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Abstract
Background: We report a case of a neonate with proximal spinal muscular 
atrophy (SMA) type 1 (also known as Werdnig-Hoffmann disease or severe 
infantile acute SMA) associated with a Blake’s pouch cyst; a malformation that is 
currently classified within the spectrum of Dandy-Walker complex. The association 
of the two conditions has not been previously reported in the English literature. 
A comprehensive review of the pertinent literature is presented.
Case Description: A male neonate was noted to have paucity of movement of the 
four limbs with difficulty of breathing and poor feeding soon after birth. Respiratory 
distress with tachypnea, necessitated endotracheal intubation and mechanical 
ventilation. Pregnancy was uneventful except for decreased fetal movements 
reported by the mother during the third trimester. Neurological examination revealed 
generalized hypotonia with decreased muscle power of all limbs, nonelicitable deep 
tendon jerks, and occasional tongue fasciculations. Molecular genetic evaluation 
revealed a homozygous deletion of both exons 7 and 8 of the survival motor neuron 
1 (SMN1) gene, and exon 5 of the neuronal apoptosis inhibitory protein (NAIP) gene 
on the long arm of chromosome 5 consistent with Werdnig-Hoffmann disease (SMA 
type 1). At the age of 5 months, a full anterior fontanelle and abnormal increase of 
the occipito-frontal circumference were noted. Computed tomographic (CT) scan 
and magnetic resonance imaging (MRI) of the brain revealed a tetraventricular 
hydrocephalus and features of Blake’s pouch cyst of the fourth ventricle.
Conclusions: This case represents a previously unreported association of Blake’s 
pouch cyst and SMA type 1.

Key Words: Blake’s Pouch Cyst, Dandy–Walker complex, spinal muscular atrophy, 
Werdnig-Hoffmann disease

INTRODUCTION

The spinal muscular atrophies (SMAs) are a genetically 
and clinically heterogeneous group of disorders 
characterized by degeneration and loss of anterior horn 

cells of the spinal cord leading to muscle weakness 
and atrophy.[84] Proximal SMA (types I-IV) accounts 
for 80-90% of all SMA cases and is primarily caused 
by recessive mutations in the survival motor neuron 
1 (SMN1) gene located in the chromosome region 
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5q11.2-5q13.3, with homozygous absence of exon 7 
in more than 95% of cases.[48,59] Blake’s pouch cyst, 
in contrast, is defined as a failure of regression of 
Blake’s pouch (the rudimentary fourth ventricular tela 
choroidea) secondary to nonperforation of the foramen 
of Magendi resulting in a posterior ballooning into 
the cisterna magna.[16,75] Failure of perforation of the 
foramen of Magendi results in enlargement of the fourth 
ventricle and the supratentorial ventricular system until 
the foramina of Luschka open and establish equilibrium 
of cerebrospinal fluid (CSF) outflow from the ventricles 
into the cisterns.[16] Blake pouch cyst is one of the 
anomalies within the Dandy-Walker complex (DWC), 
which is a continuum of congenital anomalies comprising 
Dandy-Walker malformation (DWM), Dandy-Walker 
variant (DWV), mega cisterna magna (MCM) in 
addition to Blake’s pouch cyst.[20,78] To the best of our 
knowledge, the coexistence of SMA type 1 and Blake’s 
pouch cyst (BPC) has not been previously reported in 
English literature.

CASE REPORT

A male neonate who is the first product of a 
nonconsanguineous marriage born at term with a body 
weight of 3.6 kg to a healthy young mother. Pregnancy 
was uneventful except for decreased fetal movements 
reported by the mother during the third trimester. Family 
history was negative for both parents.

