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1  |  INTRODUC TION

The International Association for the Study of Pain (IASP) defines 
chronic pain as pain that persists for more than 3 months without 
biological value1 and persists past normal tissue healing. Chronic 
pain is a highly debilitating condition that influences all aspects of 
daily life in social and career-related contexts.2 Opioids are powerful 
analgesics that are commonly used clinically. However, opioids can 
produce significant side effects, including respiratory depression, 
mental clouding, physical dependence, constipation, nausea, and 
vomiting.3,4 The pharmacological tools currently available for treat-
ing chronic pain are severely inadequate or, as in the case of opioids, 
limited by serious side effects.5 Thus, efforts are needed to pursue 
research on innovative, nonopioid, pain-relieving compounds.

Despite rapid advances over the past decades, the pathogenesis 
of chronic pain remains unclear.6-8 However, inflammation, oxidative 

stress, synaptic plasticity, and mitochondrial dysfunction are gradu-
ally being considered the primary causes of chronic pain.9,10 Sirtuins 
are an evolutionarily highly conserved class of nicotinamide adenine 
dinucleotide (NAD+)-dependent histone deacetylases that partic-
ipate in many important cellular biological processes.11 Sirtuin 1 
(SIRT1) is the best-studied member of the sirtuin family because of 
its crucial role in many biological processes, including DNA repair 
and apoptosis, muscle and fat differentiation, neurogenesis, mito-
chondrial biogenesis, glucose and insulin homeostasis, hormone se-
cretion, cell stress responses, and circadian rhythms.12-15  SIRT1 is 
expressed in various tissues and cells in vivo, including the central 
nervous system, cardiomyocytes, hepatocytes, glomerular cells, and 
skeletal muscles.12 Under physiological conditions, SIRT1 is pres-
ent in the nucleus and cytoplasm and acts mainly in the nucleus to 
deacetylate transcription factors such as peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α), p53, forkhead box O, 
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studies have indicated that SIRT1 activation may exert positive effects on chronic 
pain relief by regulating inflammation, oxidative stress, and mitochondrial dysfunc-
tion. Therefore, SIRT1 agonists may serve as potential therapeutic drugs for chronic 
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and nuclear factor-kappa B (NF-κB).16 Growing evidence has shown 
that SIRT1 plays an important role in reducing inflammation and 
oxidative stress and in improving mitochondrial function.17-19 Thus, 
SIRT1  may be a promising therapeutic target in the treatment of 
chronic pain.

Lower expression levels of SIRT1 have been observed in the spi-
nal cord of various pathological pain models.20-22 Serum SIRT1 levels 
were negatively correlated with pain scores in patients with chronic 
pain. Zhang et al. found that the expression level of SIRT1 in the dor-
sal root ganglia (DRG) is related to pain vulnerability. SIRT1 interacts 
with the ClC-3 channel and mediates ClC-3  membrane trafficking 
and Cl-currents in DRG neurons.23 SIRT1 deacetylates RelA/p65 to 
inhibit the nuclear translocation of NF-κB, thus inhibiting inflam-
mation.24 Intrathecal injection of a lentiviral vector overexpressing 
SIRT1 was shown to alleviate mechanical allodynia or thermal hy-
peralgesia.25 SIRT1 overexpression mediated by the lentiviral vec-
tor suppressed interleukin (IL)-1 beta-induced extracellular matrix 
degradation and cell apoptosis, alleviating the low back pain caused 
by intervertebral disk degeneration.24 Accumulating evidence has 
demonstrated that enhanced synaptic plasticity of nociceptive inter-
neurons in the spinal dorsal horn is the basis of central sensitization 
in neuropathic pain.26-28 SIRT1 may influence nociceptive plasticity 
by enhancing translation in sensory neurons.29-31 Moreover, SIRT1 
is involved in the development of nociceptor sensitization and cen-
tral sensitization.32-35 Previous studies have suggested a strong as-
sociation between SIRT1 and chronic pain, indicating that targeting 
SIRT1 may lead to novel therapeutic interventions for the manage-
ment of chronic pain. Moreover, SIRT1 activators have exhibited re-
markable efficacy and safety against numerous diseases.36,37 Here, 
we review the current evidence on the role of SIRT1 in the generation 
of chronic pain caused by peripheral nerve injury, chemotherapy-
induced peripheral neuropathy, spinal cord injury, bone cancer, and 
complete Freund's adjuvant (CFA) injection.

