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Abstract

Background

Traditionally, changes in the microbial population of the nose have been assessed using

conventional culture techniques. Sequencing of bacterial 16S rRNA genes demonstrated

that the human nose is inhabited by a rich and diverse bacterial microbiome that cannot be

detected using culture-based methods. The goal of this study was to describe the nasal

microbiome of healthy cats, cats with nasal neoplasia, and cats with feline upper respiratory

tract disease (FURTD).

Methodology/Principal findings

DNA was extracted from nasal swabs of healthy cats (n = 28), cats with nasal neoplasia

(n = 16), and cats with FURTD (n = 15), and 16S rRNA genes were sequenced. High spe-

cies richness was observed in all samples. Rarefaction analysis revealed that healthy cats

living indoors had greater species richness (observed species p = 0.042) and Shannon

diversity (p = 0.003) compared with healthy cats living outdoors. Higher species richness

(observed species p = 0.001) and Shannon diversity (p<0.001) were found in middle-aged

cats in comparison to healthy cats in different age groups. Principal coordinate analysis

revealed separate clustering based on similarities in bacterial molecular phylogenetic trees

of 16S rRNA genes for indoor and outdoor cats. In all groups examined, the most abundant

phyla identified were Proteobacteria, Firmicutes, and Bacteroidetes. At the genus level, 375

operational taxonomic units (OTUs) were identified. In healthy cats and cats with FURTD,

Moraxella spp. was the most common genus, while it was unclassified Bradyrhizobiaceae in

cats with nasal neoplasia. High individual variability was observed.

Conclusion

This study demonstrates that the nose of cats is inhabited by much more variable and

diverse microbial communities than previously shown. Future research in this field might

help to develop new diagnostic tools to easily identify nasal microbial changes, relate them
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to certain disease processes, and help clinicians in the decision process of antibiotic selec-

tion for individual patients.

Introduction

Microorganisms, including bacteria, fungi, and viruses, colonize the entire body. To under-

stand their complex community structure, biology, and ecology, analyses of the microbial

diversity of the body are important [1]. The microbiome is defined as the collection of

microbes and their genomes, such as bacteria, archaea, viruses, and fungi, which can be either

symbiotic, pathogenic, or commensal [2]. In humans, a subject’s microbiome is personalized

but dynamic throughout the first year of life [3]. The microbiome is a metabolically active

organ with the potential to influence both the physiology and phenotype of the host [4]. Most

interactions between humans and their microorganisms are not disease-related [5], and

instead most microorganisms live in a symbiotic relationship with their host [6]. It is known

that the microbiome supports the stimulation, development, and modulation of the immune

system [7]. Furthermore, it influences the structure of the mucosa and skin and prevents its

host from being colonized by potentially pathogenic microorganisms [8]. However, an imbal-

ance of the microbiome can result in damage to its host [9]. In the last decade, a number of

studies have reported compositional alterations in the microbiome of the nose of healthy and

diseased humans [10–28]. The development [29–31] and influence of environmental factors

[32, 33] on the nasal microbiome during childhood and changes in the nasal microbiome dur-

ing aging [34, 35] have also been the subject of different studies.

Changes in the microbial populations in the nose of animals have traditionally been evalu-

ated using conventional microbiological techniques such as culture and biochemical methods

[36]. Recent molecular-based methods, most commonly targeting the 16S rRNA gene, have

enabled researchers to characterize highly complex microbial communities in different sites of

the human body [37–39]. In small animal medicine, most of the our knowledge about the

microbiome is based on analyses of 16S rRNAs from the gastrointestinal tract [40]. In contrast,

very little information is available for the respiratory tracts of dogs [41] and cats [42]. The

upper and lower airways are in permanent contact with the external environment during res-

piration and are therefore considered to be inhabited by mucosal commensals in healthy ani-

mals [43].

This study was designed to examine the microbiomes of healthy cats, cats with nasal neo-

plasia, and cats with feline upper respiratory tract disease (FURTD) using next-generation

sequencing techniques. Furthermore, the influence of different individuals or environmental

factors on the feline nasal microbiome of healthy cats was evaluated.

Materials and methods

Study population and inclusion criteria

This study was approved by the ethics committee of the Center for Clinical Veterinary Medi-

cine, Faculty of Veterinary Medicine, LMU Munich, and has been assigned number 25-30-04-

2014. Healthy cats (n = 28), cats with nasal neoplasia (n = 16), and cats with FURTD (n = 15)

were included in the study. All samples were obtained from the federal state of Bavaria, south-

ern Germany, between November 2014 and September 2015. Information regarding breed,

age, sex, vaccination status, inside/outside status, duration of clinical signs, additional diseases,

and current therapy were documented. A general physical examination and specific
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examination of the respiratory tract were performed in each cat. Patients were divided into dif-

ferent age groups (group 1: 0–0.3 years, group 2:>0.3–1.0 years, group 3:>1.0–5.0 years,

group 4:>5.0–10.0 years, group 5:>10.0 years).

Healthy cats had to be clinically healthy for 6 months prior to sampling and had not been

treated with antibiotics, anti-inflammatory, or immunosuppressive drugs during the last 6

months according to the exclusion criteria from the NIH Human Microbiome Project [44].

Healthy cats younger than 1 year were only included for comparison of age-related statistics

because different human studies [3] and a longitudinal study on pigs [43] showed significant

dynamic changes in the nasal microbiome in early life. Furthermore, a longitudinal study

examining the fecal microbiome of cats younger than 1 year revealed higher structural and

functional diversity of the microbiome later in life [45].

