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Introduction

The X1th International Symposium on Respiratory Viral

Infections (ISRVI) was held in Bangkok, Thailand on 19–

22 February 2009. This annual meeting convenes noted

public health specialists, vaccinologists, clinicians, virolo-

gists, and pharmacologists to enable interdisciplinary dis-

cussion regarding all aspects of respiratory virus research.

Program topics included virus evolution, transmission,

pathogenesis, epidemiology and surveillance strategies, and

advances in antiviral and vaccine design for several respira-

tory viruses of concern, including influenza, rhinovirus,

and adenovirus, among others. Here, we provide a topical

overview covering areas of ongoing focus and research in

the field of respiratory viral infections, with particular

attention given to the advances and contributions presented

by conference participants. The emergence of common

themes and goals presented by subject matter experts dur-

ing the symposium exemplifies the need for continued col-

laboration across disciplines and illustrates the potential for

progress regarding the understanding, management, and

prevention of respiratory viral infections.

Transmission of respiratory viruses

The transfer of virus from an infected individual to a sus-

ceptible recipient is essential for the spread of respiratory

viral pathogens. However, there are many potential modes

of respiratory virus transmission, and despite decades of

study, the relative contribution of different routes of trans-

mission remains unclear. A keynote address by Robert

Couch of the Baylor College of Medicine, and subsequent

presentation by Arnold Monto of the University of Michi-

gan, addressed the need to more accurately define and

understand the transmission of respiratory viruses. This

knowledge is especially important given the implications of

this data for the development of control policies in the

event of an outbreak or pandemic of a recognized or novel

respiratory virus.

In general, respiratory viruses may be spread by contact

(either by direct physical contact or indirectly by the trans-

fer of virus from fomites or contaminated environmental

surfaces), large droplets generated by the respiratory tract

(‡5 lm in diameter) that do not remain suspended in the

air and thus require close proximity, or by airborne trans-

mission (virus contained in droplet nuclei £5 lm in diam-

eter).1 Aerosol spread of virus in humans has been

demonstrated experimentally with numerous viruses

including coxsackie A21, rhinovirus, and influenza virus;

hand contamination with subsequent self inoculation into

the eye or nose has also been documented.2,3 While trans-

mission has been documented to occur by aerosol, droplet,

and contact routes, a consensus regarding the principle

mode of virus spread has not been reached and may vary

with setting, temperature, humidity, population and virus

strain.1,4 It is important to consider that social contact pat-

terns in populations vary by geographic region, as dis-

cussed in a presentation by Annette Fox from Oxford

University, and an accurate understanding of the location,

frequency, and duration of social contacts in a specific area

is critical to create a reliable model of virus transmission at

the population level.

Elucidating the predominant mode of transmission of

individual respiratory viruses will rely on a more compre-

hensive understanding of many biological parameters,

including the location and kinetics of virus replication in

the respiratory tract, the physical size of expelled particles

during coughing and sneezing, and the survival of particles

once released in the environment. Among multiple studies

discussed at this symposium representing the breadth of
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research ongoing in this area, a review of pre-clinical

research papers presented by Malik Peiris of the University

of Hong Kong discussed publications utilizing the ferret

and guinea pig models to study influenza virus strain-spe-

cific differences which may impact efficient transmission.5,6

Further research in this area will allow for a greater under-

standing of the transmission of influenza and other respira-

tory viruses.

Despite uncertainty regarding the dominant modes of

transmission of respiratory viruses, it is reasonable to pre-

dict that implementing methods to reduce viral shedding

into the environment by an infected host will decrease the

likelihood that a contact will become infected. The trans-

mission of respiratory viruses can be interrupted or

reduced following the use of relatively low-cost non-phar-

maceutical interventions, like patient isolation, hand

hygiene, and use of face masks.7 Several randomized con-

trolled trials have explored the potential effectiveness and

compliance of these methods in different populations. In a

community-based, randomized trial in Hong Kong, Benja-

min Cowling and colleagues of the University of Hong

Kong found a reduction of RT-PCR-confirmed influenza in

household contacts following the combined use of hand

hygiene and face masks when implemented within 36 hours

of index case symptom onset.8,9 Arnold Monto described

initial findings from the first year of the M-FLU study, in

which the use of disposable face masks and hand sanitizer

in a young adult collegiate population reduced overall

influenza-like illnesses (by 35–51%) in university residence

halls during the influenza season.10 In discussing the Bang-

kok HITS study, which is evaluating the effectiveness of

these same non-pharmaceutical interventions in Bangkok

metropolitan area households which include a child with

laboratory-confirmed influenza, Piyarat Suntarattiwong

underscored difficulties in achieving high compliance with

these intervention methods among study participants, espe-

cially among children. A more statistically rigorous assess-

ment of the relative contribution of these interventions in

reducing virus transmission among household contacts will

necessitate larger study populations, but encouraging

results from available studies demonstrates the potential

use of non-pharmaceutical interventions in the event of an

outbreak or pandemic, when adequate supplies of influenza

vaccines and antivirals may not be readily available.

Influenza virus pathogenesis

Influenza viruses are responsible for both seasonal epidem-

ics and infrequent global pandemics of varying severity.