Soon after birth, he was noticed to have paucity of 
movement of the four limbs with difficulty of breathing 
and poor feeding. He then developed respiratory distress 
with tachypnea, increased work of breathing, and oxygen 
desaturation that necessitated endotracheal intubation 
and mechanical ventilation. Clinically, his body weight, 
height and occipito-frontal circumference were all 
above 25th percentile; neurological examination revealed 
generalized hypotonia with decreased muscle power of 
all limbs, nonelicitable deep tendon jerks and occasional 
tongue fasciculations. No other clinical abnormalities 
were detected. Extensive metabolic workup and a 
TORCH (Toxoplasmosis, Rubella, Cytomegalovirus, 
Herpes simplex, HIV) screen revealed no abnormalities. 
Cranial and abdominal ultrasound examinations as 
well as cardiac echocardiogram were normal. Molecular 
genetic evaluation revealed a homozygous deletion of 
both exons 7 and 8 of the SMN1 gene, and exon 5 of 
the neuronal apoptosis inhibitory protein (NAIP) gene on 
the long arm of chromosome 5 consistent with Werdnig-
Hoffmann disease (SMA type 1).

At the age of 5 months, a full anterior fontanelle and 
abnormal increase of the occipito-frontal circumference 
were noted. Computed tomographic (CT) scan and 
magnetic resonance imaging (MRI) of the brain revealed 
a tetraventricular hydrocephalus and features of BPC of 

the fourth ventricle. Endoscopic third ventriculostomy 
or ventriculoperitoneal shunt insertion were both 
refused by the parents after detailed counseling. A follow 
up MRI done 3 months later showed progressive 
hydrocephalus [Figure 1].

The parents refused any surgical maneuver for CSF 
diversion including ventriculoperitoneal shunting or 
endoscopic third ventriculostomy. Now, for 11 months 
since admission to neonatal intensive care unit (NICU), 
many trials of extubation failed and he had to be 
re-intubated every time, due to increased work of 
breathing and desaturation. Over his NICU course, 
he developed frequent respiratory tract infections that 
were timely treated. Currently, the patient is kept on 
mechanical ventilation and is receiving only supportive 
care.

DISCUSSION

We report a case of proximal SMA type 1 (Werdnig–
Hoffmann disease or severe infantile acute SMA) 
associated with a Blake’s pouch cyst; a malformation 
that is currently classified within the spectrum of 
DWC. An exhaustive search of the Medline failed to 
retrieve any previously reported association of the two 
conditions in the English literature. The patient had 
a homozygous deletion of both exons 7 and 8 of the 
SMN1 gene, and exon 5 of the NAIP gene on the long 
arm of chromosome 5. In addition to the posterior 
fossa anomaly and hydrocephalus in our patient, both 

Figure 1: (a) Sagittal T2-weighted MR image demonstrating severe 
hydrocephalus with bulging third ventricular floor, open aqueduct 
and dilated fourth ventricle. Cerebellar vermis is compressed, 
relatively well-developed and is nonrotated. A thin line between 
dilated fourth ventricle and cisterna magna (Black arrow) indicates 
a Blake’s pouch cyst. A high torcular Herophili with upward 
displacement of the tentorium is seen (b) Axial T2-weighted MR 
image with cystic dilatation of the fourth ventricle and compressed 
medial cerebellar hemispheres (Black arrows) (c) Coronal and 
(d) Sagittal T2-weighted MR images further demonstrate features 
of severe hydrocephalus
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clinical and genetic findings are consistent with the 
diagnosis of proximal SMA type 1. In a seemingly 
similar case, Panas et al. reported a combination of 
distal SMA with DWC and anterior polar cataracts 
in two brothers aged 23 and 25 years.[57] However, 
distal SMA and proximal SMAs represent completely 
different entities, making this case the first reported in 
the literature.