Cats with nasal neoplasia were eligible to enter the study if the histopathology of nasal

biopsy samples confirmed malignancy. Cats with a history of antibiotic pretreatment were

only included for comparison to pretreated and untreated animals because human studies

showed alterations of the microbiome in individuals who received antibiotic treatment [46–

48].

Cats with FURTD were eligible to enter the study if they had at least one clinical sign associ-

ated with FURTD, including nasal discharge, sneezing, ulceration of the tongue, conjunctivitis,

ocular discharge, keratitis, and corneal ulcers. Only cats with an acute history of FURTD of

less than 4 weeks were included. Furthermore, the cats had to test positive for at least 1 patho-

gen associated with FURTD, including feline herpesvirus-1 (FHV-1), feline calicivirus (FCV),

or Chlamydia felis (C. felis). The cats had not been treated with antibiotic, anti-inflammatory,

or immunosuppressive drugs during the prior 6 months. None of the cats involved in the

study had received intranasal vaccines, which were an exclusion criterion.

Patient population. The ages of the healthy cats (Table 1) ranged from 6.0 months to 14.0

years (median 4.0 years). The median weight was 3.5 kg (1.3 kg to 7.5 kg). Healthy cats were

either client-owned (n = 19), from animal shelters (n = 6) or farm cats (n = 3).

The age of the cats with nasal neoplasia (Table 2) ranged from 3.5 years to 20.5 years

(median 10.4 years), and the median weight was 4.1 kg (2.2 kg to 7.8 kg). All cats were sampled

during anesthesia for diagnostic work-up at the Clinic of Small Animal Medicine of the LMU

University of Munich.

The age of the cats with FURTD (Table 3) ranged from 1.0 month to 6.6 years (median 0.3

years), and their median weight was 1.2 kg (0.3 kg to 4.0 kg). All cats were client-owned and

sampled without anesthesia.

Sampling technique

Two dry sterile swabs consisting of short nylon fibers (Copan1, FLOQSwabsTM, Brescia, Italy)

were collected per cat, 1 from each nostril. The samples were obtained by gently inserting and

rotating the swab into the cranial aspects of the nasal cavity. Samples were stored at -80˚C

until analyses were performed. One additional sterile dry rayon swab (Copan1 sterile dry

swab 155C, Brescia, Italy) was obtained from the cats with FURTD from the conjunctiva,

nares, pharynx, and tongue, and submitted for viral testing (IDEXX laboratories, Ludwigsburg,

Germany).

DNA isolation

Total nucleic acid (DNA) isolation using the QIAamp1 DNA Mini Kit (Qiagen, Hilden, Ger-

many) was performed according to the manufacturer’s instructions and as described previ-

ously [49]. Samples from the left and right nostril of each cat were pooled. The swabs were
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placed in a 2-ml tube filled with phosphate-buffered saline (PBS) supplemented with 0.1%

NaN3 as a fungicide. The samples were incubated at room temperature for 3 hours. The swabs

were removed from the tubes, and the remaining buffer solution was centrifuged (Eppendorf

Centrifuge 5417R, Hamburg, Germany) for 10 minutes at 7,500 rpm. After centrifugation, the

supernatant was removed, and the pellet was resuspended in 180 μl of buffer ATL. After addi-

tion of 20 μl proteinase K, the sample was mixed by vortexing and incubated in a 1.5-ml reac-

tion tube at 56˚C (Eppendorf Thermomixer comfort, Hamburg, Germany) for 1 hour. The

tube was briefly centrifuged at 7,500 rpm, followed by the addition of 200 μl buffer AL and vor-

texing. The tube was incubated at 70˚C for 10 minutes and briefly centrifuged. Afterwards,

200 μl ethanol was added, and the tube was vortexed and briefly centrifuged. The mixture was

applied to the QIAamp Mini spin column and centrifuged at 800 rpm for 1 minute. Samples

from both nostrils of each cat were pooled, placed on the same QIAamp Mini spin column

and briefly centrifuged. The QIAamp Mini spin was placed in a sterile 2-ml collection tube

Table 1. Characteristics and environmental factors for the healthy cats enrolled in the study.

population breed age (years) age group sex anesthesia indoor/ outdoor environment relation house

cat1 DSH 4.0 3 SF W I I - -

cat2 DSH 3.0 3 CM W I I+B - 1

cat3 R-Mix 2.0 3 SF W I I+B - 1

cat4 DSH 5.7 4 SF W O O 1 2

cat5 DSH 6.6 4 F W O O 1 2

cat6 DSH 4.7 4 CM W O O 1 2

cat7 DSH 2.6 3 F W O O 1 2

cat8 DSH 10.0 5 SF W O O - -

cat9 BSH-Mix 5.0 4 CM W I I 2 3

cat10 BSH-Mix 5.0 4 SF W I I 2 3

cat11 BE 4.0 3 SF W I I+B - -

cat12 DSH 5.7 4 CM W O O 1 4

cat13 DSH 14.0 5 SF W O O - 4

cat14 DSH 0.7 2 M A O F 3 5

cat15 DSH 0.7 2 F A O F 3 5

cat16 DSH 7.0 4 SF W O O 4 6

cat17 DSH 7.0 4 CM W O O 4 6

cat18 DSH 6.0 4 SF W O O - -

cat19 DSH 2.0 3 CM W I I+B 5 7

cat20 DSH 2.0 3 CM W I I+B 5 7

cat21 DSH 1.0 3 F A I S - 8

cat22 DSH 8.0 4 SF A I S - -

cat23 DSH 1.5 3 F A I S - 9

cat24 DSH 2.8 3 F A I S - 9

cat25 OSH 6.0 4 SF A I S - 8

cat26 DSH 1.5 3 F A I S - 8

cat27 DSH 0.5 2 M W O F - -

cat28 DSH 3.0 3 CM W I I - -

DSH: Domestic Shorthair, R-Mix: Ragdoll mix, BSH-Mix: British Shorthair mix, BE: Bengal; OSH: Oriental Shorthair; age groups: group 1: 0–0.3 years,