The extensive diversity of influenza viruses makes it diffi-

cult to predict which viruses or virus subtypes possess the

greatest pandemic threat. It has been widely believed that,

in order to cause a pandemic, a virus must bear a hemag-

glutinin (HA) subtype to which the human population is

immunologically naı̈ve, be able to infect humans, and

transmit efficiently between people. However, shortly after

the XIth ISRVI was held, the emergence of the 2009 pan-

demic virus, a swine-origin quadruple reassortant that was

of the same subtype (H1N1) as viruses circulating in

humans since 1977, once again highlighted the unpredict-

ability of influenza, as well as the potential for rapid world-

wide spread of novel influenza viruses. Continuing

sporadic human cases of lethal avian H5N1 infections have

emphasized the importance of understanding the receptor

binding preference of avian influenza viruses to identify

which avian viruses or virus subtypes might acquire muta-

tions that allow for greater binding to a2–6 linked sialic

acids (SA), the linkage abundantly expressed in the human

upper respiratory tract and the preferred receptor for

human influenza viruses. James Paulson of the Scripps

Research Institute discussed use of glycan microarrays

(which possess a diverse range of glycan structures coupled

to a single chip) as a tool to monitor the receptor specific-

ity of circulating influenza viruses. In contrast to avian

H5N1 viruses which have maintained a classical avian a2–3

linked SA binding preference with few exceptions,11 H9N2

viruses isolated from humans in 1999, 2003, and 2009 were

found to possess enhanced binding to a2–6 linked SA, as

did an H7N2 virus isolated from a human in 2003.12,13

These findings indicate that avian influenza viruses of other

subtypes besides H5N1 have pandemic potential and

should be monitored carefully.

Surface glycoproteins like the HA are not the only viral

proteins which influence virus pathogenicity. The influenza

virus accessory protein PB1-F2, first discovered in 2001, is a

pro-apoptotic protein encoded by an alternate reading

frame in the PB1 gene.14 A point mutation N66S in this

protein is present in many highly virulent influenza viruses

and correlates with increased virus pathogenicity in the

mouse model, although the mechanism responsible for this

heightened virulence is unclear.15 Gina Conenello of the

Mount Sinai School of Medicine demonstrated that an

excessive cellular infiltrate in the lungs and concomitant

increase in cytokines and chemokines contributes to the

heightened pathogenicity of viruses bearing the N66S point

mutation in mice.114 In addition to virus-induced pathol-

ogy, secondary bacterial pneumonia can result in excess

morbidity and mortality in humans. The PB1-F2 protein

augments the frequency and severity of secondary bacterial

infection following viral infection in the mouse model.16

Using a mouse model of secondary bacterial pneumonia fol-

lowing influenza virus infection, Jon McCullers of St. Jude

Children’s Research Hospital demonstrated that treatment

of mice with the protein synthesis inhibitor clindamycin

resulted in increased survival.17 Further understanding of

viral-bacterial co-pathogenesis remains an important area of
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study given the contribution of secondary bacterial infec-

tions to severe illness and mortality in influenza.

While viral determinants greatly impact the overall

pathogenicity of a particular virus, it is crucial not to

overlook the contribution of potentially deleterious host

responses during influenza. Studies utilizing mice deficient

in selected components of the innate immune response

show that host responses following infection significantly

impact the virulence of influenza viruses.18 Research

assessing the role of innate immune responses and their

contribution to lung injury in viral pneumonia was

reviewed by Joseph Mizgard of Boston University. Infec-

tion of mice deficient in both TNF and IL-1 signaling with

a highly pathogenic H5N1 virus resulted in diminished

cytokine induction in the lungs, diminished airway inflam-

mation, and delayed mortality compared with wild-type

controls.19 It is important to note that while influenza

virus primarily manifests as a respiratory disease in

humans, studies in the mouse model have demonstrated

avian influenza viruses are additionally capable of using

the eye as a portal of entry to mount a productive and

lethal infection, as presented by Jessica Belser of the US

Centers for Disease Control and Prevention (CDC).20 Col-

lectively, these studies emphasize that both virus and host

responses contribute to the overall pathogenesis following

influenza virus infection.

Influenza virus animal–human interface

Wild aquatic birds are the natural reservoir of all influ-

enza A viruses.21,22 While all subtypes of influenza have

been identified in avian species, to date only viruses

within the H5 and H7 subtype have been associated with

severe disease and mortality in avian populations, most

frequently occurring following introduction into domestic

land-based birds.23 Interspecies transmission of avian

influenza viruses from wild bird reservoirs into domestic

poultry and sporadic transmissions to mammals represent

a continuing public health threat.24 Albert Osterhaus of

Erasmus MC in The Netherlands provided an overview of

H5N1 viruses in non-avian species, including descriptions

of the pathology and disease profile observed following

lethal H5N1 infection among tigers and leopards in Thai-

land.25,26 The severe pathology observed in domestic cats

following the consumption of H5N1-virus infected chick-

ens, and subsequent transmission of this virus to naı̈ve

animals, underscores the importance of continued studies

to identify the determinants of zoonotic virus transmis-

sion.27,28 Gregory Gray from the University of Iowa, now

at the University of Florida, presented additional work on

swine, equine, and canine influenza viruses, revealing

increased rates of seroconversion to animal influenza

viruses among individuals with occupational exposure to

these species, demonstrating the risk of virus transmission

from these hosts to humans.29,30 This research illuminates

the importance of including individuals who face occupa-

tional exposure to potentially infected animals, such as

swine and poultry workers, in surveillance and immuniza-

tion programs.31

The infection of poultry or swine with avian influenza

viruses may facilitate the adaptation of these viruses for

human infection. As discussed by Ruben Donis of the US

CDC, H5N1 viruses isolated from infected poultry in Viet-

nam from 2008 to 2009 display extensive genetic and anti-

genic divergence compared with previously identified

strains, indicating that rapid evolution of these viruses has

been occurring.32 Pigs have long been thought of as a

potential ‘‘mixing vessel’’ for influenza viruses, acting as an

intermediate host for avian influenza viruses to adapt to

humans, either by reassortment of human and avian influ-

enza viruses, or by continued adaptation of an avian virus

to replicate in an environment which more closely resem-

bles the human respiratory tract. Yoshihiro Kawaoka of the

University of Wisconsin-Madison described research dem-

onstrating that H5N1 viruses isolated from swine in Indo-

nesia are less virulent in mice compared with avian

isolates, an observation suggesting that virus replication in

swine has altered the phenotype of these viruses.33 Expo-

sure of humans to virus-infected poultry and ⁄ or swine

poses clear health risks, necessitating both the continued

active surveillance of influenza virus in these mammalian

and avian populations as well as in persons exposed to

potentially infected animals.

