days of sampling) or to be 

immunocompromised. These samples were drawn prior to July 15, 2019, at least 6 

months before the first COVID-19 case reported in the US.  All samples were tested and 

negative for HIV, West Nile, Hepatitis B, and Hepatitis C by molecular or antibody-

based testing.  The age (median and interquartile range (IR) was 36 (29-45.25) and was 

70.8% male.  

http://www.sepsis.gr/


 

RNA extraction protocol 

Prior to processing, samples in PAXgene Blood RNA tubes from 76 COVID-19 patients 

and 24 healthy controls were removed from -80C to thaw at room temperature for two 

hours. The samples were then inverted several times to achieve homogeneity, after 

which 3 mL aliquots were removed for processing. RNA was extracted from these 

samples using a modified version of the RNeasy Mini Kit (QIAgen) protocol executed 

on the a QIAcube automated workstation. PAXgene samples comprise of whole blood 

in PAXgene stabilizing solution.  The sample is diluted with PBS, then centrifuged at 

3,000 x g to pellet precipitated nucleic acids. Pellets were washed with molecular 

biology grade water and again pelleted via centrifugation at 3,000 x g. Pelleted material 

is resuspended in Buffer RLT (QIAgen). Using the automated QIAcube, samples are 

then subjected to treatment by Proteinase K and gDNA elimination via columns 

(QIAgen). Flow-through was mixed with isopropanol and passed over a MinElute 

(QIAgen) spin column. The column was washed with 80% ethanol and purified nucleic 

acid was eluted in RNase-free water. Purified RNA was heat denatured at 55° C for 5 

minutes, then snap-cooled on ice. RNA was quantitated using a Qubit fluorimeter with 

the Quant-iT RNA Assay kit (Thermo-Fisher). Samples with an RNA integrity number 

(RIN) below 7 (BioAnalyzer, Agilent) did not proceed to sequencing, resulting in 62 

COVID-19 samples and 24 HC samples for sequencing. 

 

RNAseq library preparation 

Total RNA samples were depleted of globin RNA using the GLOBINclear kit 

(Invitrogen) following the procedure described by the manufacturer. Globin-depleted 

RNA was quantified using the Qubit RNA High Sensitivity kit (Life Technologies) and 

10ng of globin-depleted RNA was then used for rRNA depletion and RNAseq library 

preparation using the SMARTer Stranded Total RNAseq kit v2 Pico Input Mammalian 

(Takara Bio) following the manufacturer’s protocol. RNAseq libraries were then 

quantified using the Qubit dsDNA High Sensitivity kit (Life Technologies) and their 

quality and size evaluated by a Fragment Analyzer High Sensitivity Small Fragment kit 

(Agilent Technologies).  

 

RNA sequencing  

A total of 86 RNAseq libraries generated above were pooled and sequenced on an 

Illumina NovaSeq6000 Sequencing System (Illumina) in a paired-end fashion (2 x 100 

cycles). 41 M to 124 M paired-end reads were obtained for each sample obtained for 

each sample. Fastq files were used as input for RNAseq data processing. Library prep 

and sequencing were performed at TB-SEQ (Palo Alto, CA). 

 

 



 

DATA PROCESSING AND ANALYSIS 

 

RNAseq data processing 

Trimming: Quality control (QC) assessment of the reads was done using 

FastQC(Andrews S, 2018). The adapter sequence and 3 bases on the 3’ end of the reads 

was trimmed using cutadapt as a commonly used procedure(Martin, 2011). 

Alignment: Trimmed reads were mapped to a reference genome index generated based 

on the human genome, GRCh38, and a transcriptome reference, GENCODE v32 

primary assembly gtf(Frankish et al., 2019) with the sjdbOverhang option set to 100 

(default), using STAR aligner (v2.7.3a). 

Quantitation: Mapped reads were quantified as per Ensembl transcript ID as defined in 

GENCODE v32 annotation. Reads were summed across Ensembl transcript IDs 

mapping to Entrez gene IDs in order to compare them with other viral data assayed by 

microarrays (AnnotationDbi from Bioconductor)(Pagès et al., 2017). 

Data Quality: Various QC metrics prior to and post trimming were examined to assess 

data quality as a standard procedure for RNAseq data. Additionally, the distributions 

of raw and trimmed counts were assessed and Principal Component Analysis (PCA) 

with various cutoffs was performed for QC. All 86 samples passed standard QC metrics 

and the resulting counts matrix (12,142 Entrez genes by 86 samples) was used in 

subsequent data integration steps (Supplementary Table 1). 

