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Abstract: Stroke is a top leading cause of death, which occurs due to interference in the blood
flow of the brain. Ischemic stroke (blockage) accounts for most cases (87%) and is further
subtyped into cardioembolic, atherosclerosis, lacunar, other causes, and cryptogenic strokes.
The main value of subtyping ischemic stroke patients is for a better therapeutic decision-making
process. The current classification methods are complex and time-consuming (hours to days).
Specific blood-based biomarker measurements have promising potential to improve ischemic stroke
mechanism classification. Over the past decades, the hypothesis that different blood-based biomarkers
are associated with different ischemic stroke mechanisms is increasingly investigated. This review
presents the recent studies that investigated blood-based biomarker characteristics differentiation
between ischemic stroke mechanisms. Different blood-based biomarkers are specifically discussed
(b-type natriuretic peptide, d-dimer, c-reactive protein, tumor necrosis factor-α, interleukin-6,
interleukin-1β, neutrophil–lymphocyte ratio, total cholesterol, triglycerides, low-density lipoprotein,
high-density lipoprotein and apolipoprotein A), as well as the different cut-off values that may be
useful in specific classifications for cardioembolic and atherosclerosis etiologies. Lastly, the structure
of a point-of-care biosensor device is presented, as a measuring tool on-site. The information presented
in this review will hopefully contribute to the major efforts to improve the care for stroke patients.

Keywords: ischemic stroke mechanisms; diagnostics; etiology classification; blood-based biomarkers;
statistical analysis; point-of-care biosensors

1. Introduction

Stroke is a top leading cause of death, which occurs due to interference in the brain blood flow [1].
This interference is either due to ischemic stroke (blockage) in 87% of cases or due to hemorrhagic
stroke (bleeding) in the remaining 13% of cases [2]. Ischemic stroke accounts for the majority of
stroke cases, which makes ischemic stroke mechanism classification the second most important
classification in stroke care [3]. There are four main ischemic stroke etiologies: 20% cardioembolic,
20% atherosclerosis (large artery disease), 25% lacunar (small vessel disease) and 5% other causes [4].
Additionally, 30% are termed cryptogenic strokes, which includes strokes from unknown causes [5,6].
The main value of subtyping ischemic stroke patients is for a better therapeutic decision-making
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process and to minimize time-to-thrombosis with the treatment of intervenors tissue plasminogen
activator (IV-tPA) [4]. The average time is 3 h from stroke symptoms, and it was found useful only
when administered within 4.5 h [7,8]. Anticoagulant therapy is the optimal treatment for cardioembolic
stroke, while atherosclerosis stroke and other non-embolic etiologies are recommended to follow
antiplatelet therapy [9]. A need to detect cardioembolic stroke patients still exists, which would benefit
from anticoagulation treatment [10]. Brain cells die rapidly after stroke; therefore, treatment needs
to be administered rapidly. “Time is brain” [11–14] because diagnostic time delays are associated
with the worsened outcome of patients [15–17]. Stroke is more common in the elderly population
(>65 years) [18–21], and has multiple reported risk factors including dyslipidaemia, hypertension,
diabetes, obesity, dietary factors, inactive lifestyle, smoking and alcohol consumption [22,23]. Previous
studies [24–26] have reported several differences between ischemic stroke etiologies. It was found
that: (1) cardioembolic stroke is common in the elderly (>70 years), shows a smaller rate of secondary
stroke, higher use of IV-tPA treatment, and the highest stroke severity; (2) atherosclerosis stroke is
the most frequent stroke etiology in middle-aged patients (45–70 years), shows the highest rate of
secondary stroke, the highest percentage of smoking, previous transient ischemic attack (TIA) and
alcohol consumption; (3) lacunar stroke shows the highest rate of hypercholesterolemia, obesity,
hypertension, diabetes mellitus and was associated with the lowest mortality and stroke severity.
Since its development in 1993, the gold standard classification method for ischemic stroke etiologies
is the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification [27–30]. It is mainly
based on clinical symptoms and its reliability has been improved by the use of a computerized
algorithm; however, the TOAST undetermined group is heterogonous because once a patient matches
more than one possible etiology he is equally grouped as a patient with a no-cause identified or an
incomplete investigation. Two additional classifications that are highly used including the National
Institute of Neurological Disorders and Stroke (NINDS, Bethesda, MD, USA) classification [31] and The
Oxford Community Stroke Project (OCSP) classification [32,33]. However, the current ischemic stroke
mechanism classification methods are complex, time-consuming (between hours to days), and require
professional personnel.