Vaccination of poultry would offer one avenue to reduce

occupational and accidental exposure of avian influenza

viruses to humans, however as discussed by David Swayne

of the US Department of Agriculture, the effectiveness of

this approach to date has been limited. Vaccination policies

vary by country and are influenced by the veterinary infra-

structure, economic status, and production and export sec-

tor regulations specific to each location. Furthermore,

many of the challenges that face vaccine effectiveness of

avian influenza vaccines for humans similarly apply to

poultry vaccination, including the lack of a universal vac-

cine, poor immunogenicity of unadjuvanted vaccines, and

antigenic drift of circulating strains.34 Antigenic cartogra-

phy, a method which allows for the quantification and

visualization of antigenic evolution using a heterologous

panel of viruses and ⁄ or vaccine strains from a particular

subtype and ferret antisera, is a useful tool to visualize

these potential antigenic differences between virus and can-

didate vaccine strains.35 Derek Smith of the University of

Cambridge further demonstrated the application of this

method for assessing both veterinary and human vaccines

and its utility in visualizing in new ways the titer and

breadth of the immune response post-vaccination.
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International epidemiology and
surveillance of influenza

The emergence of avian influenza H5N1 in humans has

provided an impetus for increased global surveillance of

both influenza-like illness and acute respiratory illness

(ARI). Representatives from several Southeast Asian coun-

tries described national surveillance and epidemiologic

efforts. Zhou Lei from the Chinese Center for Disease Con-

trol and Prevention presented national ARI surveillance data

which highlighted the distinct geographic patterns of influ-

enza activity in China, demonstrating seasonal winter peaks

in Northern China and year-round influenza activity with

sub-tropical ⁄ tropical patterns in Southern China. In addi-

tion to surveillance for seasonal influenza viruses, the pneu-

monia of unknown origin surveillance program has

contributed to the early detection of HPAI H5N1, SARS,

and clusters of severe pneumonia cases in China. Sirenda

Vong from Institut Pasteur du Cambodia discussed a multi-

tiered system for ARI surveillance, which includes commu-

nity-based active surveillance for febrile illness including

dengue and a severe acute respiratory surveillance system to

identify the viral and bacterial etiology of acute respiratory

illnesses. Kumnuan Ungchusak from the Thailand Ministry

of Health discussed Thailand’s population-based active sur-

veillance for pneumonia, which revealed a high burden of

pneumonia in children under the age of 5 years with

respiratory syncytial virus (RSV) the most commonly asso-

ciated viral pathogen.36 The avian influenza and severe

pneumonia surveillance programs have not identified new

cases of H5N1 in Thailand in 2007–2009. Khuntirat Benja-

wan of the Armed Forces Research Institute of Medical Sci-

ence, Thailand presented results from a prospective cohort

study of 1600 adults to study avian influenza transmission

in Cambodia and Thailand. Individuals self-reporting any

prior poultry exposure were more frequently found to be

seropositive to H5N1 virus by microneutralization assay

compared with individuals without such exposure. In the

neighboring country of Laos, ARI surveillance has contrib-

uted to the detection of H5N1 virus and control of H5N1

virus infections. As presented by Phengta Vongphrachanh

of the National Center for Laboratory and Epidemiology

Vientiane, poultry outbreaks of H5N1 have been contained

by the culling of flocks identified through their surveillance

program; no human cases have been detected since 2007.

W. Abdullah Brooks from the International Centre for

Diarrheal Diseases Research-Bangladesh discussed the

national influenza-like illness (ILI) and population-based

pneumonia surveillance programs implemented in Bangla-

desh. Children under the age of 2 years old are at the

greatest risk for developing influenza-related pneumonia,

most frequently associated with H3N2 virus infection, but

other respiratory viruses including RSV, metapneumovirus,

parainfluenza virus, and adenoviruses contribute to lower

respiratory tract disease in this population. A prospective

cohort study in Nicaragua, as presented by Aubree Gordon

of the University of California, Berkeley, found that one

quarter of all nasopharyngeal swabs collected due to ILI are

influenza virus positive in children aged 2–12.37

Other presentations highlighted several considerations

related to achieving a full understanding of the epidemiol-

ogy of influenza and other respiratory virus infections.

Nancy Cox from the US CDC discussed differences in sen-

sitivity and specificity among diagnostic test platforms for

the detection of respiratory pathogens, parameters which

impact the numbers of positive cases detected. An update

regarding the ongoing development of novel diagnostic

tests for human use, in particular tests which can differen-

tiate between seasonal and avian influenza strains, was pro-

vided by Roxanne Shively and Mike Perdue of the Office of

the Biomedical Advanced Research & Development

Authority (BARDA) in the US Department of Health and

Human Services. Susan Chiu of the University of Hong

Kong further discussed difficulties in determining the

appropriate model for disease burden estimates for respira-

tory virus infections. Several factors can mask the accurate

quantification of influenza activity in a region, including

less predictable seasonality in tropical and sub-tropical

areas, co-circulation of other respiratory viruses like RSV,

lack of timely and intensive virologic diagnosis, and diffi-

culties in capturing a defined representative population.38

The application of models which capture these variables, in

addition to reliable and accurate data provided by diagnos-

tic tests, are essential for informed clinical and public

health decision making.39

Development of H5N1 vaccines

With over 500 cases since 2003 and a mortality rate of

approximately 60%, H5N1 viruses continue to pose a sig-

nificant health threat.40 During the past decade much

effort has been devoted towards the development of effec-

tive H5 vaccines for human use, and considerable techni-

cal and conceptual advances have been made, including

expanded surveillance of avian influenza virus isolates, the

development of reverse genetics systems for seed virus

strain generation, expanded assay and reagent availability,

and studies of novel vaccine targets, adjuvants, and deliv-

ery approaches.41,42 Wendy Keitel of the Baylor College of

Medicine discussed many studies highlighting both the

strengths and the limitations of available vaccine candi-

dates. While inactivated seasonal vaccines contain 15 lg of

non-adjuvanted HA from each subtype to elicit a protec-

tive response in the majority of healthy adult recipients,

the HA from avian H5 viruses has demonstrated reduced

immunogenicity, even when administered at quantities as
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high as 90 lg or administered with the adjuvant alumi-