2  |  SIRT1 AND NEUROPATHIC PAIN

Chronic neuropathic pain is caused by a lesion or disease of the 
somatosensory nervous system. The pain may be spontaneous or 
evoked as an increased response to a painful stimulus (hyperalgesia) 
or a painful response to a normally nonpainful stimulus (allodynia). 
Chronic neuropathic pain can be divided into chronic peripheral 
neuropathic pain and chronic central neuropathic pain.38 Chronic 
peripheral neuropathic pain is commonly observed in trigeminal 
neuralgia, chronic neuropathic pain after peripheral nerve injury, 
and postherpetic neuralgia. Chronic central neuropathic pain is 
commonly observed in spinal cord injuries, multiple sclerosis, and 
brain injuries. Various animal models have been established to ex-
plore the mechanisms of neuropathic pain with different etiolo-
gies, including peripheral nerve injury, spinal cord injury (SCI), and 
chemotherapy-induced peripheral neuropathy. Scientists have con-
ducted numerous basic research studies using animal models to elu-
cidate the mechanisms underlying neuropathic pain. Inflammatory 

responses, oxidative stress, immune system dysfunction, and epi-
genetic changes are considered to be involved in the pathogenesis 
of neuropathic pain.39-44 SIRT1  has been reported to play a key 
role in neuropathic pain caused by peripheral nerve injury, SCI, and 
chemotherapy-induced peripheral neuropathy.45-49

2.1  |  SIRT1 and peripheral nerve injury

Most studies have used animal models of peripheral nerve injury to 
explore the relationship between SIRT1 expression and neuropathic 
pain. Recent research has demonstrated that SIRT1 plays a critical 
role in the pathogenesis of neuropathic pain. Chronic constriction in-
jury (CCI) was induced using the method described by Bennett and 
Xie.50 Yin et al. observed significantly lower paw withdrawal thresh-
olds (PWT) and thermal withdrawal latency (TWL) in rats in the CCI 
group than in those in the sham group, verifying the successful devel-
opment of mechanical allodynia and thermal hyperalgesia. Moreover, 
they noticed that SIRT1 levels were remarkably lower in the ipsilat-
eral spinal cords of rats after CCI than those in sham-operated rats.51 
Given that SIRT1 consumes NAD and releases nicotinamide (NAM), 
they further investigated the effect of CCI surgery on NAD and NAM 
levels. In contrast to the sham group, the NAD content was lower and 
the NAM content was higher in CCI mice, which was consistent with 
the difference in SIRT1 levels.52 Additionally, compared with human 
bone marrow mesenchymal stem cell (hMSC)-control implantation, 
intrathecal injection of hMSCs overexpressing SIRT1 (hMSCs-SIRT1) 
exerted superior effects on alleviating neuropathic pain in CCI rats 
by reducing proinflammatory cytokine levels in the serum and spi-
nal dorsal horn.17 These results indicate that SIRT1 may be involved 
in the development of neuropathic pain following CCI. Resveratrol 
(3,49,5-trihydroxystilbene), a phytoalexin naturally present in plants, 
binds to SIRT1 at the N-terminus, thus increasing SIRT1 activity.53 
Intrathecal injection of 5 mL 90 mM resveratrol 1 h before CCI sur-
gery54,55 delayed the initiation of thermal hyperalgesia and mechani-
cal allodynia.51 In addition, EX-527 (6-chloro-2, 3, 4, 9-tetrahydro-1-H
-carbazole-1-carboxamide), a SIRT1 inhibitor that is more potent and 
selective than other current SIRT1 inhibitors, can induce p53 acetyla-
tion and cell death by targeting SIRT1.56,57 Shao et al. demonstrated 
that intrathecal injection of 5 mL EX-527 (1.2 mM) 1 h before resvera-
trol administration effectively blocked the antinociceptive effect of 
90 mM resveratrol.52 These results suggest that SIRT1 may be a major 
factor in the analgesic effects of resveratrol. However, the underlying 
molecular and cellular mechanisms have not been clearly investigated.