Specific blood-based biomarker measurements have promising potential to improve ischemic
stroke mechanisms classification [34–36]. Stroke is associated with several pathophysiological changes,
which leads to the expression of different blood-based biomarker patterns [37–49]. A biomarker
is a small molecule that is usually a protein, which can be easily detected in biofluids (e.g., blood,
plasma, saliva, and urine) and provide vital information on the condition of a specific organ, disease,
or treatment [50]. An ideal biomarker is specific, sensitive, and selective. Stroke biomarkers are
from different identified origins: glial cells, neuronal cells, heart muscle cells (cardiomyocytes),
blood vessels cells (myocytes), general inflammatory cytokines, cytoskeleton proteins, hemostatic
proteins, lipids, metabolic proteins, and others [51]. The biochemical pathways are different among
different ischemic stroke mechanisms (e.g., atherosclerosis versus cardiac embolism) [27,52–56].
Over the past decades, the hypothesis that different blood biomarkers are associated with different
ischemic stroke mechanisms is increasingly investigated [35,57–60]. This review presents the recent
studies that investigated blood-based biomarker characteristics differentiation between ischemic stroke
mechanisms. The different blood-based biomarkers that best indicate different ischemic stroke etiologies
are specifically discussed (Table 1), as well as the different cut-off values that may be useful in specific
etiology classifications for cardioembolic (Table 2) and atherosclerosis (Table 3) etiologies. The following
biomarkers are discussed: b-type natriuretic peptide (BNP), d-dimer, c-reactive protein (CRP), tumor
necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), neutrophil–lymphocyte ratio
(NLR), total cholesterol, triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (HDL)
and apolipoprotein A. Lastly, the structure of a point-of-care biosensor device is presented, as a
measuring tool for stroke biomarkers on-site. The information presented in this review will hopefully
contribute to the major efforts that are being conducted to improve the care for stroke patients.
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Table 1. Blood-based biomarkers that best classify ischemic stroke etiologies, ↑ elevated vs. ↓ reduced.

Biomarker Cardioembolic Atherosclerosis Lacunar Ref.

B-Type Natriuretic Peptide
(BNP) ↑ ↓ ↓ [61–84]

D-Dimer ↑ ↓ ↓ [72,80,85–98]

C-Reactive Protein (CRP) ↑ ↑ ↓ [98–106]

Inflammatory Cytokines:
Tumor Necrosis Factor-α

(TNF-α), Interleukin-6 (IL-6),
Interleukin-1β (IL-1β)

↑ ↓ ↓ [89,107–109]

Neutrophil Lymphocyte
Ratio (NLR) ↑ ↑ ↓ [110–116]

Common Lipid Panel: Total
Cholesterol, Triglycerides,
Low-Density Lipoprotein

(LDL), High-Density
Lipoprotein (HDL) and

Apo-lipoprotein A

↓ ↑ ↓ [117–124]

Table 2. Blood-based biomarkers that best indicate cardioembolic etiology.

Biomarker Finding Study Ref.

BNP (Cardiac
Biomarker)

cardioembolic ≥ 140 pg/mL (sensitivity = 80.5% and a
specificity = 80.5%) Shibazaki K. et al. 2009 [71]

cardioembolic = 366.6 pg/mL, vs. non-cardioembolic = 105.6 pg/mL
(p < 0.01) Kawase S. et al. 2015 [63]

Cardioembolic ≥ 66.5 pg/mL (sensitivity = 76% and a
specificity = 87%) Wu Z. et al. 2015 [65]

BNP predicted cardioembolic stroke (AUC ROC = 81%) Nakamura M. et al. 2018 [79]

BNP (sensitivity = 65% (95% CI: 63%–68%) and specificity = 85%
(95% CI: 83%–87%)) and NT-proBNP (sensitivity = 55% (95% CI:

52%–59%) and specificity = 93% (95% CI: 91%–94%))
Bai J. et al. 2018 [77]

D-Dimer
(Hemostatic
Biomarker)

D-dimer ≥ 300 ng/mL for distinguishing cardioembolic stroke Takano K. et al. 1992 [94]

D-dimer ≥ 2.00 mg/mL for discriminating between the presence of a
cardioembolic source (specificity = 93%, a sensitivity = 59%, a

positive predictive value = 73% and a negative predictive
value = 88%)

Ageno W. et al. 2002 [85]

D-dimer ≥ 1.6 mg/L may indicate cardioembolic stroke Dougu N. et al. 2008 [86]

D-dimer = 2.17 mg/L (IQR, 1.24–3.48), median levels were
significantly (p = 0.000) higher in patients with cardioembolic stroke Zi W.J. and J. Shuai 2014 [92]

D-dimer ≥ 791.30 ng/mL may indicate cardioembolic stroke
(sensitivity = 58% and a specificity = 78%) Liu L.-B. et al. 2015 [96]

CRP
(Inflammatory

Biomarker)