num hydroxide (alum).43–45 However, several proprietary

oil-in-water adjuvant preparations (MF59, AS03, AF03)

have demonstrated enhanced immunogenicity resulting in

antigen-sparing and cross-clade immune responses.46–48

Prasert Auewarakul of the Faculty of Medicine Siriraj

Hospital in Thailand presented the results of a phase 3

study that evaluated the use of AS03-adjuvanted inacti-

vated, split H5N1 vaccine and found that following two

doses, >90% of vaccinees in a Thai population demon-

strated at least four-fold rises in neutralizing antibody titer

to both homologous and heterologous H5N1 viruses fol-

lowing two doses.49 These results were similar to previ-

ously published studies, demonstrating a significant

enhancement of neutralizing antibody responses with oil-

in-water adjuvanted vaccine compared with non-adjuvant-

ed preparations.50

A central obstacle for the design of an H5N1 virus vac-

cine is the uncertainty of cross-reactivity between a poten-

tial pandemic H5N1 strain and the strain chosen in

advance for vaccine preparation. Inca Kusters of Sanofi

Pasteur discussed pre-clinical studies in mice evaluating an

oil-in-water adjuvanted (AF03), low-dose (0Æ3 lg of HA)

H5N1 vaccine candidate previously shown to elicit cross-

clade neutralizing antibodies in young adults following two

doses.47 Otfried Kistner, representing Baxter vaccines, pre-

sented data from clinical trials using a whole-virus, non-ad-

juvanted H5N1 vaccine generated in Vero cells. Two doses

of this vaccine elicit neutralizing antibodies which cross-

react with heterologous strains of H5N1 virus representing

other clades.51 Vaccines which incorporate conserved T cell

epitopes may also offer an avenue to achieve a pandemic

vaccine effective against heterosubtypic strains of virus.52

John Oxford of Retroscreen Virology Ltd. in the United

Kingdom presented data which analyzed the frequencies

and magnitude of responses to immunodominant proteins

(nucleoprotein and matrix) following influenza virus infec-

tion, information which contributes towards understanding

and implementing the potential use of vaccine formulations

which induce cytotoxic T lymphocyte responses.53

With the development of new vaccine preparations, ad-

juvants, and delivery methods, it will be increasingly

important to accurately assess the effectiveness of these

influenza vaccines in susceptible populations. David Shay

of the US CDC discussed the unique challenges of measur-

ing vaccine effectiveness, including the need to choose the

most appropriate outcome measure and the importance of

controlling for confounding factors based on the sample

population in observational studies. The US CDC recom-

mends the use of laboratory-confirmed outcomes in mea-

suring effectiveness when possible, including the

effectiveness of vaccine against both common outcomes

and more serious, rarer complications.54

Influenza virus antivirals and therapeutics

While vaccines offer the best protection against influenza

virus infection, there is a 6–8-month timeframe necessary

to manufacture an antigenically well-matched vaccine

towards a specific virus strain,55 vaccine availability and

uptake are limited in many countries, and some persons

develop illness despite immunization. As such, antiviral

drugs which are efficacious against a broad range of virus

subtypes serve as a first line of defense before a well-

matched vaccine is produced and complementary interven-

tion thereafter. Two classes of antiviral drugs are currently

licensed for human use: M2 ion channel inhibitors (aman-

tadine and rimantadine) and neuraminidase (NA) inhibi-

tors (oseltamivir and zanamivir). However, as a high

frequency of seasonal influenza viruses have developed

resistance to M2 inhibitors or for H1N1 to oseltamivir, the

development of novel antiviral and therapeutic approaches

for the treatment and prevention of influenza virus infec-

tion remains a high priority.56

The 2008–2009 circulating oseltamivir-resistant seasonal

H1N1 and M2 inhibitor-resistant H3N2 viruses exhibited

efficient transmission and caused illness comparable to sus-

ceptible, wild-type virus. Such findings indicate that the

associated resistance mutations (His275Tyr in the N1 and

Ser31Asn in M2, respectively) have not reduced viral fit-

ness. Two presentations, by Frederick Hayden of the Uni-

versity of Virginia School of Medicine and Angie Lackenby

of the Health Protection Agency in London, provided a

more detailed characterization of oseltamivir-resistant

seasonal influenza H1N1 viruses. These resistant viruses

displayed no reduction in viral fitness or person-to-person

transmissibility, and in fact replaced oseltamivir-susceptible

H1N1 viruses in most parts of the world.57 The rapid glo-

bal dissemination of oseltamivir-resistant seasonal influenza

H1N1 viruses worldwide did not appear to be linked to

drug selection pressure.58,59 Similarly, the rise of M2 inhibi-

tor-resistance of H3N2 viruses in the United States and

other countries has not been associated with increased use

of this antiviral,60 although its initial appearance in China

could have been linked to amantadine use. As presented by

Martha Nelson of the National Institutes of Health, the

resistance of H3N2 viruses to the adamantines appeared to

be the cumulative effect of several evolutionary steps,

including repeated introductions of viruses with the Ser31-

Asn mutation in the M2 gene, intra-subtypic genomic reas-

sortment, and rapid global dissemination of resistant

viruses. These presentations highlight the need both for

continued surveillance of circulating viruses resistant to

existing antiviral drugs, and the development of antivirals

with novel mechanisms of action.