Adenosine 5′-monophosphate (AMP)-activated protein kinase 
(AMPK), is a ubiquitous kinase regulated by a variety of pharmaco-
logical entities.58 AMPK has been found to play a role in neuronal 
function, plasticity, and neurodegeneration as an “energy sensor.” 
Recently, Melemedjian et al. reported that AMPK activation could 
inhibit the development of neuropathic pain.59 Interestingly, SIRT1 
is downstream of AMPK.60 Troxerutin, a derivative of the natural fla-
vonoid rutin, relieved neuropathic pain in CCI rats.61 Gui et al. found 
that daily treatment with troxerutin after CCI significantly increased 
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the expression and activity of SIRT1 and phosphorylation of AMPK 
in the spinal cord. However, EX-527 decreased the levels of pAMPK 
and SIRT1 and reversed the effect of troxerutin on the pain thresh-
olds of each group. This proved that troxerutin perturbs the devel-
opment of neuropathic pain mainly through the activation of the 
AMPK/SIRT1 pathway.61 AMPK and SIRT1 have also been reported 
to inhibit the NF-κB pathway.62-65 NF-κB, a member of the NF-κB/
Rel protein family, is a fast-inducing transcription factor. In the acute 
phase of inflammation, mitochondria produce excess reactive oxy-
gen species (ROS) that further activate NF-κB to induce the expres-
sion of proinflammatory mediators, aggravating the inflammatory 
response and resulting in damage to the organism.66,67 Excessive 
ROS-mediated oxidative stress aggravates pain by activating the 
NF-κB pathway.68,69 SIRT1 inhibits the NF-κB signaling pathway by 
deacetylating p65, a subunit of NF-κB, thereby alleviating inflamma-
tory responses and oxidative stress.70 A subsequent study found that 
persistent hyperalgesia and allodynia caused by CCI were associated 
with downregulation of SIRT1 in the spinal cord, which was reversed 
after intrathecal injection of the SIRT1 agonist, SRT1720. Injection 
of SRT1720 alleviates neuropathic pain by inhibiting the acetylation 
of NF-κB and blocking the release of inflammatory factors, including 
tumor necrosis factor-α (TNF-α) and interleukin (IL)-6.71 These data 
suggest that SIRT1 in the spinal cord plays an important role in neu-
ropathic pain in rats.

There is emerging evidence that aberrant immune system re-
sponses contribute substantially to the generation of neuropathic 
pain.72 Immune cells respond to nerve injury by migrating into the 
nervous system at the site of injury, releasing mediators that affect 
intercellular signaling.73 Although the precise role of immune cells 
in neuropathic pain remains unclear, adoptive transfer of immune 
cells can increase pain by producing proinflammatory cytokines. In 
addition, the transfer of cells decreases pain sensitivity in nerve-
injured rats by producing anti-inflammatory cytokines.74 In particu-
lar, the T cell response is considered a critical inducer of neuropathic 
pain.75,76 Regulatory T cells (Tregs) are a subset of T cells, defined by 
the expression of CD4 and CD25 and the transcription factor fork-
head box-p3 (Foxp3), which is indispensable for the maintenance of 
self-tolerance and immune homeostasis.77,78 In animal models of pe-
ripheral nerve injury, the expansion of Tregs leads to a considerable 
reduction in pain hypersensitivity by limiting the immune responses 
of proinflammatory T cells. However, depletion of Tregs elevates 
pain hypersensitivity by inducing altered systemic concentrations 
of cytokines in mice.72,79 SIRT1 directly colocalizes with Foxp3 and 
mediates its deacetylation and polyubiquitination, and Foxp3 is the 
master regulator of Treg differentiation.80,81 In vitro data show that 
knockdown of SIRT1 in human CD4+ T cells induces Treg differen-
tiation and increased Foxp3 mRNA expression, indicating that a de-
crease in SIRT1 expression contributes to an increase in Treg cells in 
patients with neuropathic pain.82 MicroRNA (miR)-124a and miR-155 
both regulate SIRT1 expression by directly targeting specific binding 
sites within the 3′ untranslated region (3′-UTR) of SIRT1. Jens et al. 
found that patients with neuropathic pain had higher expression 
of miR-124a than that in healthy volunteers, and miR-155 inhibited 