CRP mean values were significantly higher in patients with
cardioembolic stroke Masotti L. et al. 2005 [99]

TNF- α, IL-6
and IL1-β

(Inflammatory
Cytokines)

Cardioembolic patients showed significantly higher median plasma
levels of TNF-α (38.5 (22.2–46) pg/mL; p < 0.0001), IL-6 (11 (5.5–19)

pg/mL; p = 0.0029) and IL-1β (11.5 (8–13) pg/mL; p < 0.0001)
Licata G. et al. 2009 [108]

Abbreviations: interquartile range (IQR); b-type natriuretic peptide (BNP); c-reactive protein (CRP); tumor necrosis
factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β).
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Table 3. Blood-based biomarkers that best indicate atherosclerosis etiology.

Biomarker Finding Study Ref.

CRP
(Inflammatory

Biomarker)

Higher CRP levels were significantly found in patients with
atherosclerosis as compared to lacunar

Suwanwela N.C. et al.
2006‘[100]

In the acute phase the CRP levels were higher in cardioembolic than in
other etiologies (cardioembolic: 7.07 (2.39–17.8); atherosclerosis: 4.66
(1.79–13.9); lacunar: 3.08 (1.52–5.79)). While, after 3 months, the CRP

levels were higher in atherosclerosis than in other etiologies
(cardioembolic: 2.66 (1.07–5.46); atherosclerosis: 3.48 (1.42–9.99); lacunar:

2.65 (1.26–4.82))

Ladenvall C. et al.
2006 [104]

The plasma levels of CRP were significantly (p < 0.05) higher in
atherosclerosis etiology, with a cut off value of CRP ≥ 3.2 demonstrating

85.7% classification sensitivity
Zeng L. et al. 2013 [105]

NLR
(Inflammatory

Biomarker)

Higher leukocyte counts in cardioembolic and atherosclerotic stroke
etiologies

Elkind M.S. et al.
2005 [111]

Both higher leukocyte and neutrophil counts were shown in great artery
atherosclerosis, while the counts were lower in the lacunar group

Guven H. et al.
2010 [112]

NLR ratio level was significantly (p < 0.001) higher in the great artery
atherosclerosis or atherothrombosis group (6.67 ± 3.74) compared to the
other etiologies groups (cardioembolic: 1.74 ± 0.40; lacunar: 3.75 ± 1.74;

unknown origin: 3.00 ± 1.49)

Gokhan S. et al.
2013 [110]

NLR was significantly higher (p = 0.001) in both the atherosclerotic (6.5
(IQR 7.2)) and cardioembolic (7.5 (IQR 8.9)) stroke subgroups than the

lacunar infarct (3.20 (IQR 3.50)) subgroup
Tokgoz S. et al. 2013 [113]

NLR level did not vary significantly among the stroke subtypes
(p = 0.070), while the neutrophil counts (103/UL) were significantly
(p = 0.008) different (large-artery disease (5.3 ± 1.5); cardioembolic

(8.9 ± 4.01); lacunar (6.1 ± 2.0) and undetermined (7.1 ± 3.6))

Lök U. and U. Gülaçti
2016 [115]

NLR levels in atherothrombotic and cardioembolic groups were
3.26 ± 2.35 and 4.46 ± 5.6, respectively, and this was found to be

statistically significant (p = 0.03)

Domaç, F. et al.
2019 [114]

Common
Lipid Panel:

Total
Cholesterol,

Triglycerides,
LDL,

and HDL

LDL-B is more prevalent in patients with atherosclerosis Iskra T. et al. 2002 [117]

Patients with atherosclerosis had significantly higher concentrations of
LDL than control (p < 0.05), higher concentrations of triglycerides,

and lower concentrations of HDL than patients with lacunar and control
(p < 0.05). LDL phenotype B was more frequent in patients with

atherosclerosis (63.3%) than in patients with lacunar (39.0%) or in control
(16.7%) (p < 0.05)

Slowik A. et al.
2003 [120]

The levels of total cholesterol were significantly higher in patients with
lacunar (p = 0.005) and atherosclerosis (p = 0.018) as compared to controls.
Patients with atherosclerosis etiology showed a significantly higher LDL

levels (p < 0.004) and lower HDL levels (p = 0.001)

Laloux P. et al. 2004 [119]

HDL ratio was significantly higher in atherosclerosis vs.
non-atherosclerosis and non-lacunar patients. After adjustments,

significant ORs for atherosclerosis compared with all other ischemic
stroke subtypes were triglycerides (OR 2.69, 95% CI 1.44 to 5.02) and

non-HDL (OR 2.39, 95% CI 1.40 to 4.11)

Bang O.Y. et al.
2008 [118]