 

Normalization and voom transformation of RNAseq counts 

Low-expressed genes were filtered using the following cutoff: max counts per million 

(CPM) less than 5 across all 86 samples. Normalization factors were obtained using 

edgeR’s Trimmed Mean of M values (TMM) method (R package v.3.28.0) (Robinson, 

McCarthy and Smyth, 2009). The voom method  (limma R package v.3.41.18) was then 

used to transform counts into normalized log2-CPM (Supplementary Figure 1)(Ritchie 

et al., 2015).  

 

Non-COVID-19 viral dataset selection 

Transcriptomic data of clinical respiratory infections caused by viruses other than 

SARS-CoV-2 were surveyed from Gene Expression OmniBus (GEO) and ArrayExpress 

for inclusion to define a conserved host response signature for non-COVID-19 viral 

infection. We identified 23 such independent datasets that profiled a total of 1,855 

peripheral blood samples (PBMCs or whole blood) from patients (infants, children, or 

adults) with one of six viral infections (influenza, RSV, HRV, Ebola, Dengue, SARS-

CoV-1, but not SARS-CoV-2). Collectively the 23 datasets comprised of 780 samples 

from healthy controls and 1,075 from patients with a viral infection represent biological, 



clinical, and technical heterogeneity observed in the real-world patient population with 

viral infections.  

 

Non-COVID-19 viral dataset processing 

Raw microarray data for each dataset was renormalized (when available) using 

standardized methods. Affymetrix arrays were renormalized using the robust multichip 

average (RMA) method. Illumina, Agilent, GE, and other commercial arrays were 

renormalized via normal-exponential background correction followed by quantile 

normalization. Data were log2-transformed. Probe to gene (Entrez ID) summarization 

was performed within each study using the mean signal intensity for probes mapping 

to a single gene. While there is no consensus in the community, we have used this 

method across a multitude of studies, being that if more than one probe mapped to a 

specific gene, probes were summarized with a fixed-effects model because a gene 

within a sample can have only one expression value(Ramasamy et al., 2008). 

 

COCONUT conormalization of all data sets 

Of the 23 non-COVID-19 viral infections datasets, 20 datasets with a total of 879 viral 

infected patients and 754 HCs met the criteria for conormalization: 1) the dataset must 

have HCs, and 2) the dataset was obtained on a single-channel microarray platform. 

The split between discovery and validation is driven first, by computational technicality 

whereby the 3 datasets that are not COCONUT conormalized automatically are held 

out for validation. Second, we held out pandemic and non-respiratory viral infections 

(eg. Dengue) for test of the signature as a type of “global” viral signature. Third, of the 

remaining respiratory/ non-pandemic we split as per described best practices(Sweeney 

et al., 2017) in concert with similar distribution of the types of viruses in discovery and 

validation.  

 

Integrated with the voom-transformed RNAseq dataset for COVID-19, they were 

conormalized together using COCONUT (R package v. 1.0.2) (Sweeney, Wong and 

Khatri, 2016). COCONUT uses COMBAT empiric-Bayes conormalization on healthy 

controls to derive correction factors for diseased patients. The technique integrates 

datasets such that (i) no bias is introduced to the diseased samples, (ii) there is no 

change to the distribution of a gene within a study, and (iii) each gene shares the same 

distribution across healthy controls between studies after normalization. This 

COCONUT conormalized expression data comprising of a total of 941 (COVID-19 and 

non-COVID-19) viral patients and 778 HCs across 9,818 genes common across 11 

platforms were used as input data to perform the following multicohort and integrated 

analyses.  

 



COVID-19 versus healthy control comparison 

Hedges’ g effect size (ES)(Hedges and Olkin, 1985) for each gene was calculated for 

COVID-19 (62) versus HC (24) two-group comparison test from the COCONUT 

conormalized output. Hedges’ g is the difference between groups as a proportion of 

variability in the groups and is calculated as:  

𝑔 =  
(�̅�1 − �̅�2)

𝑆𝑝𝑜𝑜𝑙𝑒𝑑
 

Whereby �̅�1 and �̅�2 are sample means in two groups. This is divided by the “within- 

groups” standard deviation which is Spooled 

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2
 

Where 𝑛1 and 𝑛2 are the sample sizes in the two groups, and 𝑆1 and  𝑆2 are the 

respective standard deviations. The estimation of effect size for smaller studies is 

corrected with J.  