In addition to the currently licensed antivirals, several new

NA inhibitors or formulations are currently undergoing
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clinical trials, and several were recently approved in 2010,

including peramivir (Japan, South Korea) and laninamivir

(Japan). W. James Alexander of BioCryst Pharmaceuticals

presented an update of peramivir, an intravenously admin-

istered NA inhibitor. When given as a single dose, IV per-

amivir was more effective than placebo in reducing the

time to alleviation of symptoms and was comparably effec-

tive as a 5-day course of oseltamivir in outpatient adults

with uncomplicated influenza; two phase 3 studies are cur-

rently in progress in hospitalized adult patients.61 CS-8958,

the pro-drug of laninamivir, is a long-acting, topically

applied NA inhibitor that has shown activity in vitro,

including against most oseltamivir-resistant strains, and in

murine models.62 As presented by Makato Yamashita of

Daiichi Sankyo, comparative studies in the mouse model

have shown similar to significantly higher survival rates of

mice when treated once with CS-8958 compared with

either multi-day treatments of topical zanamivir or osel-

tamivir following lethal PR ⁄ 8 virus challenge. Initial clinical

trials of this NA inhibitor found that single inhalations

were similarly efficacious to a 5-day regimen of oseltamivir

in children with influenza virus infection63; other phase 3

clinical trials evaluating a single inhalation dose are antici-

pated.

Researchers are also looking beyond NA inhibitors to

develop novel antiviral approaches. Tsutmo Sakurai of Toy-

ama Chemical presented pharmacologic data from clinical

trials with T-705 (favipiravir), a compound which selec-

tively inhibits the influenza virus RNA-dependent RNA

polymerase.64 Phase 1 trials demonstrated the tolerability of

single or multiple oral doses of T-705, and phase 3 studies

are ongoing in Japan. A plant extract rich in polymeric

phenols, CYSTUS052, has demonstrated antiviral activity

both in vitro and in a mouse model as Oliver Planz of

Friedrich-Loeffler-Institut in Germany presented, with a

phase 1 clinical trial of this compound currently under-

way.65

It is critical to consider antiviral treatments that work in

tandem with host responses to resolve viral infection. As

such, the development of treatment regimes which possess

immunomodulatory activity, or which target signal trans-

duction pathways exploited by influenza viruses, may offer

advantages to currently available antivirals. Ralf Altmeyer

of CombinatoRx Singapore presented data evaluating two

independent classes of anti-inflammatory drugs, selective

serotonin reuptake inhibitors (SSRI) and phosphodiesterase

type-4 inhibitors (PDE-4i), and found that, administered in

combination with NA inhibitors, mice challenged with a

lethal dose of influenza virus demonstrated enhanced sur-

vival compared with mice which received the NA inhibitor

alone. Furthermore, Stephan Ludwig of the Institute for

Molecular Virology in Germany demonstrated that

SC75741, which inhibits viral replication and NF-jB

dependent cytokine expression in vitro and in vivo,

improved survival of H5N1 virus-challenged mice com-

pared with a placebo. By targeting cellular components and

not viral factors, this approach may further reduce the like-

lihood of generating antiviral resistant viruses.66

Clinical disease and drug therapy of H5N1

While human infection with highly pathogenic avian influ-

enza (HPAI) H5N1 viruses remains rare despite widespread

exposure to infected poultry, human cases are frequently

severe with an approximate fatality rate of 60%.67 A greater

understanding of clinical features, pathological findings,

and possible genetic risk factors in severe H5N1 human

cases is important for optimizing prevention and treatment

strategies. Clinical data from hospitalized patients with

H5N1 viruses from Vietnam between 2004 and 2007 were

presented by Peter Horby of the Oxford University Clinical

Research Unit, Hanoi. Retrospective chart review revealed

that fatal cases were younger than surviving cases (median

age, 18 years versus 30 years, respectively). Diarrhea, sys-

temic inflammatory response syndrome, and mucosal

bleeding were more common at presentation in fatal cases,

with neutropenia and elevated transaminases highly predic-

tive of death. In regards to treatment, oseltamivir showed

benefit but the addition of corticosteroids resulted in an

increased risk of death.68

Acute kidney injury has also been reported frequently

among severe human cases of H5N1 infection and needs to

be considered in oseltamivir dose selection as this drug is

renally excreted. As discussed by Bob Taylor from Oxford

University Clinical Research Unit, HCMC studies evaluat-

ing oseltamivir pharmacokinetics in Vietnamese patients

with severe influenza virus infection found that oral

absorption of extemporaneous oseltamivir administered via

nasogastric tube was good but that reduced renal function

led to high serum concentrations of oseltamivir carboxyl-

ate.69 Further studies are needed to delineate optimal

dosing regimens in various forms of renal replacement

therapy and to investigate drug concentrations at sites of

infection including bronchalveolar lavage and pleural effu-

sion samples.

Menno de Jong of the University of Amsterdam high-

lighted numerous papers that described the clinical presen-

tation of HPAI H5N1 infection and its susceptibility to

oseltamivir.67,70 It is clear that the timing of antiviral treat-

ment initiation post-symptom onset influences the effec-

tiveness of antiviral treatment. In one epidemiological

study of HPAI H5N1 virus infection in Indonesia, initia-

tion of treatment within 2 days of symptom presentation

was associated with a lower mortality than initiation at 5–

6 days post-symptom onset.71 Greater emphasis on rapid

diagnosis would allow for earlier initiation of treatment
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with oseltamivir.67 Furthermore, different clades of H5N1

viruses exhibit variable sensitivities to antiviral drugs.

Whereas clade 1 and most clade 2.1 viruses are resistant to

M2 inhibitors, most clade 2.2 isolates are susceptible so

that combination antiviral therapy with oseltamivir and

amantadine or rimantadine would be appropriate in such

cases.72,73 Other therapies for treatment of HPAI H5N1

viruses including parental NAIs, neutralizing antibody

preparations, the sialidase DAS181, and the polymerase

inhibitor favipiravir, as well as combinations evaluating

synergistic antiviral potency, are under investigation in pre-

clinical models.