The spinal muscular atrophies
The SMAs are a genetically and clinically heterogeneous 
group of disorders characterized by degeneration and 
loss of anterior horn cells of the spinal cord leading to 
muscle weakness and atrophy.[84] Proximal SMA (types 
I-IV) accounts for 80-90% of all SMA cases and is 
primarily caused by recessive mutations in the SMN1 
gene located in the chromosome region 5q11.2- 5q13.3, 
with homozygous absence of exon 7 in more than 95% 
of cases.[48,59] Alias et al. found homozygous absence of 
SMN1 exons 7 and 8 in 671 (90%) of 745 SMA patients. 
SMN gene is present in two highly homologous copies, 
SMN1 and SMN2, but only deletions of the SMN1 
gene (exons 7 and 8 or exon 7) are responsible for clinical 
manifestations of SMA.[5] Extended deletions that 
include the NAIP gene may correlate with the severtity 
of SMA.[48]

Depending on the age of onset, the maximum muscular 
activity achieved, and survivorship, proximal SMA types 
are classified as type I (Phenotype MIM number 253300), 
severe infantile acute SMA, or Werdnig–Hoffman 
disease; type II (Phenotype MIM number 253550), or 
infantile chronic SMA; type III (Phenotype MIM number 
253400), juvenile SMA, or Wohlfart–Kugelberg–Welander 
disease; and type IV (Phenotype MIM number 271150), 
or adult-onset SMA.[54]

Non-SMN1 SMAs include nonproximal SMA, bulbar 
palsy, spinobulbar muscular atrophy (SBMA), and 
infantile SMA variants also known as “SMA plus”.[57,84] 
These variants are characterized by SMA with additional 
or atypical features. They include SMA with respiratory 
distress, which can be caused by recessive mutations 
in Immunoglobulin µ-binding protein 2 (IGHMBP2); 
infantile lethal X-linked SMA with arthrogryposis and 
congenital fractures (SMAX2), caused by mutations 
in ubiquitin-activating enzyme E1 (UBE1); SMA1 
with arthrogryposis and bone fractures, and SMA with 
pontocerebellar hypoplasia (SMA-PCH), also known as 
PCH type 1.[59]

Dandy-Walker complex and Blake’s pouch cyst
The posterior fossa anomaly and the associated 
hydrocephalus in the patient of this report represent a 
BPC that is currently classified within the spectrum of 
DWC. DWC is a continuum of congenital anomalies 
comprising DWM, DWV, Blake’s pouch cyst, and 
MCM.[20,78] These anomalies are characterized by varying 

degrees of malformation of the medullary vela, the 
cerebellar vermis and hemispheres, the fourth ventricle 
choroid plexus, the posterior fossa subarachnoid cisterns, 
and the enveloping meningeal structures.[16] Persistent 
Blake’s pouch and MCM are thought to represent 
less severe abnormalities within the Dandy–Walker 
continuum.[60]

The original description of DWM dates back to 
the year 1914 when Dandy and Blackfan described 
a huge cystic dilatation of the fourth ventricle with 
anterior displacement of the cerebellar vermis that 
was attributed to primary atresia of the foramina 
of the fourth ventricle.[22] Over the following years 
many cases were reported, expanding the limits of the 
malformation to include findings of one particular case 
or another, and in the meanwhile creating a great deal 
of confusion about the definition and limits of the 
syndrome.[42] Taggart and Walker in 1942 further defined 
the condition.[70] Subsequently, Benda in 1954 introduced 
the now widely accepted name of DWM and was the 
first to introduce the currently held opinion that atresia 
of the cerebellar foramina is not an essential feature of 
the malformation.[12]

Tortori-Donati et al. added persistent BPC as an 
independent entity within the DWC.[75] BPC is thought 
to result from failure of regression of Blake’s pouch (the 
rudimentary fourth ventricular tela choroidea) secondary 
to nonperforation of the foramen of Magendi.[75] Failure 
of perforation of the foramen of Magendi results in 
enlargement of the fourth ventricle and the supratentorial 
ventricular system until the foramina of Luschka open and 
establish equilibrium of CSF outflow from the ventricles 
into the cisterns.[16] However, as the larger foramen of 
Magendi is permanently missing, the ventricles will 
stay enlarged.[20] The cerebellar hemispheres and vermis 
would rather be compressed (to a certain degree) than 
underdeveloped and would therefore re-expand in case of 
ventricular shunting.[9]