Hazard ratios of ischemic stroke with serum total cholesterol levels
among large-artery patients for men (2.86 (1.31–6.27)) and women (0.75

(0.28–2.01)), while they were not associated with risk of lacunar or
embolic infarction

Cui R. et al. 2012 [122]

The levels of total cholesterol, triglycerides, LDL, apolipoprotein A,
apolipoprotein B, apolipoprotein E, and lipoprotein A were higher and

HDL was lower in stroke patients with atherosclerosis etiology as
compared to the cardioembolic etiology. The levels of lipoprotein A, total

cholesterol, and total cholesterol/HDL were higher in patients with
cardioembolic etiology as compared to the lacunar etiology. The levels of
total cholesterol, triglycerides, LDL, apolipoprotein A, apolipoprotein B,
apolipoprotein E, lipoprotein A, total cholesterol/HDL, and LDL/HDL
were all significantly different between patients with atherosclerosis

etiology as compared to that with lacunar etiology

Yuan B.-B. et al.
2015 [121]
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Table 3. Cont.

Biomarker Finding Study Ref.

Apo-
lipoprotein A

The percentage of subjects with increased lipoprotein A concentrations
(i.e., >30 mg/dL) was greater in large vessel disease (36.7%) than in small

vessel disease (12.2%; p < 0.05) and in controls (10%; p < 0.05)
Iskra T. et al. 2002 [117]

Subjects carrying at least one small Apo-lipoprotein A isoform were at
increased risk of atherothrombotic stroke (OR 7.1, 95% CI 2.8 to 17.5,
p = 0.00001) but not of lacunar infarction (OR 1.1, 95% CI 0.5 to 2.7,

p = 0.78)

Zambrelli E. et al.
2005 [123]

Lipoprotein A levels of atherosclerosis stroke (n = 281, 34.6 mg/dL) were
significantly (p < 0.001) higher as compared to other stroke mechanisms
(cardioembolic: n = 204, 29.2 mg/dL, lacunar: n = 261, 24.2 mg/dL, other

determined: n = 74, 24.1 mg/dL, undetermined: n = 192, 27 mg/dL)

Kim B.S. et al. 2010 [124]

Abbreviations: c-reactive protein (CRP); neutrophil–lymphocyte ratio (NLR); low-density lipoprotein (LDL);
high-density lipoprotein (HDL).

2. Biomarkers that Best Indicate Cardioembolic Etiology

2.1. B-Type Natriuretic Peptide (BNP)

Over the past decades, b-type natriuretic peptide (BNP) and its derivative N-terminal fragment
(NT-proBNP) have been reported as cardiovascular biomarkers, mainly for heart failure (HF) diagnosis
as well as for stroke monitoring [125,126]. BNP (32 aa) is secreted by heart ventricles after excessive
stretching of cardiomyocytes (heart muscle cells) [127]. NT-proBNP (76 aa) is secreted along with
BNP and is biologically inactive [128]. BNP reflects on the ventricular condition with a half-life of
20 min, while NT-proBNP showed a half-life of 1–2 h [129]. Multiple studies reported that both BNP
and NT-proBNP elevated serum levels are associated with cardioembolic stroke [61–84]. Additionally,
they were found to be associated with atrial fibrillation (AF) condition, an abnormal heart rhythm
(arrhythmia), that increases the risk of ischemic stroke and was also found to be associated with
cardioembolic stroke [130]. Shibazaki K. et al. [71] reported that a BNP plasma level higher than
140 pg/mL is associated with patients with cardioembolic stroke, with a sensitivity = 80.5% and a
specificity = 80.5%. Moreover, Kawase S. et al. [63] reported that the plasma level of BNP was higher
in the case of cardioembolic stroke (366.6 pg/mL) compared to non-cardioembolic stroke (105.6 pg/mL;
p < 0.01). Llombart V. et al. [64] reported that higher levels of BNP and NT-proBNP in the blood were
significantly associated with cardioembolic stroke up to 72 h after stroke symptoms onset. Moreover,
Chaudhuri J. R. et al. [61] reported that higher BNP levels were observed in 75% of cardioembolic
stroke patients, while in the rest of the stroke etiologies: in 45.8% of lacunar patients, in 43.1% of
atherosclerosis patients, and 34.5% of undetermined etiology. Moreover, Bai J. et al. [77] reported
that both BNP (sensitivity = 65% (95% CI: 63%–68%) and specificity = 85% (95% CI: 83%–87%))
and NT-proBNP (sensitivity = 55% (95% CI: 52%–59%) and specificity = 93% (95% CI: 91%–94%))
were associated with cardioembolic stroke. Additionally, Nakamura M. et al. [79] reported that BNP
predicted cardioembolic stroke (area under the receiver operating characteristic (AUC ROC) = 81%)).
In addition to these findings, Wu Z. et al. [65] examined a point-of-care (POC) test for plasma BNP
detection in the emergency department (ED), to promote initial recognition of cardioembolic stroke
patients. BNP concentration was higher in the cardioembolic group (p < 0.01), a plasma BNP level higher
than 66.5 pg/mL was associated with cardioembolic stroke (sensitivity = 76% and a specificity = 87%).
In another study by Wu Z. et al. [74], the plasma BNP level was also measured at bedside. To conclude,
BNP detection at bedside on admission can be added into stroke management as a strategy to improve
the classification of stroke etiology.