group 2: >0.3–1 year, group 3: >1–5 years, group 4: >5–10 years, group 5: >10 years; M: male, CM: male castrated, F: female, SF: female spayed; W:

sampled without anesthesia, A: sampled during anesthesia; I: indoor, O: outdoor, I+B: indoor with access to a balcony (indoor), S: shelter (indoor), F: farm

(outdoor); relation: related cats were assigned the same number; house: cats housed together were assigned the same number.

https://doi.org/10.1371/journal.pone.0180299.t001
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and centrifuged briefly. DNA was washed by adding 500 μl Buffer AW1, centrifuging at 8,000

rpm for one minute, and transferring the sample to a new 2-ml collection tube. Next, 500 μl

buffer AW2 was added, and the tube was centrifuged at 14,000 rpm for 3 minutes. The

QIAamp Mini spin column was placed in a new 1.5-ml microcentrifuge tube followed by the

Table 2. Characteristics and pretreatment of cats with nasal neoplasia enrolled in the study.

population breed age (years) age group sex histopathology antibiotics steroids

cat29 B 10.0 5 CM L Y Y

cat30 L 12.0 5 F SCC N N

cat31 DSH 12.0 5 CM L Y Y

cat32 DSH 8.0 4 CM L Y Y/T

cat33 DSH 7.0 4 CM L N Y/T

cat34 DSH 14.0 5 CM F N N

cat35 DSH 9.0 4 SF L Y/T Y/T

cat36 DSH 17.0 5 CM L Y N

cat37 MC 5.0 4 CM SCC N Y

cat38 DSH 3.5 3 F SCC N N

cat39 B 10.7 5 F AD Y/T Y

cat40 DSH 7.6 4 F SCC Y N

cat41 DSH 20.5 5 SF C N N

cat42 DSH 12.2 5 SF SCC Y Y

cat43 DSH 12.7 5 CM AD Y/T N

cat44 DSH 8.3 4 CM L N N

DSH: Domestic Shorthair, B: Birman, L: Domestic Longhair, MC: Maine Coon; age groups: group 1: 0–0.3 years, group 2: >0.3–1 year, group 3: >1–5 years,

group 4: >5–10 years, group 5: >10 years; M: male, CM: male castrated, F: female, SF: female spayed; N: no treatment for at least 3 months prior sampling,

Y: yes, Y/T: yes and currently under treatment; SCC: squamous cell carcinoma, L: lymphoma, F: fibrosarcoma, C: carcinoma, AD: adenocarcinoma.

https://doi.org/10.1371/journal.pone.0180299.t002

Table 3. Characteristics and infection status of cats with FURTD enrolled in the study.

population breed age (years) age group sex pathogens

cat45 T 1.0 3 F FHV

cat46 DSH 4.0 3 SF FHV

cat47 DSH 6.6 4 F FCV

cat48 DSH 0.1 1 M FCV

cat49 DSH 0.2 1 M FCV, C. felis

cat50 DSH 0.2 1 M FHV

cat51 DSH 0.3 2 F FCV

cat55 DSH 0.2 1 M C. felis

cat56 DSH 0.2 1 F C. felis

cat57 DSH 0.3 2 F C. felis

cat58 DSH 0.2 1 M C. felis

cat59 DSH 0.2 1 F C. felis

cat60 DSH 0.4 2 F C. felis

cat61 DSH 0.4 2 F C. felis

cat62 DSH 0.5 2 M FCV

DSH: Domestic Shorthair, T: Toyger; age groups: group 1: 0–0.3 years, group 2: >0.3–1 year, group 3: >1–5 years, group 4: >5–10 years, group 5: >10

years; M: male, CM: male castrated, F: female, SF: female spayed.

https://doi.org/10.1371/journal.pone.0180299.t003
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addition of 100 μl buffer AE, and the sample was incubated at room temperature for 5 minutes.

The QIAamp Mini spin column was centrifuged at 8,000 rpm for 1 minute. As a negative con-

trol, the same procedure was performed using sterile water with and without an unused swab.

The extracted DNA was stored at—80˚C until further analysis.

DNA sequencing

Sequencing based upon the V4 region of the 16S rRNA gene was performed on an Illumina

MiSeq instrument (Illumina Inc.; San Diego CA, USA) at the MR DNA Laboratory (Shallo-

water, TX, USA) as described previously, with forward primer 515 and reverse primer 806 [50,

51]. Raw sequence data were screened, trimmed, filtered, denoised, and chimera-depleted with

default settings using QIIME pipeline version 1.8 software (http://qiime.sourceforge.net) [52]

and UCHIME (http://www.drive5.com/uchime) [53]. Operational taxonomic units were

defined as bacterial sequences with at least 97% similarity to representative sequences from the

Greengenes v 13.8 database [54]. Sequences were clustered into OTUs by using an open refer-

ence approach in QIIME [54]. All sequences from all samples were clustered into operational

taxonomic units (OTUs), which is based on sequence similarity within the reads. Accordingly,

OTUs in QIIME are clusters of sequences that represent some degree of taxonomic related-

ness. For example, when sequences are clustered at 97% sequence similarity, each resulting

cluster is typically thought of as representing a genus. These current techniques for selecting

OTUs are known not to concur with the original term “species.”. In this context, the “observed

species” metric is the number of unique OTUs found in the samples [52]. Data were uploaded

to the database of the National Center for Biotechnology Information (NCBI) (accession num-

ber SRP074617).