Other respiratory viral infections

Frederick Hayden from the University of Virginia and Ta-

wee Chotpitaysunondh of Queen Sirikit National Institute

of Child Health, Thailand commented on selected publica-

tions in adult and pediatric respiratory viral research,

respectively. Morens et al. demonstrated that secondary

bacterial infections were a major contributor to mortality

observed during the 1918 influenza pandemic.74 Viral–bac-

terial co-infections also contributed to mortality during the

pandemics of 1957 and 1968 despite the availability of anti-

biotics, demonstrating a need to consider management and

prevention of bacterial infections during pandemic plan-

ning. While the greater availability of influenza vaccines

and antiviral therapies would suggest that we are better

prepared, changes in the health status of susceptible popu-

lations should be considered. For example, the prevalence

of asthma in western populations has increased dramati-

cally in recent years. The mechanisms for this epidemiolog-

ic finding remain to be explained but it is clear that

respiratory viruses, especially rhinoviruses, are the major

infectious cause of asthma exacerbations and that an

enlarging asthma population puts more persons at risk for

severe illness. One study detected persistent rhinovirus in

the lower respiratory tract of a majority of individuals

tested with asymptomatic asthma,75 a potentially key obser-

vation that needs to be confirmed. The spread of respira-

tory viral infections has been further influenced by the

increasing popularity of international travel and tourism.

One study from Spain found amongst returned travelers

with respiratory symptoms, 56% were positive for a viral

respiratory pathogen, most commonly influenza.76 Demon-

strating the rapid dissemination of a respiratory pathogen

by this route of transit, worldwide air-traffic patterns accu-

rately predicted the spread of the 2009 H1N1 pandemic

influenza virus.77

A survey of pediatric literature highlighted clinical epi-

demiology studies on RSV, human bocavirus (HBoV),

and rhinovirus. RSV is associated with substantial mor-

bidity in children, as evidenced by a population based

surveillance study in the U.S. which detected RSV in 20%

of hospitalized children under the age of 5.78 HBoV has

also been associated with respiratory tract disease in chil-

dren.79 It is important to keep in mind that co-infection

with several viral pathogens, serial viral infections, or sec-

ondary infection with bacterial agents such as Streptococ-

cus pneumoniae are also detected in pediatric patients

exhibiting respiratory illness.80–82

Respiratory virus infections in the
immunocompromised host

The immunocompromised host represents a challenging

population for the treatment and prevention of influenza

and other respiratory viruses. Diagnosis and management

need to encompass diverse subpopulations of immuno-

compromised patients including transplant recipients,

HIV-infected persons, and pregnant women. One popula-

tion especially at risk for respiratory viral infections is

lung transplant recipients, due to use of immunosuppres-

sive drugs, impaired mucociliary clearance, abnormal lym-

phatic drainage, and direct exposure of the graft to

airborne viruses. Laurent Kaiser of Université De Genève

studied lung transplant recipients and other immunocom-

promised patients to determine the incidence of respira-

tory viral infections. Respiratory viruses, most frequently

coronaviruses and rhinoviruses, were associated with

respiratory symptoms in transplant recipients, notably

among patients exhibiting a poor response to antibiotic

therapy.83

Michael Ison of Northwestern University discussed the

clinical epidemiology, management and prevention of

influenza in organ transplant recipients. The prevalence

of influenza is estimated to be 1–3% among hemapoietic

stem cell transplant recipients and 1–12% among solid

organ transplant recipients. Immunocompromised hosts

often present with atypical symptoms (only a third of

patients present with fevers), shed virus for a prolonged

period of time, and are at increased risk of co-infections.

Vaccination, including ring immunization of close con-

tacts, and antiviral prophylaxis have been used to prevent

influenza virus infection in these patients, however poor

immune responses to vaccination, especially during the

first 12 months after transplantation, decreases the effi-

cacy of this approach depending on the degree of immu-

nosuppression.84,85 Dr. Ison also presented recent data

from clinical trials demonstrating that prolonged pro-

phylaxis with oral oseltamivir or inhaled zanamivir is

well-tolerated and can reduce the frequency of viral

culture-proven or RT-PCR-positive influenza detection in

transplant patients; guidelines are being developed on the

optimal management of influenza in transplant popula-

tions.86
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Children with HIV disease represent an under-recog-

nized immunocompromised population at risk for respira-

tory infections. Vaccination with live attenuated influenza

vaccine (LAIV) or trivalent inactivated vaccine (TIV) rep-

resents one approach to protect this population from

infection with influenza, as both vaccines possess good

safety profiles in HIV-infected children.87 However, the

magnitude and breadth of the resulting antibody response

in this population following vaccination is not fully

known. Myron Levin from The Children’s Hospital in

Denver, Colorado showed that HIV-infected children with

CD4% ranging from 15 to ‡25 at the time of the study

possessed similar serum hemagglutinin inhibition and

neutralizing antibody responses as in HIV-uninfected chil-

dren following vaccination, indicating that these serologic

responses are not affected. To better understand the role

of cell-mediated immunity, Adriana Weinberg from the

University of Colorado compared ELISPOT responses to

LAIV and TIV in HIV-infected children with respect to

their CD4 T-cells, CD8 T-cells, and HIV viral loads.88

This study found paradoxical decreases in influenza-spe-

cific CD8 T-cell mediated immune responses following

TIV, whereas LAIV preserved such responses in HIV-

infected children. No difference was noted in CD4 and

HIV viral load after immunization in comparison to base-

line.