SIRT1 expression, which enhanced CD4+ T cell differentiation to-
wards Tregs.82 These studies indicate that SIRT1 may exert its ef-
fects on neuropathic pain by regulating Treg induction. Deciphering 
miRNA-target interactions that influence inflammatory pathways in 
neuropathic pain may contribute to the discovery of new avenues 
for pain amelioration.

Previous studies have shown that SIRT1 protein, mRNA, and ac-
tivity levels are lower in the spinal cord of diabetic neuropathic pain 
(DNP) rats.83 A well-known SIRT1 activator, resveratrol, has been 
reported to ameliorate pain in diabetic neuropathy.51 It was also 
found that SRT1720 (an activator of SIRT1) suppresses thermal hy-
peralgesia and mechanical allodynia in DNP rats. Moreover, knock-
down of spinal SIRT1 causes thermal hyperalgesia and mechanical 
allodynia in normal rats. These studies indicate that there might 
be an association between SIRT1 modulation and type 2 diabetes 
mellitus (T2DM)-induced pain.83 SIRT1 may act as a promising mo-
lecular target for pain prevention and relief in patients with T2DM. 
A growing number of studies have demonstrated that alterations in 
gene expression due to epigenetic changes, such as anomalous his-
tone acetylation in pain-related genes in neurons, play a key role in 
the development and maintenance of neuropathic pain.84-87 Histone 
acetylation is regulated by histone acetyltransferases and histone 
deacetylases, such as SIRT1.88 The induction of pain is dependent 
on the activation of certain ion channels in pain perception path-
ways. mGluR1 and mGluR5 are group I metabotropic glutamate re-
ceptors (mGluRs), which play vital roles in nociceptive processing by 
increasing the opening of cation channels, such as Ca2+, Na+, and 
K+ channels.89,90 mGluR1 expression is regulated by histone 3  ly-
sine 9 (H3K9) acetylation at the Grm1 (encoding mGluR1) promoter 
region.91 Zhou et al. found that the expression of mGluR1/5 was 
higher in animals with DNP than in control rats, and the increased 
expression of mGluR1/5 was decreased by intrathecal injection of 
SRT1720.20 Interestingly, they also found that intrathecal injection 
of SRT1720 reduced pain-induced H3 acetylation in the Grm1/5 
promoter regions. These results indicate that SIRT1 attenuates DNP 
by inhibiting histone acetylation in the Grm1/5 promoter regions 
and subsequently inhibiting transcription.20 A recent study reported 
that SIRT1 also alleviated DNP by regulating synaptic plasticity of 
spinal dorsal horn neurons.29 In the spinal dorsal horn of DNP rats, 
decreased SIRT1 expression is associated with enhanced structural 
synaptic plasticity. Upregulation of spinal SIRT1 by the SIRT1 activa-
tor SRT1720 relieves pain behavior and inhibits enhanced structural 
synaptic plasticity in rats.29 These results demonstrate that SIRT1 
plays an important role in rat DNP. Therefore, targeting SIRT1 may 
represent a novel therapeutic approach for neuropathic pain in-
duced by T2DM.