Data analysis

A total of 4,760,303 sequences (median 73,763; mean 74,380; range 25,641–126,171) were

amplified. All samples were rarefied to an equal depth of 25,640 sequences per sample. Data

were used to define the relative percentages of bacteria for each individual sample. The alpha

and beta diversity were measured, and principal coordinates analysis (PCoA) plots and rare-

faction curves were created using QIIME v1.8 software (Knight and Caporaso Labs, Arizona,

USA). Weighted and unweighted UniFrac analyses were performed. Differences in microbial

communities between the groups were investigated by analysis of similarity (ANOSIM) calcu-

lated for unweighted and weighted UniFrac distances using the PRIMER 6 statistical software

package (PRIMER-E Ltd., Luton, UK). P-values <0.05 were considered statistically significant.

Assumption of normality was tested using the D’Agostino and Pearson normality test

(Prism v.7.0, Graph-Pad Software Inc., CA, USA). As most datasets did not meet the assump-

tions of a normal distribution, differences in the proportions of bacterial taxa (defined as per-

centage of total sequences) between groups were determined using the nonparametric

Kruskal–Wallis test or for comparison of only 2 groups the Mann-Whitney test (Prism v7.0,

Graph-Pad Software Inc., CA, USA). The resulting p-values were adjusted for multiple com-

parisons using the Benjamini Hochberg’s false discovery rate (FDR). Dunn’s multiple compar-

ison test was used to determine which of these groups were significantly different when age

groups and environment was compared. The phylogeny-based UniFrac distance metric analy-

sis was used to investigate differences in microbial communities between groups [54]. Linear

discriminant analysis (LDA) effect size (LEfSe) was utilized to evaluate differentially abundant

bacterial taxa and predicted function among the animal groups. This analysis was performed

online (https://huttenhower.sph.harvard.edu/galaxy/).
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Results

Study population

Healthy cats younger than 1 year (n = 3) were excluded for all investigations other than those

that examined the effect of age on the microbiome. When excluding healthy cats younger than

1 year, the age of healthy adult indoor (median 3.0 years) and outdoor cats (median 5.7 years)

was significantly different (p = 0.002). Another significant difference (p<0.001) was observed

when comparing the age of healthy cats (median 4.0 years) and cats with FURTD (median 0.3

years), and those with nasal neoplasia that did not receive antibiotics (median 8.3 years) and

cats with FURTD. However, there were no significant differences regarding age when healthy

cats and cats with nasal neoplasia were compared according to Dunn’s multiple comparison

test.

Nasal microbial composition

The following factors were considered in the analysis of nasal microbial composition of healthy

cats: the influence of age (age groups 1–5), environment (indoor/outdoor), group housing,

familial relationship between cats, and sampling with or without anesthesia. When all types of

environments, such as indoor, indoor and balcony, shelter, and outdoor (ANOSIM on

unweighted UniFrac distance p = 0.003 and on weighted UniFrac distance p = 0.001), just

indoor and outdoor (ANOSIM on unweighted UniFrac distance p = 0.001 and on weighted

UniFrac distance p = 0.015) and different age groups (ANOSIM on unweighted UniFrac dis-

tance p = 0.002 and on weighted UniFrac distance p = 0.048) were compared, these groups

were significantly different. Pairwise testing using PRIMER6 indicated that cats living indoors

with access to a balcony had a significantly different microbial community composition

(p = 0.005) in comparison to outdoor cats. The same accounted for the beta diversity of indoor

(which includes indoor, indoor with access to a balcony and shelter) compared with outdoor

cats (p = 0.004). Principal coordinate analysis plots were constructed using the unweighted

UniFrac metric to evaluate similarities in microbial communities defined as clustering by

visual assessment. A large degree of variability was seen across all samples. Clustering in

healthy cats was only observed for age groups and for different indoor/outdoor status (Fig 1).

ANOSIM analysis based on unweighted and weighted UniFrac metrics did not detect a signifi-

cant difference for the following factors: anesthesia (unweighted UniFrac distance p = 0.750,

weighted UniFrac distance p = 0.794), same household (unweighted UniFrac distance

p = 0.126, weighted UniFrac distance p = 0.2) or familial relationship (unweighted UniFrac

distance p = 0.208, weighted UniFrac distance p = 0.209). Calculation of average distances

showed no closer similarity between related cats and cats living in the same household when

compared to unrelated cats and cats living in separate households.

In cats with nasal neoplasia, unweighted UniFrac metric did not show a significant differ-

ence using ANOSIM analysis, when the microbiome of cats with nasal neoplasia that received

antibiotics was compared to cats that did not have a history of antibiotic treatment

(unweighted UniFrac distance p = 0.465, weighted UniFrac distance p = 0.159). Clustering

based on similarities of bacterial molecular phylogenetic trees was not observed in compari-

sons of pretreated and untreated cats with nasal neoplasia (Fig 2).