During seasonal epidemics, the very young and very old

are at increased risk of influenza-related morbidity and

mortality, as influenza vaccination is either not recom-

mended (in young infants) or less efficacious (among the

elderly) in these populations. While influenza vaccination

is not currently advised for infants under the age of

6 months, vaccination of pregnant women, a practice rec-

ommended by the WHO, is one means to protect young

infants. Mark Steinhoff from Cincinnati Children’s Hospi-

tal and Medical Center presented evidence that maternal

influenza vaccination improved fetal growth, reflected in

higher birth weights, in addition to demonstrating virologi-

cal and clinical effectiveness against influenza illness in

both mothers and infants.89

With regard to the elderly, the reduced efficacy of vacci-

nation in this population necessitates further efforts to

improve immunogenicity through the use of adjuvants or

increasing the quantity of HA in vaccine preparations.90,91

Robert Booy from the University of Sydney discussed find-

ings from a large scale, cluster-randomized, controlled trial

of antiviral treatment across multiple aged care facilities in

Sydney, Australia. No serious adverse effects were associ-

ated with the use of oseltamivir in this population, and

oseltamivir use (given as treatment only or with prophy-

laxis) was associated with reduced incidence of influenza in

these facilities. Strikingly, while vaccine coverage of resi-

dents ranged from 59 to 100%, only 33% of staff at the

aged care facilities was vaccinated; efforts to improve vacci-

nation coverage among staff as a means to minimize the

risk of nosocomial infections are essential.92

Rhinovirus and other respiratory viruses

Human rhinoviruses are single-stranded, positive-sense

RNA viruses which are a major cause of upper and lower

respiratory infections worldwide. As there are significant

phenotypic variations among the 99 known serotypes and

many non-cultivable genotypes of this virus, a greater

understanding of the molecular and evolutionary character-

istics of rhinoviruses is needed for future vaccine and an-

tiviral development. Sebastian Johnston of Imperial College

London highlighted a publication by Palmenberg et al.

which analyzed the complete genome sequencing of all

known rhinovirus serotypes93 and revealed both common

and species-specific RNA sequence and structural elements.

In addition to rhinoviruses, enteroviruses also belong to

the Picornaviridae family and are important contributing

causes of respiratory infections, especially in children.

Caroline Tapparel of Université De Genève, Switzerland,

discussed the development and application of real-time

PCR assays to identify genomic features which support

phenotypic differences between rhinoviruses and enterovi-

ruses and to further identify new variants among circulat-

ing strains.94 This work established phylogenetic analyses of

circulating group C viruses compared to reference strains

and demonstrated that rhinoviruses evolve by recombina-

tion in their natural host.95 Beyond causing disease in their

own right, virus infection can serve as a risk factor for ser-

ious illnesses. For example, RSV and rhinovirus are the two

most prevalent viral agents identified in infants presenting

with bronchiolitis. In a study presented by Gláucia Paran-

hos-Baccalà of the Emerging Pathogens Laboratory, Fonda-

tion Mérieux in France, infants co-infected with both

viruses were significantly more likely to require admission

into an intensive care unit when hospitalized.96 There is an

association between early childhood infection with these

respiratory viruses and an increased risk of recurrent

wheezing and likely subsequent asthma development.97

Recently developed mouse models of rhinovirus infection

and exacerbation of allergic airway inflammation have pro-

vided the opportunity to more closely study the interplay

between respiratory infection and allergy.98 Ross Walton of

Imperial College London described studies performed in an

OVA T-cell receptor (TCR) transgenic mouse model which

revealed that infection with rhinovirus leads to both

enhanced recruitment of allergen-specific T cells into the

airway and augmented cytokine production in the lung.

Understanding the role of viral infection in airway disease

is crucial to identify therapeutic targets to mitigate these

adverse effects which can persist long after acute infection.
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Investigational vaccines and therapeutics for several

respiratory viruses are under study. Infection with human

metapneumovirus (HMPV) can result in acute respiratory

disease, most frequently in pediatric, elderly, and immuno-

compromised populations. While no licensed vaccine cur-

rently exists for HMPV, Sander Herfst of Erasmus MC

presented ongoing studies in hamster and non-human pri-

mate models evaluating the efficacy of cold-passaged, tem-

perature-sensitive HMPV strains as vaccine candidates.99,100

Palivizumab, a monoclonal antibody directed against RSV,

is an FDA-approved treatment which inhibits viral entry

into host cells by targeting the conserved RSV F glycopro-

tein; other drug treatments are currently under investiga-

tion.101 John DeVincenzo of the University of Tennessee

discussed the application of RNA interference (RNAi) as a

therapy for several respiratory viral infections, including

influenza and RSV.102 As respiratory viruses generally infect

epithelial cells in the respiratory tract, a topical administra-

tion (e.g. by aerosol) with a therapy such as RNAi could

theoretically reach infected target cells. A recent random-

ized study in adults experimentally infected with RSV dem-

onstrated a 38% decrease in infections among volunteers

who received prophylaxis and treatment with an RNAi

based therapy administered by nasal spray compared with

subjects receiving a placebo.103 Given the paucity of effec-

tive vaccine and antiviral treatments for many respiratory

viral infections, future work evaluating the effectiveness of

these and other preventative approaches is needed.

Adenoviruses

Adenoviruses present a wide spectrum of clinical disease in

infected individuals, including respiratory symptoms, gas-

troenteritis, and conjunctivitis. Most people are infected

during childhood with asymptomatic or mild illness; severe

cases are most frequently observed among young children

and immunocompromised hosts. Among the over 50 rec-

ognized serotypes of adenovirus (Ad), Ad type 7 (Ad7),

along with types 3, 4, and 21, are most frequently associ-

ated with severe disease.104 However, outbreaks of Ad type

14 (Ad14), a subtype not previously associated with severe

disease, have occurred since 2006, resulting in substantial

morbidity and mortality. Larry Anderson of the US CDC

presented clinical and epidemiological findings from several

recent outbreaks of Ad14, including a community-based

outbreak of severe respiratory disease in Oregon and a

cluster of severe respiratory illness at U.S. Air Force train-

ing base in Texas.105,106 To ascertain levels of preexisting

immunity to Ad14 and other circulating adenovirus sero-

types, David Metzgar of the Naval Health Research Center

presented results from seroprevalence studies among young

adults in the United States over the past decade. These

studies revealed that antibody to Ad14 was not detected in

the tested population prior to 2006, suggesting that a lack

of preexisting immunity may have contributed to the severe

disease observed in some settings, and that Ad14 does not

appear to be continuously circulating in the population and

severe illness and death is generally uncommon.