2.2  |  SIRT1 and chemotherapy-induced 
peripheral neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN) is a common 
consequence of several antineoplastic agents that can severely 
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affect patients’ long-term quality of life. However, the mechanisms 
underlying CIPN remain unclear.92,93 Paclitaxel is a widely used 
chemotherapeutic drug, and one of its most common side effects 
is dose-dependent painful neuropathy. Paclitaxel-induced neuro-
pathic pain (PINP) affects the quality of patients’ lives and still lacks 
an effective treatment.94,95 Several studies have demonstrated that 
spinal neuroinflammation is linked to the formation of PINP. Li et al. 
reported that NF-κB (p65)-dependent histone 4 (H4) acetylation el-
evates the production of proinflammatory factors such as CX3CL1.96 
Thus, H4 acetylation may be a potential target in the treatment of 
PINP. SIRT1 activation has been reported to decrease H4 acetyla-
tion (particularly at H4-K16) and relieve neuropathic pain.97 Rats 
were intraperitoneally injected with paclitaxel (8 mg/kg) for 3 days 
(D1, D4, and D7) to establish PINP models. The cumulative dose of 
paclitaxel was 24 mg/kg.98 Gui et al. found that paclitaxel treatment 
inhibited SIRT1 activity in the spinal cord.99 They also found that 
icariin treatment considerably alleviated paclitaxel-induced neuro-
pathic pain and reversed paclitaxel-induced SIRT1 downregulation 
and H4-K16 acetylation. Furthermore, EX-527 eliminated the anal-
gesic effect of icariin while blocking icariin-induced SIRT1 upregu-
lation and H4-K16 deacetylation. This indicates that SIRT1 plays a 
crucial role in icariin-induced effects. Icariin suppresses paclitaxel-
induced neuroinflammation and mechanical allodynia in a SIRT1-
dependent manner. Thus, icariin could be a potential agent for the 
treatment of PINP.

Vincristine (Vin) is another well-known antitumor agent that fre-
quently induces neuropathic pain and decreases the quality of life 
of patients. Xie et al. found that SIRT1 activity and expression were 
significantly lower in the sciatic nerve, spinal cord, and DRG of rats 
in the Vin group than in the naive group.100 The rhizome of Gastrodia 
elata Blume (G. elata) is used as a traditional herbal medicine. 
Polysaccharides (GBP) extracted from Gastrodia elata Blume have 
been demonstrated to possess anti-inflammatory and neuroprotec-
tive effects in vivo.101,102 GBP relieved Vin-induced neuropathic pain 
by decreasing proinflammatory cytokine levels and activating SIRT1 
expression in the spinal cord and DRG. Xie et al. demonstrated that 
GBP treatment decreased NF-κB levels in the spinal cord and DRG, 
which suppressed IL-6, IL-8, IL-1β, and TNF-α release.100 Thus, GBP 
may be a promising therapeutic agent for the management and alle-
viation of neuropathic pain.

2.3  |  SIRT1 and spinal cord injury

Spinal cord injury (SCI) results from neurological damage in the spinal 
cord and leads to serious impairment of sensorimotor function, along 
with other effects103 such as paraplegia and tetraplegia.104,105 Patients 
with SCI experience pain.106 Substantial research has explored the 
pathophysiological changes that occur following SCI.107 However, 
how to most effectively repair the spinal cord after damage remains 
unclear. The systemic inflammatory response is considered a key fac-
tor leading to the development of SCI-induced immunological dys-
function.108,109 However, the role of the inflammatory response in SCI Co
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remains unclear. Therefore, it is important to further clarify the mo-
lecular mechanisms underlying SCI to develop novel therapeutic strat-
egies. Yu et al. conducted a study to investigate the role of SIRT1 in SCI 
pain by using a clinically relevant rat contusion model.21 Hematoxylin 
and eosin staining showed that the inflammatory response was con-
siderably greater in SCI tissues compared to that in the control group. 
Levels of SIRT1 protein and mRNA in SCI tissues were significantly 
lower compared to those in the control group.21 Neuronal apoptosis 
is suppressed following nervous system injury.110 However, several 
proteins and nuclear transcription factors are specifically expressed 
in a delayed manner, and p53 is one of the key molecules in the cell 
apoptosis pathway. Upregulated p53 expression can directly induce 
cell apoptosis.110 Yu et al. found that SIRT1 may inhibit apoptosis of 
SCI in vivo and in vitro through the p53 signaling pathway, whereas 
miR-494 may suppress SIRT1 and induce apoptosis.21 In a subsequent 
study, Chen et al. reported that miR‑138‑5p could modulate the PTEN/
AKT signaling pathway via SIRT1, thus regulating the inflammatory re-
sponse and cell apoptosis in SCI models, contributing to the devel-
opment of SCI.111 These findings suggest that miRNAs may serve as 
novel therapeutic targets in the treatment of SCI via SIRT1.