In cats with FURTD, beta diversity showed significant differences between cats with and

without C. felis infection (Fig 3, p = 0.011) and in cats with and without FHV-1 infection (Fig

4, p = 0.033) for ANOSIM performed on the unweighted UniFrac distance. However, when

the analysis was performed on the weighted UniFrac distance, no significant difference was

observed (C. felis p = 0.088 and FHV-1 p = 0.092).
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Species richness and diversity

Species richness (observed species and Chao1) and alpha-diversity (Shannon) revealed high

individual variability between samples collected from healthy and diseased cats (S1 Table). As

explained above, the current techniques for selecting OTUs are known not to concur with the

original term “species”. In this context, the “observed species” metric is the number of unique

OTUs found in the sample. Species richness was significantly higher in cats of age group 3

compared with age group 2 (Fig 5, p = 0.001) when all age groups of healthy cats were com-

pared. When 25,640 sequences per sample were analyzed, the number of observed species ran-

ged from 1,426 to 796 for age group 3 to the lowest number of 508 to 422 for age group 5. Cats

kept indoors had a significantly higher number of observed species compared with cats with

access to the outside (Fig 6, p = 0.042). The number of observed species ranged from 1,426 to

935 for indoor and balcony cats and was lowest for outdoor cats with 990 to 422.

As an estimator for species richness at a higher sequencing depth, the Chao 1 index also

showed significantly higher levels for age group 3 when all age groups were compared (Fig 5,

p<0.001). In comparisons of indoor/outdoor status, the Chao 1 index revealed that most

Fig 1. Principal coordinate analysis for indoor/outdoor status of healthy cats. Principal coordinate

analysis (PCoA) plots based on the unweighted UniFrac distance metric illustrating differences in microbial

communities present in the nose of healthy cats living indoor versus outdoor. Every dot represents the

bacterial community of one individual cat. A separation defined as clustering was observed in indoor and

outdoor cats. PC1: first component along the x- and y-axes, PC2: second component, PC3: third component;

blue dots: outdoor cats; red dots: indoor cats.

https://doi.org/10.1371/journal.pone.0180299.g001
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indoor cats had a higher observed species number compared with outdoor cats (Fig 6,

p = 0.011).

The Shannon diversity index, which takes into account the abundance and evenness of spe-

cies, showed similar results concerning the number of observed species and Chao 1 index in

different age groups, with age group 3 having the highest and age group 5 having the lowest

diversity, and a significant difference between age group 2 and age group 3 when all age groups

were compared (Fig 5, p<0.001). Similarly, samples from indoor cats were more diverse com-

pared with outdoor cats based on the Shannon index (Fig 6, p = 0.003).

Most common taxa colonizing the nose

Twenty-four phyla were identified from all nasal samples. Proteobacteria were the predomi-

nant bacterial phylum in healthy and diseased cats. Proteobacteria, Bacteroidetes, and Firmi-

cutes together represented, on average, more than 92% of the total bacteria sequenced in all

three groups. At the finest taxonomic resolution possible, a total of 375 OTUs was found, but

DNA could not always be resolved beyond the genus level (S2 Table). The composition of the

nasal microbiome differed at an individual level (Fig 7). The predominant bacterial groups in

the nose of healthy and diseased cats are displayed in Table 4 and Table 5 and Fig 8. S2 Table

Fig 2. Principal coordinate analysis for antibiotic treatment of cats with nasal neoplasia. Principal coordinate analysis (PCoA) plots

based on the unweighted UniFrac distance metric illustrating differences in microbial communities present in the nose of cats with nasal

neoplasia. Every dot represents the bacterial community of one individual cat. A separation defined as clustering was not observed. PC1: first

component along the x- and y-axes, PC2: second component, PC3: third component; blue dots: antibiotic treatment; red dots: no antibiotic

treatment.

https://doi.org/10.1371/journal.pone.0180299.g002
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summarizes the proportions of bacteria by phyla, class, order, family, and genus in healthy

cats, different age groups of healthy animals, healthy cats with different indoor/outdoor status

and diseased cats.

Similar to the difference observed in beta diversity between healthy indoor and outdoor

cats, the analysis of individual bacterial groups with LEfSe showed a different abundance of

taxa when these groups were compared. Indoor cats had a significantly lower relative abun-

dance of the genus Moraxella, while significantly higher levels were detected in the genera Bra-
dyrhizobium, Staphylococcus, and Pasteurella higher.

Within the study group with nasal neoplasia, the bacterial taxa of patients with and without

antibiotic treatment prior to sampling were compared. While there were no significant differ-

ences in alpha and beta diversity, several significantly different bacterial taxa could be estab-

lished using LEfSe (Fig 9). While Prevotella copri and Staphylococcus sciuri were significantly

Fig 3. Principal coordinate analysis for Chlamydia felis infection in cats with FURTD. Principal coordinate analysis (PCoA) plots

based on the unweighted UniFrac distance metric illustrating differences in microbial communities present in the nose of cats with

FURTD. Every dot represents the bacterial community of one individual cat. A separation defined as clustering was observed in cats

according to their status of being positive or negative for Chlamydia felis. PC1: first component along the x- and y-axes, PC2: second

component, PC3: third component; blue dots: cats that tested positive for Chlamydia felis; red dots: cats that tested negative for

Chlamydia felis.

https://doi.org/10.1371/journal.pone.0180299.g003
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more abundant in cats that had received antibiotics within the last 8 weeks, many taxa were

decreased in cats with an antibiotic history.