Typical radiological features of BPC are (i) tetraventricular 
hydrocephalus, (ii) infra- or retrocerebellar localization 
of the cyst, (iii) a relatively well-developed, nonrotated 
cerebellar vermis (as opposed to a DW), (iv) a cystic 
dilation of the fourth ventricle without cisternal 
communication, and (v) some degree of compression on 
the medial cerebellar hemispheres. Ideally, one may see 
the fourth ventricular choroid plexus continuing in the 
roof of the cyst on sagittal MR images.[20] These features 
were all noted in our patient’s MR images [Figure 1]. 
Classically, the choroid plexus of the fourth ventricle is 
displaced into the superior cyst wall in Blake’s pouch, 
absent in DWM, and normal in arachnoid cyst.[52] As 
it is evident in our patient [Figure 1], BPC may push 
the developing tentorium into an abnormal, relatively 
high position.[25] BPC is capable of producing a broad 
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spectrum of findings ranging from being asymptomatic to 
a full-blown hydrocephalus.[20]

DWC has been associated with a long list of chromosomal 
and phenotypic abnormalities of both neural and 
mesenchymal elements [Table 1]. Heterozygous deletion 
of ZIC1 and ZIC4 on chromosome 3q24 was the first 
molecularly defined cause of classic DWM.[31] A second 
DWM-linked locus on 6p25.3 was associated with 
deletions or duplications encompassing FOXC1 causing 
cerebellar and posterior fossa malformations including 
cerebellar vermis hypoplasia (CVH), MCM and DWM. 
Foxc1-null mice have embryonic abnormalities of the 
rhombic lip due to loss of mesenchyme-secreted signaling 
molecules with subsequent loss of Atoh1 expression 
in vermis. Specific loss of FOXC1 and general defects 
in mesenchymal signaling may result in cerebellar 
malformations.[3]

Spinal muscular atrophy with pontocerebellar 
hypoplasia
SMA-PCH (PCH-1) is an important differential diagnosis 
of the case reported herein, and can be excluded based 
on both genetic and radiological grounds; SMA-PCH is 
a non-SMN1 condition on contrary to our patient with 
homozygous deletion of both exons 7 and 8 of the SMN1 
gene on chromosome 5. MRI of our patient reveals a 
normal appearance of the brainstem and ventral pons in 
addition to other findings consistent with BPC [Figure 1]. 
PCH-1 is an autosomal-recessive disease of prenatal or 
infantile onset characterized by PCH and ventral horn 
cell degeneration. Clinically, polyhydramnios is usually 
present during pregnancy, and affected individuals present 
with bulbar dysfunction that leads to neonatal respiratory 
insufficiency, feeding difficulty, and congenital contractures; 
death often occurs before 1 year of age.[46] An extended 
clinical spectrum of PCH 1 with later onset of hypotonia, 
varying degrees of cerebellar or pontine hypoplasia and 
atrophy, peripheral nerve involvement, and longer survival 
has been reported.[61] All PCH syndromes [types 1-6] 
include a small cerebellum and brainstem with progressive 
microcephaly being a common finding.[59]

It is of relevance to this discussion to review the 
molecular genetic abnormality underlying PCH-1; namely 
the Vaccinia-related kinase 1 (VRK1) gene abnormality 
owing to its role in the pathogenesis of SMA and its 
probable contribution to the evolution of some cerebellar 
and posterior fossa congenital anomalies [Figure 2]. 
Renbaum et al. discovered a premature stop codon in the 
VRK1 gene that encodes a serine-threonine kinase and is 
located on chromosome 14q32 in affected siblings with 
PCH-1 in one family. VRK1 may be specifically important 
for spinal motor neuron survival or that it may also play a 
role in tRNA processing. In either case, identification of 
a VRK1 mutation as a cause of SMA-PCH points to new 
roles for this protein and suggests VRK2 [chromosome 

Contd...

Table 1: Clinical and chromosomal abnormalities 
associated with Dandy-Walker complex

Ref.