3  |  SIRT1 AND C ANCER- INDUCED BONE 
PAIN

Bone cancer pain (BCP) is pain induced by primary bone cancer or 
tumor metastasis. Bone metastasis is more common in patients with 
breast, prostate, kidney, and lung cancer.112 Although a variety of 
factors are linked to BCP, the specific cellular and molecular mecha-
nisms underlying its pathogenesis remain unclear, and effective clin-
ical approaches are urgently needed for its treatment.

SIRT1 plays a critical role in BCP.113 SIRT1 expression and ac-
tivity are lower in rats with BCP. However, SRT1720 (an activator 
of SIRT1) treatment reverses pain behavior in BCP rats and upreg-
ulates SIRT1.114,115 Neurons are metabolically active cells with high 
energy demands and are particularly dependent on mitochondrial 
function.116 Dynamin-related protein 1 (Drp1), a cytosolic guanosine-
5′-triphosphatase, migrates between the cytosol and mitochondrial 
network and binds to the mitochondrial outer membrane, driving 
mitochondrial fission.117 Upregulation of Drp1 causes mitochondrial 
fragmentation and mitochondrial membrane potential (MMP) reduc-
tion, which is an initial and irreversible step towards apoptosis.118 In 

F I G U R E  1  Schematic representation 
of the downstream mechanism of SIRT1 in 
the neuropathic pain. Abbreviations: Akt, 
protein kinase B; BAX, B-cell lymphoma2-
associated X protein; Drp1, dynamin 
related protein 1; GSH, glutathione; 
IL, interleukin; mGluR, metabotropic 
glutamate receptor; NF-κB, nuclear factor-
kappa B; PGC-1α, peroxisome proliferator-
activated receptor-γ coactivator-1α; 
PI3K, phosphatidylinositol 3-kinase; 
SOD, superoxide dismutase; TNF-α, 
tumor necrosis factor-α; +, upregulated; -, 
downregulated

F I G U R E  2  Schematic representation 
of the possible upstream mechanism 
of SIRT1 in the processing of cancer 
induced bone pain and inflammatory pain. 
Abbreviations: Bcl-2, B-cell lymphoma2; 
Drp1, dynamin related protein 1; 
IL, interleukin; PGC-1α, peroxisome 
proliferator-activated receptor-γ 
coactivator-1α; TNF-α, tumor necrosis 
factor-α; +, upregulated; -, downregulated
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the spinal cord of BCP rats, the expression of the mitochondrial fission-
related protein, Drp1, is increased. Injection of SRT1720 reduces Drp1 
expression to normal levels in rats with BCP. Moreover, decreased 
expression of Drp1 is observed in an SRT1720 dose-dependent 
manner.114 Ample evidence suggests that PGC-1α is activated by 
deacetylation via SIRT1 activation. PGC-1α subsequently promotes 
mitochondrial gene transcription and mitochondrial biogenesis.119 The 
SIRT1/PGC-1α pathway regulates Drp1 expression and mitochondrial 
fission. Overexpression of PGC-1α reduces Drp1 expression and pro-
motes Drp1-mediated mitochondrial biogenesis. Mutation of PGC-1α 
reduces mitochondrial function and oxidative capacity.120 These 
findings indicate that SRT1720 reverses pain behavior by activating 
the SIRT1/PGC-1α/Drp1 pathway, which consequently inhibits mito-
chondrial fission-associated apoptosis. In a further study, Yang et al. 
proved that SIRT1 activation in the spinal cord caused by SRT1720 
also reversed BCP in mice by inhibiting mGluR1/5.121 Moreover, it has 
been reported that the activation of the cyclic adenosine monophos-
phate response element-binding (CREB) protein also plays a critical 
role in BCP.122,123 SIRT1 regulates the balance between glucose and 
lipid metabolism through CREB deacetylation.124,125 A recent study 
suggested that intrathecal administration of SRT1720 reversed BCP, 
likely by inhibiting the CREB/ CREB-regulated transcription coactiva-
tor 1 (CRTC1) signaling pathway. These findings suggest that SIRT1 is 
a potential target for treating BCP.