Discussion

The present study demonstrates that the nasal microbiome in cats is much more diverse than

previously reported using culture-based methods [55–58]. Sequence data revealed a high indi-

vidual variability among the samples collected from cats. Although additional samples from

more cats are needed to arrive at further conclusions, the results suggest that the composition

of the bacterial community is influenced by age and different environmental factors. In

humans, a subject’s microbiome is personalized but includes dynamic changes throughout the

first year of life characterized by a greater bacterial density and decreased diversity at a young

Fig 4. Principal coordinate analysis for FHV-1 infection in cats with FURTD. Principal coordinate analysis (PCoA) plots

based on the unweighted UniFrac distance metric illustrating differences in microbial communities present in the nose of

healthy cats that tested positive or negative for FHV-1. Every dot represents the bacterial community of one individual cat. A

separation defined as clustering was observed. PC1: first component along the x- and y-axes, PC2: second component, PC3:

third component; blue dots: cats that tested positive for FHV-1; red dots: cats that tested negative for FHV-1.

https://doi.org/10.1371/journal.pone.0180299.g004
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age [3]. Similarly, the present study detected differences in the nasal microbial composition of

healthy cats at different ages. Because of the strong influence of age on the nasal microbial

composition, this parameter was not useful to compare healthy cats with diseased cats belong-

ing to other age groups. In this case, differences in the microbiome could not only result from

the underlying disease process but would also be affected by age. This phenomenon had to be

kept in mind when interpreting the nasal microbial composition of cats with FURTD in the

present study because FURTD is frequently detected in kittens younger than one year of age.

In contrast, cats suffering from nasal neoplasia tend to be older. Because healthy cats had to be

free from clinical signs of disease, few healthy old cats were eligible to enter the study. In the

present study, the age of the healthy cats, cats with neoplasia, and cats with FURTD were sig-

nificantly different. Therefore, a statistical comparison of the microbiome of cats with different

disease statuses status was not performed.

In the present study, Moraxella, Bradyrhizobiaceae, Sediminibacterium, Alloicoccus, and

Neisseriaceae were the most commonly detected bacteria in the nose of healthy cats. In cats

with FURTD, Moraxella, Bradyrhizobiaceae, Staphylococcus, Pasteurella, Chlamydia and Strep-
tococcus were the most frequently observed taxa. In previous studies using culture-based meth-

ods and PCR, the most commonly described bacteria in the nose of cats with FURTD included

Pasteurella, Streptococcus, and Staphylococcus [57]. In addition to these bacteria, another study

additionally detected Mycoplasma spp. as the most common bacterium in cats with FURTD

[58]. Interestingly, in the present study, Mycoplasma was not one of the most abundant taxa in

the nose of cats with FURTD concerning the relative abundance (mean 0.5%). Chlamydia felis

Fig 5. Rarefaction curves of 16S rRNA gene sequences from healthy cats of different age groups. Lines

represent the mean of each age group, and error bars represent the standard deviations. The analysis was

performed on a randomly selected subset of 25,640 sequences per sample. (A) Observed Species. (B) Chao1

index. (C) Shannon diversity index (age group 2: red line, age group 3: blue line, age group 4: orange line, age

group 5: green line).

https://doi.org/10.1371/journal.pone.0180299.g005

Fig 6. Rarefaction curves of 16S rRNA gene sequences obtained from healthy cats living in different

environments. Lines represent the mean of each group, and error bars represent the standard deviations. (A)

Observed Species. (B) Chao1 index. (C) Shannon diversity index (cats living indoor: red line, cats living indoor with

access to a balcony: blue line, cats with access to the outside: yellow line, cats living in a shelter: green line).

https://doi.org/10.1371/journal.pone.0180299.g006

Nasal microbiome in cats

PLOS ONE | https://doi.org/10.1371/journal.pone.0180299 June 29, 2017 12 / 23

https://doi.org/10.1371/journal.pone.0180299.g005
https://doi.org/10.1371/journal.pone.0180299.g006
https://doi.org/10.1371/journal.pone.0180299


(C. felis) is another known pathogen that is frequently detected in cats with FURTD and has

been observed in the nose of cats with FURTD [59]. Notably in this study, C. felis was only

observed in cats with FURTD (relative abundance 5.7%). Staphylococcus spp., Pasteurella spp.,

and Streptococcus spp. were commonly detected in cats with FURTD in this study, as previ-

ously described [57, 58]. The second most abundant taxa in healthy cats and in cats with

FURTD detected in this study was Bradyrhizobiaceae, which has never been previously

described as an inhabitant of the feline nose but has recently been detected in the feline oro-

pharynx of healthy cats [42] and in the nasal cavity of healthy dogs [41]

The most commonly identified bacterial family in healthy cats and cats with FURTD was

Moraxellaceae. In humans, Moraxella catarrhalis has been cultured from the hypopharynx of

neonates as a risk factor for childhood asthma [60] and bronchiolitis or pneumonia [61].

Fig 7. Composition of the nasal microbiome in healthy and diseased cats. Bacterial phyla in the nose of

single cats enrolled in the study. Each bar chart represents one cat.

https://doi.org/10.1371/journal.pone.0180299.g007

Table 4. Relative proportions of the most abundant bacterial taxa identified by sequencing of the 16S rRNA gene.