2.2. D-Dimer

D-dimer is a by-product of fibrin degradation by plasmin and is a well-known hemostatic biomarker
for blood coagulation activation and thrombosis, the formation of blood clot [131]. It was found useful for
the diagnosis of venous thromboembolism and disseminated intravascular coagulation [132]. Multiple
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studies reported that elevated levels of D-dimer are associated with cardioembolic stroke [72,80,85–98].
Takano K. et al. [94] reported a D-dimer cut-off point of 300 ng/mL for distinguishing cardioembolic
stroke from atherothrombotic infarction and lacunar infarction, with a sensitivity = 80% and a
specificity = 77%. Additionally, Ageno W. et al. [85] reported that the optimal D-dimer cut-off point
for discriminating between the presence and absence of a cardioembolic source is 2.00 mg/mL, with a
specificity = 93%, a sensitivity = 59%, a positive predictive value = 73%, and a negative predictive
value = 88%. Additionally, Dougu N. et al. [86] reported that D-dimer level higher than 1.6 mg/L
(=1600 ng/mL) may indicate a high possibility of cardioembolic stroke. Moreover, Zi W. J. and J.
Shuai [92] examined d-dimer levels measured upon admission (0–48 h from stroke symptom onset) and
reported that median D-dimer levels were significantly (p = 0.000) higher in patients with cardioembolic
stroke (2.17 mg/L (interquartile range (IQR), 1.24–3.48)), as compared with small-vessel occlusive stroke
(0.59 mg/L (IQR, 0.25–0.96)), large-vessel occlusive stroke (0.56 mg/L (IQR, 0.22–0.95)), other stroke
(0.25 mg/L (IQR, 0.14–0.41)) and unknown stroke (0.29 mg/L (IQR, 0.18–0.68)). D-dimer median
level was higher in patients with cardioembolic strokes than in those with other etiologies (2.17 vs.
0.47 mg/L, p = 0.000). The receiver operating characteristic (ROC) analysis revealed the optimal
cut-off value of plasma D-dimer levels as an indicator for diagnosis of cardioembolic strokes to be
0.91 mg/L (=910 ng/mL), with a sensitivity = 83.7% and a specificity = 81.5%, the area under the curve
(AUC) = 86.2% (95% confidence interval (CI), 81.1%–91.2%). Additional studies reported different
cut-off values of d-dimer level as an indication of cardioembolic stroke. Additionally, Liu L.-B. et al., [96]
reported that D-dimer level higher than 791.30 ng/mL may indicate cardioembolic stroke, with a
sensitivity = 58% and a specificity = 78%. Hirano K. et al. [93] reported that additional fibrin degradation
products may also be associated with cardioembolic stroke. The levels of fibrin monomer complex
(FMC), soluble fibrin (SF) and fibrin/fibrinogen degradation products (FDPs) were significantly higher
in the cardioembolic group. The findings reported in these studies suggest that D-dimer levels in the
acute stage of ischemic stroke might be useful in distinguishing cardioembolic stroke. Furthermore,
the level of D-dimer is very rarely elevated in healthy individuals; however, it may increase in several
illnesses and physiological conditions associated with thrombosis and thrombolysis [91].

2.3. Inflammatory Biomarkers: C-Reactive Protein (CRP), Tumor Necrosis Factor-α (TNF-α), Interleukin-6
(IL-6), Interleukin-1β (IL-1β)

Over the past years, evidence was found for the value of inflammatory biomarkers in
cerebral cardioembolism, after inflammation was reported to be involved in atrial fibrillation [133]
and thromboembolic events [134]. Several studies reported that elevated levels of the
inflammatory biomarkers, c-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), interleukin-1β (IL-1β), are associated with cardioembolic stroke [89,98–103,107–109].
Masotti L. et al. [99] examined CRP levels within 12 h from hospital admission among all ischemic stroke
etiologies. The mean values of CRP were significantly higher in patients with cardioembolic stroke
compared with an atherothrombotic large vessel and lacunar stroke. It was also previously reported
that D-dimer itself stimulates monocyte synthesis and release of pro-inflammatory cytokines such as
IL-6 [89]. Furthermore, Licata G. et al. [108] evaluated the plasma levels of immuno-inflammatory
biomarkers in patients with cardioembolic ischemic stroke. Cardioembolic patients showed significantly
higher median plasma levels of TNF-α (38.5 (22.2–46) pg/mL; p < 0.0001), IL-6 (11 (5.5–19) pg/mL;
p = 0.0029) and IL1-β (11.5 (8–13) pg/mL; p < 0.0001).