4  |  SIRT1 AND INFL AMMATORY PAIN

Inflammatory pain is a common clinical symptom of inflammatory 
diseases. It is characterized by hyperalgesia due to sensitization of 
primary nociceptive neurons.126,127 Pain hypersensitivity is caused 
by the release of inflammatory mediators from immune and non-
neuronal cells in the periphery. Proinflammatory cytokines (PICs), 
such as IL-1β, IL-6, and TNF-α, play essential roles in pain sensitization.

In recent years, SIRT1 has been shown to exert anti-inflammatory 
and antioxidative effects and to alleviate cell injury. The SIRT1-
related anti-inflammatory mechanism is complex and involves nu-
merous pathways, including the mitogen-activated protein kinase 
and NF-κB pathways.128 SIRT1  markedly reduces the activity of 
the NF-κB pathway and decreases the production of inflammatory 
factors.129 In addition, it has been reported that SIRT1 also inhibits 
inflammatory response-induced injury in proto-cortical neurons. A 
possible mechanism underlying these effects is that SIRT1 acts on 
the NF-κB subunit through deacetylation. In particular, SIRT1 re-
duces the binding of NF-κB to intranuclear inflammatory genes and 
the production of inflammatory factors, including TNF-α and IL-1β. 
Furthermore, it has been suggested that the cyclooxygenase path-
way may also be involved.128

Previous reports have demonstrated that miRNAs are key reg-
ulators of physiological and pathological processes underlying pain. 
This suggests that specific miRNAs may be useful as novel mo-
lecular targets for the prevention and relief of chronic pain.130-132 
However, the direct association between spinal miR-34a expression 

and inflammatory pain remains unclear. Recently, Chen et al.133 
found that miR-34a levels were significantly increased in the spinal 
cord of CFA-administered mice, consistent with their pain behav-
ior. Overexpression of miR-34a induces pain, mechanical allodynia, 
and thermal hyperalgesia in naive mice. Furthermore, intrathecal 
injection of miR-34a antagomir in CFA-treated mice alleviates the 
nociceptive response induced by CFA injection. These data suggest 
that miR-34a is an endogenous initiator of pain, and exogenous 
supplementation with synthetic miR-34a antagomir exerts an anal-
gesic effect on CFA-induced inflammatory pain. In contrast to the 
inflammatory pain induced by increased miR-34a expression, SIRT1 
expression was found to be decreased in the spinal cord of mice ad-
ministered CFA. Subsequent evidence indicated that miR-34a par-
ticipates in the suppression of SIRT1 expression by binding to the 
3′-UTR of SIRT1.134-136 Intrathecal injection of miR-34a antagomir 
relieves CFA-induced mechanical allodynia and thermal hyperalge-
sia. Interestingly, it also reduces inflammatory pain-induced SIRT1 
downregulation. Furthermore, by analyzing whether miR-34a me-
diates pain modulation by negatively regulating SIRT1 expression, 
Chen et al. revealed that inhibition of SIRT1 by EX-527 effectively in-
hibits the antinociceptive effect of the miR-34a antagomir. These in 
vivo data indicate that miR-34a relieves inflammatory pain by inhib-
iting SIRT1 expression in the spinal cord. Thus, miR-34a-SIRT1 sig-
naling may serve as a novel therapeutic target for inflammatory pain.