Healthy (n = 25) Neoplasia (n = 7) FURTD (n = 15)

Taxa mean % SD mean % SD mean % SD

Phylum

Bacteroidetes 9.3 8.3 19.5 24.5 5.7 7.7

Chlamydia 0.1 0.0 0.0 0.0 5.7 15.7

Firmicutes 13.0 11.2 3.8 2.0 13.1 14.3

Proteobacteria 71.4 14.5 68.8 21.2 72.7 21.1

Class

Alphaproteobacteria 15.0 12.2 29.2 17.5 13.4 13.9

Betaproteobacteria 15.5 17.7 7.4 5.6 6.0 7.0

Gammaproteobacteria 40.7 31.0 32.1 26.3 52.9 32.0

Order

Pseudomonadales 37.5 32.7 18.5 31.1 40.4 33.3

Rhizobiales 12.9 10.5 28.3 16.9 12.9 13.7

Family

Bradyrhizobiaceae 11.4 10.2 21.0 18.8 8.8 12.7

Moraxellaceae 34.9 33.9 17.7 31.4 39.8 33.7

Neisseriaceae 7.8 17.3 2.0 3.3 0.9 0.8

Genus

Moraxella 33.0 34.2 15.8 31.8 38.6 33.8

unclassified Bradyrhizobiaceae 11.3 10.1 20.6 18.4 8.8 12.6

https://doi.org/10.1371/journal.pone.0180299.t004
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During the first year of life, Moraxella spp. can be more frequently detected in children with

acute respiratory infections than in healthy ones [62]. In cattle, Moraxella bovis and Moraxella
bovoculi have been associated with bovine keratoconjunctivitis [63], but they could also be

detected in the nasopharynx of asymptomatic cattle [64]. Studies investigating the feline oral

microbiota in healthy cats [65] and in cats with and without periodontitis [66] identified Mor-
axella spp. as one of the core species of the oral cavity of healthy cats using next-generation

sequencing. Similarly, the family Moraxellaceae also seems to represent the most abundant

bacterial family in the feline nasal cavity. In a study including 59 cats with FURTD, Moraxella
spp. was detected in aerobic cultures of 4 nasal and 21 pharyngeal swabs [58].

Members of the genus of unclassified Bradyrhizobiaceae were abundant in the nose of cats

with nasal neoplasia and could also be detected in healthy cats. To the author’s knowledge, this

genus has never been previously described in the feline nose. In humans, Bradyrhizobium
enterica was found in colon biopsies of patients with cord colitis syndrome [67, 68], in the

blood and lung of a patient with fatal pulmonary disease [69], and in blood samples of patients

with poorly defined illness [70]. In animals, Bradyrhizobium could be detected in the gastroin-

testinal tract of the Amazonian catfish, (Panaque nigrolineatus) [71], yellow catfish (Pelteoba-
grus fulvidraco) [72], tropical caterpillars (Lepidoptera: Saturniidae) [73], and lagomorphs

pikas (Ochotonidae) [74]. However, the role of Bradyrhizobiaceae in the feline upper respira-

tory tract and the organism’s potential role in the pathogenesis of nasal neoplasia in cats neces-

sitate further studies.

Table 5. Taxa present at >1% mean relative abundance in one or more groups of cats enrolled in the study.

Healthy (n = 25) Neoplasia (n = 7) FURTD

(n = 15)

Phylum Family Genus mean % SD % mean % SD % mean % SD %

Actinobacteria Corynebacteriaceae Corynebacterium 0.9 1.5 1.1 1.0 0.3 0.6

Bacteroidetes [Paraprevotellaceae] [Prevotella] 0.1 0.1 8.0 20.2 0.1 0.2

[Weeksellaceae] Cloacibacterium 1.6 2.9 0.5 0.6 0.2 0.6

Chitinophagaceae 0.2 0.2 7.3 14.6 0.2 0.2

Sediminibacterium 5.8 6.5 2.2 1.9 4.6 6.6

Chlamydiae Chlamydiaceae Chlamydia 0.0 0.0 0.0 0.0 5.7 15.7

Firmicutes Staphylococcaceae Staphylococcus 4.3 9.3 1.3 1.3 6.3 9.1

Aerococcaceae Alloiococcus 5.5 8.2 0.5 0.9 1.6 1.9

Streptococcaceae Streptococcus 0.3 0.3 0.6 0.7 2.8 10.1

Proteobacteria Bradyrhizobiaceae 11.3 10.1 20.6 18.4 8.8 12.6

Phyllobacteriaceae Phyllobacterium 0.4 0.3 6.6 14.0 3.7 8.1

Alcaligenaceae Achromobacter 4.9 5.2 2.7 2.5 4.0 5.6

Comamonadaceae Lampropedia 0.0 0.0 1.0 2.7 0.0 0.0

Neisseriaceae other 1.7 3.1 1.2 2.6 0.5 0.5

Neisseriaceae 5.4 16.7 0.6 0.6 0.3 0.3

Pasteurellaceae Bibersteinia 1.2 1.9 5.8 7.7 4.0 3.8

Haemophilus 0.1 0.1 0.2 0.2 1.6 5.3

Pasteurella 0.6 0.6 5.1 8.5 5.7 14.2

Moraxellaceae Acinetobacter 1.1 1.2 1.4 1.4 0.5 0.6

Moraxella 33.0 34.2 15.8 31.8 38.6 33.8

Pseudomonadaceae Pseudomonas 2.3 7.4 0.7 0.6 0.5 0.7

Xanthomonadaceae 0.1 0.1 1.2 2.9 0.1 0.1

Tenericutes Mycoplasmataceae Mycoplasma 0.0 0.0 2.0 3.8 0.5 0.8

https://doi.org/10.1371/journal.pone.0180299.t005
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The results of the present study indicate an abundance of Pasteurella spp., especially in dis-

eased cats with nasal neoplasia or FURTD. In other studies, Pasteurella spp. were associated

with feline gingivostomatitis [75] and have been isolated from wounds caused by cat bites [76].