Conditions associated with DWM
Autosomal recessive osteopetrosis 13
Atrial septal defect 19
Beemer-Langer syndrome 44
Bifid hallux 65
Blepharophimosis/ptosis/epicanthus inversus syndrome 43
Cardiomyopathy (hypertrophic) 6
Cataracts 27
Collodion skin 27
Corpus callosum dysgenesis 13, 27
Crouzon syndrome 4
Cryptorchidism 27
Cerebral venous sinus thrombosis 33
Chondrodysplasia punctata with multiple anomalies 50
Ellis-van Creveld syndrome 82
Guschmann mesomelic campomelia polydactyly 32
Hypoparathyroidism 19
Jeune’s asphyxiating thoracic dystrophy 66
Kallmann’s syndrome 2
Keratitis-ichthyosis-deafness syndrome (kid) 72
Klippel-Feil syndrome 8
Meso-axial polydactyly 65
Microcephaly 18
Moerman lethal dysplasia 49
Neurocutaneous melanosis 47
Occipital encephalocele 15
Occipital meningoencephalocele 65
Parietal encephalocoele 36
Phaces syndrome 45
Polymicrogyria 10
Renal agenesis 19
Rhombencephalosynapsis 64
Ritscher-Schinzel (cranio-cerebello-cardiac, 3c) 
syndrome with renal involvement

63

Syringomyelia 40
Turner syndrome 10
Ventricular septal defect 19

Chromosomal Abnormalities Associated with DWM
Translocation (12;17;18) (q21.2;q22;q21.1) 1
Heterozygous deletions encompassing the ZIC1;ZIC4 
loci on 3q24

14,73

Partial trisomy 7p (7p15.3→pter), partial monosomy 
13q (13q33.3→qter)

18

Mutations of the gene coding for emopamil binding 
protein (EBP)

27

Chromosome 2q36.1 abnormality 39
Conditions associated with DWV

Atrial septal defect 56, 62
Autism 62
Cerebral palsy 62
Cerebro-fronto-facial syndrome 74
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2p16] and VRK3 [chromosome 19q13] as candidate 
genes for related phenotypes, including other PCHs and 
other SMAs.[59]

The existence of an autoregulatory loop between VRK1 
and p53 may be of relevance to both development and 
maintenance of the nervous system. p53 regulates cell 
division and death during nervous system development 
and in response to neuronal insult or injury during 
life. Recessive mutations in Ataxia telangiectasia 
mutated (ATM), which phosphorylate p53 in response 
to DNA damage cause ataxia telangiectasia, in which 
loss of cerebellar neurons and ataxia are prominent 
features.[59] Moreover, p53 interacts directly with 
SMN1, an association disrupted by SMN1 mutations 
associated with SMA,[81] and might be of relevance 
to SMA pathogenesis.[76] In addition, VRK1 may 
be involved in cell cycle regulation, organization 
of chromatin, and organization of the nuclear 
envelope.[46] The role of VRK1 in cyclic AMP (cAMP) 
response element-binding (CREB) activation suggests 
that VRK1 mutations may lead to impaired CREB 
signaling, which can result in both developmental 
and degenerative neurological disease; Coffin–
Lowry syndrome is caused by mutations in RSK2, 
another CREB kinase, Rubinstein–Taybi syndrome 
can be caused by mutations in CREBBP (a CREB 
binding protein). Interference with CREB-dependent 
transcription is a feature of polyglutamine stretches, 
common in spinocerebellar ataxias. CREB also binds to 
the SMN promoter and increases SMN expression, so its 
deficiency could promote an SMA phenotype.[59]

As it is well known that mutations in multiple genes can 
cause various central nervous system malformations,[46] we 
think that future reports and studies may reveal important 
molecular genetic links between DWC (specifically BPC) 
and Werdnig-Hoffmann disease.

CONCLUSION

This case represents a previously unreported association 
of BPC and SMA type 1 that further expands the current 
literature, and potentially directs future investigation 
of probable molecular genetic links between these 
conditions.
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