3. Biomarkers that Best Indicate Atherosclerosis Etiology

3.1. Inflammatory Biomarkers: C-Reactive Protein (CRP) and Neutrophil–Lymphocyte Ratio (NLR)

Inflammatory biomarkers were previously found to be generally associated with
atherosclerosis [135]. Higher CRP levels were found to be associated with atherosclerosis
stroke [98,100,104–106]. Suwanwela N. C. et al. [100] examined the levels of inflammatory markers
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among patients with large vessel atherosclerosis (LAAS) and small vessel disease (lacunar stroke)
and reported that higher CRP levels were significantly found in patients with large vessel disease.
Additionally, Ladenvall C. et al. [104] reported that in the acute phase the CRP levels were higher in
cardioembolic than in other etiologies (cardioembolic: 7.07 (2.39–17.8); atherosclerosis: 4.66 (1.79–13.9);
lacunar: 3.08 (1.52–5.79)). While, after three months, the CRP levels were higher in atherosclerosis
than in other etiologies (cardioembolic: 2.66 (1.07–5.46); atherosclerosis: 3.48 (1.42–9.99); lacunar: 2.65
(1.26–4.82)). Moreover, Zeng L. et al. [105] reported that the plasma levels of CRP were significantly
(p < 0.05) higher in atherosclerosis etiology, with a cut off value of CRP ≥ 3.2 demonstrating 85.7%
classification sensitivity. Moreover, neutrophil–lymphocyte ratio (NLR), which is calculated by
dividing the concentration of neutrophils by the concentration of lymphocytes, was reported to indicate
ischemic stroke from atherosclerosis etiology, as well as in cardioembolic etiology [110–116]. NLR is
an inflammatory marker that has been recently introduced and examined in several coronary artery
disease studies [136–140]. Elkind M. S. et al. [111] reported higher leukocyte counts in cardioembolic
and atherosclerotic stroke etiologies. Moreover, Guven H. et al. [112] reported both higher leukocyte
and neutrophil counts in great artery atherosclerosis, while the counts were lower in the lacunar group.
Additionally, Gokhan S. et al. [110] reported that the NLR ratio level was significantly (p < 0.001)
higher in the great artery atherosclerosis or atherothrombosis group (6.67 ± 3.74) compared to the
other etiologies groups (cardioembolic: 1.74 ± 0.40; lacunar: 3.75 ± 1.74; unknown origin: 3.00 ± 1.49).
Tokgoz S. et al. [113] also reported that the NLR was significantly higher (p = 0.001) in both the
atherosclerotic (6.5 (IQR 7.2)) and cardioembolic (7.5 (IQR 8.9)) stroke subgroups than the lacunar
infarct (3.20 (IQR 3.50)) subgroup. Lök U. and U. Gülaçti [115] reported that the NLR level did not
vary significantly among the stroke subtypes (p = 0.070), while the neutrophil counts (103/µL) were
significantly (p = 0.008) different (large-artery disease (5.3 ± 1.5); cardioembolic (8.9 ± 4.01); lacunar
(6.1 ± 2.0) and undetermined (7.1 ± 3.6)). Domaç, F. et al. [114] reported that the NLR levels in
atherothrombotic and cardioembolic groups were 3.26 ± 2.35 and 4.46 ± 5.6, respectively, and this was
found to be statistically significant (p = 0.03).

3.2. Common Lipid Panel: Total Cholesterol, Triglycerides, Low-Density Lipoprotein (LDL), and High-Density
Lipoprotein (HDL)