The recent emergence of Ad14 highlights the need to

improve methods of serotype specific detection and treat-

ment of infected individuals with all serotypes. Cicely

Washington of the Walter Reed Army Institute of Research

discussed ongoing development of Luminex xMAP technol-

ogy to detect the five most common Ad serotypes (3, 4, 7,

14, and 21) in a single assay well, which would facilitate

rapid serotyping of samples and could ultimately be

expanded to include detection of a greater array of sero-

types. Unfortunately, no antiviral drugs for the treatment

of adenovirus infections are approved for use in humans.107

In a presentation given by Michael Ison on behalf of Karl

Hostetler of the University of California, San Diego, current

research exploring novel therapies for adenovirus infections

were discussed. To overcome the limitations of in vitro

antiviral testing, the development of an in vivo model of

severe systemic disease following infection with Ad type 5

in immunosuppressed Syrian hamsters has allowed

improved pre-clinical evaluation of antiviral drugs for pro-

tection from Ad pathogenesis.108 Use of this model demon-

strated efficacy of the antiviral drug hexadecyloxypropyl-

cidofovir (CMX001) in preventing adenovirus-induced

mortality following prophylactic or therapeutic oral admin-

istration. Clinical trials of this drug are currently ongoing.

Conclusions

The emergence of the 2009 A(H1N1) influenza virus and

subsequent declaration by the World Health Organization

(WHO) on June 11, 2009 of the first pandemic in over

40 years provides a timely example of the importance of

studying respiratory viral infections.109 At the time of this

symposium, as presented by Sylvie Briand of the WHO,

most countries had already developed pandemic prepared-

ness plans, with many countries conducting pandemic exer-

cises and some implementing changes ⁄ revisions in their

plans since their initial creation. This level of awareness

and groundwork is essential not only for an influenza pan-

demic, but also contributes to the appropriate actions and

response to outbreaks of other respiratory viral infections.

The rapid mobilization of efforts in the early stages of the

A(H1N1) outbreak was remarkable, and many of the con-

ference participants played key roles in this work. Antigenic

and genetic analysis of circulating A(H1N1) viruses

occurred very quickly,110 and studies on the dominant

modes of influenza virus transmissibility were directed

towards this new virus.111,112 The topics of vaccine produc-

tion and antiviral use discussed at this symposium proved
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especially relevant in the context of the pharmaceutical

responses to the pandemic.113 The emergence of respiratory

viral infections which pose a threat to public health has

and will continue to occur; the recent international

response to A(H1N1) offers a positive outlook for future

responses to other respiratory viral infections. Moreover,

the continuing high impact of respiratory viral infections

throughout the world, especially in children in the develop-

ing world in whom ARI is the leading cause of mortality,

require continued commitment to improved understand-

ing, prevention, and management of these infections.

Key messages from XI ISRVI

• Transmission of respiratory viruses

• Spread of respiratory viruses can occur by multiple

modes (including direct contact, respiratory droplets,

and short- and possible long-distance aerosols) and

can be influenced by both biological parameters (e.g.,

symptom profiles, humidity, temperature) and social

behaviors

• Non-pharmaceutical interventions aim to limit infec-

tious virus contamination of the environment by an

infected host or to reduce risk of exposure in suscep-

tible populations

• Influenza virus pathogenesis

• Identification of viral determinants of pathogenicity

can contribute towards understanding the pandemic

potential and virulence of a given virus strain or

subtype

• Influenza virus animal–human interface

• Interspecies transmission of avian influenza viruses

from wild bird reservoirs into domestic poultry, and

sporadically to other species, represents a continuing

public health threat

• Poultry vaccination is one approach to reduce occu-

pational and accidental exposure of avian influenza

viruses to humans, but faces numerous biological and

socioeconomic hurdles to effective implementation

• International epidemiology and surveillance of influenza

• Global surveillance of respiratory viral pathogens is

essential to understand geographic-, seasonal-, and

population-specific rates of infection and to identify

predominant viruses causing acute respiratory illness

• Development of H5N1 vaccines

• The use of oil-in-water adjuvants in H5N1 vaccine

candidate formulations can result in increased immu-

nogenicity, antigen-sparing, and cross-clade immune

responses

• Influenza virus antivirals and therapeutics

• High proportions of seasonal influenza viruses have

developed resistance to one or more currently licensed

antiviral drugs

• Novel antiviral ⁄ therapeutic approaches in develop-

ment include intravenous and long-lasting, inhaled

neuraminidase inhibitors, as well as formulations

which target other viral factors and ⁄ or host cellular

components

• Clinical disease and drug therapy of H5N1

• A greater understanding of clinical features, patholo-

gical findings, and possible genetic risk factors in

severe H5N1 human cases is important for optimizing

prevention and treatment strategies

• Other respiratory viral infections

• The incidence of viral and ⁄ or bacterial co-infections,

increasing prevalence of asthma, and frequency of

international travel and tourism complicates the abil-

ity to contain and treat numerous respiratory viral

infections worldwide

• Respiratory viral infections in the immunocompromised

host

• Immunocompromised hosts represent a challenging

population to treat and prevent respiratory viral infec-

tions, notably organ transplant recipients who may

present with atypical symptoms and are at increased

risk of severe illness and co-infections

• Children with HIV disease, pregnant women, and the

elderly represent additional immunocompromised

populations which require further attention with

regard to optimizing vaccination and antiviral recom-

mendations

• Rhinoviruses and other respiratory viruses

• Important phenotypic variations with respect to lower

respiratory tract illness may exist among serotypes

and genotypes, such that a greater understanding of

the molecular and evolutionary characteristics of

rhinoviruses is needed for future vaccine and antiviral

development

• Investigational vaccines and therapeutics for several

respiratory viruses, such as HMPV and RSV, are

under study

• Adenoviruses

• The recent emergence of severe Ad14 infections high-

lights the need to improve methods of adenovirus ser-

otype-specific detection and treatment of infected

individuals with all serotypes
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