𝐽 = 1 −
3

4𝑑𝑓 − 1
 

P-value was calculated using a student’s t-test and adjusted using the Benjamini-

Hochberg method to obtain the False Discovery Rate (FDR). Hedges’ g ES threshold of  

1 or  -1 in combination with FDR threshold of  0.05% was used to identify genes 

whose expressions are over- or under-expressed in COVID-19 infected patients than in 

the mean value of HCs (see Detailed Meta-Analysis section below for an expanded 

description). 

 

Non-COVID-19 viral versus healthy controls comparison 

14 datasets composed of 1,324 whole blood and PBMC samples were chosen for the 

discovery cohort, of which 652 were from respiratory viral infected patients (viral) and 

672 samples were from HCs patients. As a multi-cohort analysis with conormalized 

data as input, we utilized a well-established MetaIntegrator (version 2.1.1)(Haynes et al., 

2017). Briefly, Hedges’ g ES was computed for each gene within a study between viral 

and HC. ESs for genes across studies was summarized using the DerSimonian & Laird 

random-effects model, where each ES is weighted by the inverse of the variance in that 

study(DerSimonian and Laird, 2015) (Supplementary Methods). We used an ES 

threshold  1 or  -1 with FDR  0.05% to identify signature genes (Supplementary 

Table 2). 

 

Validation of non-COVID-19 viral infection signature 

The signature genes identified based on 14 discovery datasets were evaluated for 

prediction of viral infections from HC with a score calculated for each sample using the 

following formula:  



 

𝑣𝑖𝑟𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 =  𝑧𝑠𝑐𝑜𝑟𝑒(𝐺𝑒𝑜𝑀𝑒𝑎𝑛(𝑝𝑜𝑠) − 𝐺𝑒𝑜𝑀𝑒𝑎𝑛(𝑛𝑒𝑔)) 

 

The score is a rescaled difference between geometric means of positive (over-expressed) 

genes and negative (under-expressed) genes. Receiver-operating characteristics (ROC) 

plots are generated for held out validation datasets and the Area Under the ROC (AUC 

or AUROC) is used as a performance metric.   

For validation of the non-COVID-19 viral signature, we compiled 9 datasets comprised 

of 6 held out from the COCONUT expression data, plus 3 normalized as per platform 

requirements without COCONUT (Table 3).  We then tested this signature first using 4 

datasets comprising of 178 respiratory viral infection samples and 58 HCs (236 total) 

(Table 3). We then further validated this signature in 5 datasets of other viral etiology 

(245 viral and 50 HC, 295 total) (Table 3).  

 

COVID-19 versus non-COVID-19 viral Comparison 

Hedges’ g ES was calculated for each gene in a COVID-19 (62) and non-COVID-19 viral 

(652) two-group comparison test from the COCONUT conormalized expression data. P-

value was calculated using a Welch’s t-test assuming unequal variance and sample sizes 

and adjusted using the Benjamini-Hochberg(Benjamini and Hochberg, 1995) method to 

obtain the False Discovery Rate (FDR). ES threshold  1 or  -1 in combination with FDR 

threshold of  0.05% was used to identify signature genes.  

 

PATHWAY AND IMMUNOSTATES ANALYSIS 

 

Pathway Analysis 

Each over- or under-expressed gene set from comparisons between COVID-19 vs HC, 

non-COVID-19 viral infection vs HC, and COVID-19 vs non-COVID-19 viral infection 

was subjected to a pathway analysis with Gene Set Enrichment Analysis 

(GSEA)(Subramanian et al., 2005).  We tested significance of over-representation of 

genes in each of the pathways reflected in Gene Ontology (GO) including biological 

process (BP), molecular function (MF), and cellular compartment (CC). The human 

transcriptome reference is used as background and the p-values from the hyper-

geometric test were adjusted using the Benjamini-Hochberg method(Benjamini and 

Hochberg, 1995). Top-ranked pathways common between COVID-19 and non-COVID-

19, and specific separately to COVID-19 or non-COVID-19 viral infections were 

selected. 

 

ImmunoStates Analysis 

A statistical deconvolution method was used to estimate the percentage of 25 immune 

cell types in the peripheral blood transcriptome data (Bongen et al., 2018; Vallania et al., 



2018). Statistical deconvolution estimates the percentage of various cell types present in 

a blood transcriptome profile. It uses a set of pre-defined genes that represent cell types 

of interest, called a basis matrix, and a variant of linear regression to make estimates. 