Serum lipids have been investigated for their association with different ischemic stroke
mechanisms [117–122]. Iskra T. et al. [117] reported that LDL-B is also more prevalent in patients
with atherosclerosis. Moreover, Slowik A. et al. [120] reported that patients with atherosclerosis had
significantly higher concentrations of LDL than control (p < 0.05), and had higher concentrations
of triglycerides and lower concentrations of HDL than patients with lacunar and control (p < 0.05).
LDL phenotype B was more frequent in patients with atherosclerosis (63.3%) than in patients with
lacunar (39.0%) or in control (16.7%) (p < 0.05). Additionally, Laloux P. et al. [119] investigated whether
the lipid profile (total cholesterol, LDL, HDL, and triglycerides) of patients with atherosclerosis etiology
is different than that of patients with lacunar etiology, which are both responsible for atherothrombotic
cerebral ischemia. The study cohort (n = 485) was further selected into 240 patients with ischemic
stroke (n = 182) or transient ischemic attack (n = 58) with a single classified etiology (61 patients
with atherosclerosis, 65 with lacunar and 114 with cardioembolic). The levels of total cholesterol
were significantly higher in patients with lacunar (p = 0.005) and atherosclerosis (p = 0.018) as
compared to controls. The levels of triglycerides were significantly higher among all stroke etiologies
as compared to controls (cardioembolic, p = 0.037; lacunar, p < 0.001; atherosclerosis, p = 0.014).
Patients with atherosclerosis etiology showed a significantly higher LDL levels (p < 0.004) and lower
HDL levels (p = 0.001). Only HDL levels were significantly (p = 0.047) different between patients
with atherosclerosis etiology and with lacunar etiology, also in adjusted logistic regression analysis.
Additionally, Bang O. Y. et al. [118] investigated the association of large artery atherosclerotic stroke
with common serum lipid panel, including total cholesterol, triglycerides, low-density lipoprotein
(LDL), high-density lipoprotein (HDL), and triglyceride. The study cohort included a large stroke
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patient number (n = 1049), classified to the following etiologies: 247 (23.5%) atherosclerosis, 224 (21.4%)
lacunar, and 578 (55%) were non-atherosclerosis and non-lacunar group. The levels of total cholesterol,
triglycerides, LDL, non-high-density lipoprotein cholesterol (HDL), and triglyceride:HDL ratio was
significantly higher in atherosclerosis vs. non-atherosclerosis and non-lacunar patients, while the lipids
levels were similar between atherosclerosis and lacunar patients. After adjustments, significant odds
ratios (ORs) for atherosclerosis compared with all other ischemic stroke subtypes were triglycerides
(OR 2.69, 95% CI 1.44 to 5.02) and non-HDL (OR 2.39, 95% CI 1.40 to 4.11). LDL was not found to be
associated with atherosclerosis etiology. Moreover, Cui R. et al., [122] reported the hazard ratios of
ischemic stroke with serum total cholesterol levels among large-artery patients for men (2.86 (1.31–6.27))
and women (0.75 (0.28–2.01)), while they were not associated with risk of lacunar or embolic infarction.
Additionally, Yuan B.-B. et al. [121] reported that the levels of total cholesterol, triglycerides, LDL,
apolipoprotein A, apolipoprotein B, apolipoprotein E, and lipoprotein A were higher and HDL was
lower in stroke patients with atherosclerosis etiology as compared to the cardioembolic etiology.
The levels of lipoprotein A, total cholesterol, and total cholesterol/HDL were higher in patients with
cardioembolic etiology as compared to the lacunar etiology. The levels of total cholesterol, triglycerides,
LDL, apolipoprotein A, apolipoprotein B, apolipoprotein E, lipoprotein A, total cholesterol/HDL,
and LDL/HDL were all significantly different between patients with atherosclerosis etiology as
compared to that with lacunar etiology. The levels of total cholesterol/HDL were different among all
stroke etiologies, and the patients with atherosclerosis etiology showed the highest level.

3.3. Apolipoprotein A

Apolipoprotein A belongs to the group of low-density lipoprotein (LDL), and it is associated
with ischemic stroke from atherosclerosis etiology [117,123,124]. Iskra T. et al. [117] investigated the
levels of lipoprotein A in ischemic stroke patients. Serum lipoprotein A is a lipoprotein consisting of
apolipoprotein A and apolipoprotein B-100. It was found that median concentrations of lipoprotein A
were similar in all studied groups (8.4 mg/dL in all stroke patients; 10.85 mg/dL in large vessel disease;
7.7 mg/dL in small vessel disease and 6.3 mg/dL in controls; p = non-significant). The percentage of
subjects with increased lipoprotein A concentrations (i.e., > 30 mg/dL) was greater in large vessel
disease (36.7%) than in small vessel disease (12.2%; p < 0.05) and in controls (10%; p < 0.05). Additionally,
Zambrelli E. et al. [123] investigated the levels of apolipoprotein A in ischemic stroke patients (n = 94),
as well as its association with different etiologies and stroke severity, as compared to healthy control
(188). It was found that subjects carrying at least one small apolipoprotein A isoform were at increased
risk of atherothrombotic stroke (OR 7.1, 95% CI 2.8 to 17.5, p = 0.00001) but not of lacunar infarction
(OR 1.1, 95% CI 0.5 to 2.7, p = 0.78). Multivariate logistic regression analysis revealed that in the
atherothrombotic stroke group, the presence of at least one small-sized apolipoprotein A phenotype
was associated with a National Institutes of Health Stroke Scale (NIHSS) score > or = 6 (OR 13.6,
95% CI 1.6 to 111.9, p = 0.015). They concluded that small apolipoprotein A isoforms distinguish
atherothrombotic stroke from lacunar infarction and are associated with the severity of atherothrombotic
stroke. Furthermore, Kim B. S. et al. [124] reported that lipoprotein A levels of atherosclerosis stroke
(n = 281, 34.6 mg/dL) were significantly (p < 0.001) higher as compared to other stroke mechanisms
(cardioembolic: n = 204, 29.2 mg/dL, lacunar: n = 261, 24.2 mg/dL, other determined: n = 74, 24.1 mg/dL,
undetermined: n = 192, 27 mg/dL).