5  |  CONCLUDING REMARKS AND FUTURE 
PERSPEC TIVE

Although great progress has been made in pain research over the 
past decade, there has been little translation of preclinical results 
into clinical practice. Currently, very few novel therapeutic options 
have been provided to patients, and the side effects of traditional 
drugs are difficult to ignore. Therefore, patients are frequently un-
dertreated, and more effective analgesic drugs are urgently needed. 
Previous studies have shown that SIRT1 plays a critical role in the 
pathogenesis of neuropathic pain, BCP, and inflammatory pain. 
Decreased expression SIRT1 levels have been observed in the spinal 
cord of various pathological pain models. Notably, treatment with 
SIRT1 activators considerably attenuated mechanical allodynia and 
thermal hyperalgesia caused by pathological pain (Table  1). While 
reviewing the current evidence, we have discussed the relationship 
between SIRT1 and chronic pain (Figures 1 and 2). SIRT1 overexpres-
sion may be a novel and beneficial therapeutic tool for chronic pain 
management. However, these findings raise additional questions.

First, whether SIRT1 activators exert similar analgesic effects 
on other types of chronic pain (e.g., cancer and osteoarthritis pain) 
requires further investigation. Each type of chronic pain has unique 
characteristics. However, they may have the same pathogenesis. 
Therefore, it is important to reveal the beneficial effects of SIRT1 
inducers in other types of chronic pain.

Second, current studies have mostly focused on the analgesic 
effects of SIRT1 inducers rather than the underlying mechanisms. 
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Therefore, the detailed mechanisms underlying the analgesic effects 
of SIRT1 inducers and the mechanisms by which so-called SIRT1 in-
ducers activate SIRT1 need to be elucidated. In addition, none of the 
SIRT1 activators mentioned in this review is a specific activator of 
SIRT1. Therefore, specific SIRT1 activators or transgenic rat models 
might be better for elucidating the role of SIRT1 in chronic pain. 
Despite the inspiring therapeutic efficacy of SIRT1 inducers against 
chronic pain in preclinical studies, no relevant clinical trials are avail-
able. Therefore, further studies are warranted.

Finally, current studies have primarily focused on the relation-
ship between SIRT1 and chronic pain. However, other sirtuins (e.g., 
SIRT2, SIRT3, and SIRT6) are also involved in the mechanisms of 
chronic pain. For example, Zhang et al. found that SIRT2 overex-
pression inhibits the expression of TNF-α, IL-1β, and IL-6 in the dor-
sal root ganglion of CCI rats, alleviating neuropathic pain associated 
with neuroinflammation.137 A study demonstrated that targeting 
SIRT3 to improve mitochondrial redox homeostasis might represent 
a potential therapeutic strategy for low back pain caused by IVD de-
generation.138 It has been reported that SIRT3 improves the ability 
of mitochondria to reduce ROS levels and protect against oxidative 
stress by regulating the activity of key antioxidant enzymes, such 
as manganese superoxide dismutase.139-141 In lipopolysaccharide-
induced pulpitis, Hu et al. demonstrated that overexpression of 
SIRT6  led to a significant reduction in proinflammatory cytokines 
(IL-6, IL-1 β, and TNF-α) and inactivation of the NF-κB pathway, 
thereby attenuating pain caused by pulpitis.142 Therefore, the above 
evidence indicates that other sirtuins may act as potential targets 
for the prevention and treatment of chronic pain. Large-scale, mul-
ticenter, prospective clinical trials are needed. Given the analgesic 
effects of sirtuin activators, efforts to discover more sirtuin activa-
tors would have a large impact on clinical and public health.
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