Previously, it was demonstrated that different methods produce highly correlated 

estimates of cellular proportions once basis matrix is fixed(Vallania et al., 2018). Here, 

immunoStates (MetaIntegrator) was used as a basis matrix because it has been shown to 

reduce the effect of the biological and technical heterogeneity in transcriptome data on 

statistical deconvolution and identify robust changes in immune cell 

proportions(Bongen et al., 2018; Roy Chowdhury et al., 2018; Vallania et al., 2018; Scott et 

al., 2019). The 14 non-COVID-19 viral discovery datasets and the COVID-19 dataset 

were deconvolved separately, then change in proportion of a given cell type between 

healthy controls and the infected patients of each dataset was estimated.   

 

 

DETAILED META-INTEGRATION STATISTICAL METHODS 

 

The use of Hedges’ g (Hedges, 1981; Hedges and Olkin, 1985) effect size (ES) stems from 

a need for the standardized mean difference to transform all effect sizes to a common 

metric, and thus enables us to include different outcome measures in the same 

synthesis. To estimate the standardized mean difference (g) can be calculated as  

 

𝑔 =  
(�̅�1 − �̅�2)

𝑆𝑝𝑜𝑜𝑙𝑒𝑑
 

 

 

Whereby �̅�1 and �̅�2 are sample means in two groups.  

This is divided by the “within- groups” standard deviation which is Spooled 

 

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2
 

 

Where 𝑛1 and 𝑛2 are the sample sizes in the two groups, and 𝑆1 and  𝑆2 are the 

respective standard deviations.  

The estimation of effect size for smaller studies is corrected with J.  

By pooling the two estimates of the standard deviation results in a more accurate 

estimate of their common by including the variance as well as the means.  

Hedges (1981) determined that there is a small bias in d (namely Cohen’s d) (Cohen, 

1988) in small sample sizes, resulting in the addition of a correction factor J  



𝐽 = 1 −
3

4𝑑𝑓 − 1
 

 

Whereby the df used to estimate 𝑆𝑝𝑜𝑜𝑙𝑒𝑑  in two independent groups for example would 

be  

𝑛1 + 𝑛2 − 2.  J is always less than one and as samples sizes increase, J becomes closer to 

1 and thusly impacts smaller sample sizes appropriately without major adjustment in 

large sample sizes. This is ideal in meta-analysis where the sizes of the studies available 

often vary.  

 

Thus a gene’s Hedges’ g effect size represents the difference between groups 

transformed as a common metric taking into account the proportion of variability in the 

groups.  

 

This dovetails with the MetaIntegration methods we have developed (MetaIntegrator R 

package v. 2.1.1)(Haynes et al., 2017), whereby to then pool these effect sizes across 

datasets, the summary effect size gs is calculated using a random effects model: 

 

𝑔𝑠 =  
∑ 𝑊𝑖𝑔𝑖

𝑛
𝑖

∑ 𝑊𝑖
𝑛
𝑖

 

 

Where n is the number of datasets, Wi is a weight equal to 
1

(𝑉𝑖+𝑇2)
 , where Vi is the 

variance of that gene within a given dataset I and T2 is the inter-dataset variation 

estimated using the DerSimonian- Liard method(DerSimonian and Laird, 2015), 

determined to be optimal for our methods but may be further investigated by each 

individual research group (Sweeney et al., 2017).  

 

Standard error for the summary effect size is derived with  

 

𝑆𝐸𝑔𝑠
= √

1

∑ 𝑊𝑖
𝑛
𝑖

 

 

 

From which a p-value is calculated and corrected for using the Benjamini-

Hochberg(Benjamini and Hochberg, 1995) false discovery rate (FDR) correction for 

multiple hypotheses. Fisher’s method is used for combining p-values across the studies 

as the log sum of  

 



𝐹𝑢𝑝 = −2 ∑ log (𝑝𝑖)

𝑛

𝑖

 

 

For up-regulated genes and again for down regulated genes, these are again corrected 

with the Benjamini- Hochberg method.  

 

Genes can then be filtered based on ES, ES FDR, Fisher’s FDR and if desired, 

MetaIntegrator allows for the inclusion of genes that meet these criteria in a leave one 

dataset out analyses and can further be queried for Cochrane’s Q value for evaluating 

heterogeneity of effect size estimates between studies:  

 

𝑄 = ∑ 𝑊𝑖 (𝑔𝑖 − 𝑔𝑖)2

𝑛

𝑖

 

 

 

Allowing for the user to increase the number of genes to pursue perhaps in the case of 

biological interest or restrict the number of genes when searching for predictive 

signatures in a disease type (Haynes et al., 2017; Sweeney et al., 2017).  
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