4. Point-of-Care Biosensor as On-Site Test for Blood-Based Biomarker Detection

A point-of-care (POC) biosensor is a rapid on-site test that provides results within minutes.
It is usually easy to operate, has a robust setup, and requires a small sample volume without
any pretreatment [141,142]. Two famous examples of successful POC biosensors are the
lateral-flow pregnancy test and the glucometer [143]. Routinely, biomarkers are usually detected
by an enzyme-linked immunosorbent assay (ELISA), which is the most common immunoassay
methodology [144]. It obtains highly sensitivity results; however, it is complicated, time-consuming,
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and consists of multiple steps. A POC biosensor may provide a more practical solution while still
obtaining sufficient sensitivity [145,146]. A biosensor consists of a biorecognition entity (e.g., antibodies,
antigens, DNA/RNA, whole cells, enzymes, or biomimetic molecules), which enables the detection
of the target biological molecule. The interface is the main structure of the biosensor that allows
its function, and it is usually based on adsorption, cross-linking, covalent binding, entrapment,
self-assembled monolayers, and bulk modifications. Lastly, the transducer allows the signal
measurement that is from optical, electrochemical, or acoustic origin [147,148]. There are different POC
biosensor analytical formats such as paper-based [149–151], optical [152,153], electrochemical [154]
and microfluidics [155]. Most of the POC biosensor platforms allow the detection of a single chosen
biomarker. The development of a multi-biomarker detection device is still mostly research-based.
Additionally, a quantitative biomarker detection is needed that allows the identification of a specific
cut-off value relevant in the clinical setting, which will enable an improved decision-making process.
To develop multiplex and quantitative POC biosensors for stroke biomarker measurement, there is
a need to engineer novel platforms. Various POC biosensors have been clinically tested for their
usefulness in stroke care [156]. These POC biosensors include different well-known biomarker detection:
coagulation profile (international normalized ratio (INR), activated partial thromboplastin time (APTT)),
blood-count (platelet, leukocyte, and erythrocyte count), and blood-chemistry (hemoglobin, glucose,
c-glutamyltransferase, and p-amylase test) [15,157–160]. Unfortunately, these valuable tools are still not
fully incorporated into the current clinical practice due to the time-consuming diagnostic procedures.
For example, most of the guidelines for the management of stroke patients indicate that thrombolytic
therapy should not be delayed on the account of these mentioned test results, with the only exceptions
being bleeding abnormality, thrombocytopenia, and admission of anticoagulants [161]. Currently,
half of stroke patients are misdiagnosed in the ED [162], while the clinical management scheme is still
solely based on the assessment of symptoms and stroke scale tools [163]. There is a need for immediate
and unbiased tools for the monitoring of stroke patients.

5. Conclusions

This review presents the recent studies that investigated blood-based biomarker characteristics
differentiation between ischemic stroke mechanisms. Different blood-based biomarkers are specifically
discussed, as well as the different cut-off values that may be useful in specific etiology classifications
for cardioembolic and atherosclerosis etiologies. Various blood-based biomarkers were found to be
significantly associated with ischemic stroke from cardioembolic etiology including BNP/NT-proBNP,
d-dimer, CRP, TNF-α, IL-6, and IL-1β. Furthermore, various blood-based biomarkers were found to
be significantly associated with ischemic stroke from atherosclerosis etiology including CRP, NLR,
total cholesterol, triglycerides, LDL, HDL, and apolipoprotein A. Increased research efforts are still
needed to identify useful biomarkers to differentiate ischemic stroke from lacunar etiology [164,165].
Lastly, the structure of a POC biosensor device is presented, as a measuring tool for stroke biomarkers
on-site. A POC biosensor is a rapid on-site test that provides results within minutes. It is usually
easy to operate, has a robust setup, and requires a small sample volume without any pretreatment.
To develop multiplex and quantitative POC biosensors for stroke biomarker measurement there is a
need to engineer novel platforms. The information presented in this review will hopefully contribute
to the major efforts that are conducted to improve the care for stroke patients.
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