Known bacterial pathogens that are frequently involved in FURTD, such as C. felis and

Mycoplasma spp., were observed in diseased cats in the present study. Mycoplasma spp. have

been detected by culture and PCR from nasal samples of healthy cats [36]. However, in most

studies using culture or PCR for detection of C. felis and Mycoplasma spp. in healthy cats, con-

junctiva and/or oropharyngeal region were sampled for pathogen detection [77–80]. Since the

number of cats with FURTD was small in the present study, the roles of the pathogens FHV-1,

FCV, and C. felis in the composition of the nasal microbiome during an acute phase of disease

could not be assessed.

In the present study, the microbiome of healthy and diseased animals was not compared

because a human [3] and a longitudinal study in pigs [43] showed significant dynamic changes

in the nasal microbiome in early life as well as age-related differences in adults [35]. Further-

more, a longitudinal study examining the fecal microbiome of cats showed higher structural

and functional diversity of the microbiome later in life compared with cats younger than 1

year [45].

It is often not clear which qualitative and quantitative changes in the microbiome are mean-

ingful and whether these changes are associated with disease. Furthermore, distinguishing

between cause and effect remains a challenge. It is still uncertain whether the microbiome in

diseased animals is altered because of disease-related local or systemic immunosuppression or

whether the altered microbiome is involved in the pathogenesis of certain diseases.

There are different interactions between the immune system and the microbiome. On the

one hand, the immune system must learn to tolerate commensal bacteria, but on the other

Fig 8. Bacterial phyla and families in the nose of cats. The average of the most common bacterial phyla and families identified in

healthy cats according to their age group or environment and in cats with FURTD and nasal neoplasia. Healthy cats: A, B, C, D, E, F,

G, H.

https://doi.org/10.1371/journal.pone.0180299.g008
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Fig 9. Differentially abundant bacterial groups shown by LDA scores based on LEfSe. Groups that

were differentially abundant between cats with nasal neoplasia that received (red bars) or did not receive

(green bars) antibiotic treatment before sampling. Taxonomic levels are represented as p_ (phylum), c_

(class, o_ (order), f_ (family), and g_ (genus).

https://doi.org/10.1371/journal.pone.0180299.g009

Nasal microbiome in cats

PLOS ONE | https://doi.org/10.1371/journal.pone.0180299 June 29, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0180299.g009
https://doi.org/10.1371/journal.pone.0180299


hand, it has to identify possible pathogens. These interactions of the host and its microbiome

influence immune functions at all levels beginning at the initial innate defense response to

acquired responses [81]. This phenomenon could be demonstrated in a study focusing on the

upper airway mucosal lining fluid of the nasal cavity of human neonates. The presence of Mor-
axella catarrhalis as a potential airway pathogen was associated with an upregulated T helper

cell (Th) type 1/Th2/Th17-type inflammatory response of the airway mucosa [82]. Another

human study showed a stimulation of dendritic cells by Moraxella, leading to a three-to-five-

fold increase in interleukin (IL)-23, IL-10, and IL-12p70 in comparison to stimulation by

known respiratory commensal bacteria [83].As the microbiome influences the host immune

response, one can speculate that a dysbiosis can cause disease, as has been shown for intestinal

disease in dogs [84] or rhinosinusitis in a murine model [10]. It is also possible that a nasal dis-

ease process causes changes in the microbiome via different mechanisms, e.g., induction of

mucosal inflammation toward a Th2-type response, interruption of immune defense [16],

modification of epithelial barriers [85], mechanical obstruction and altered sinus functioning

[86], including lower oxygen circulation in the upper airways caused by mucus [87], and swell-

ing or blood vessel anomalies [88], as well as through the effects of medications [89]. Being

able to describe the nasal microbiome in healthy animals and to identify possible changes that

occur in the microbiome in disease could represent a first step in investigations of the role of

the microbiome in the pathogenesis of diseases. As such, it could be a new way to investigate

new diagnostic and therapeutic modalities.

The nasal microbial composition of cats with nasal neoplasia did not seem to be influenced

by pretreatment with antibiotics according to the alpha and beta diversity. The only findings

were differences in the abundance of taxa between both groups by LefSe analysis in patients

who did not receive antibiotics, who presented a higher abundance of several taxa. These find-

ings do not reflect the results of human studies indicating significant microbial changes caused

by antibiotic usage [46–48]. However, the heterogeneous pretreatment and different types of

nasal neoplasia within the population of cats with nasal tumors make it difficult to define a

core microbiome of cats with nasal neoplasia in the present study, therefore potentially

explaining the lack of antibiotic influence.

There are several limitations of this study. As mentioned previously, the groups were not

age-matched, and therefore statistical comparisons of the nasal microbial composition between

different disease and age groups were not useful. Another limiting factor of the study was the

small number of cats included. Since the number of cats enrolled in each group was small, and

significant variability was observed between individuals, a larger cohort of healthy and diseased

cats should be evaluated to define the feline nasal microbiome and its role in health and disease.

Conclusions

In conclusion, the present study revealed a large number of currently uncultivable bacteria,

demonstrating that the nose of cats is inhabited by richer and more diverse microbial commu-

nities than has been previously described using culture-based methods. Furthermore, age and

environmental factors seemed to influence the nasal microbial composition. Researchers are

only just beginning to understand the complex interactions between the host and bacterial

microbiota and the impact of disrupting this fragile homeostasis in disease states. The results

of the present study represent a first step in the description of the nasal microbiome in healthy

and diseased cats and the identification of intrinsic and extrinsic factors that influence the

microbial composition. Future research in this field might help to develop new diagnostic

tools to easily identify nasal microbial changes, relate them to certain disease processes, and

help clinicians in the decision process of antibiotic selection for individual patients.
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