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a b s t r a c t 

Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary 

cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource 

allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and 

anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immuno- 

suppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early 

death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the progno- 

sis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the 

complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological 

changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor 

nafamostat mesilate in the treatment of this condition. 
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Sepsis is a life-threatening condition resulting from a dys-

egulated host response to infection, leading to severe organ

ysfunction.[ 1 ] It is a significant cause of morbidity and mor-

ality worldwide, accounting for approximately 19.7 % of all

eaths.[ 2 ] Patients who survive sepsis remain at long-term risk of

eadmission and death,[ 3 , 4 ] and they may suffer from long-term

ognitive impairment and functional disability.[ 5 ] This poses a

reat burden on patients and their families, as well as strains

n public healthcare resources.[ 6 ] Such challenges further in-

ensify the demands on critical care medicine.[ 7 , 8 ] Experts in

ritical care medicine have successively updated guidelines for

he diagnosis and management of sepsis and septic shock.[ 9–12 ] 

evertheless, the pathogenesis of sepsis remains under investi-

ation. Unfortunately, at present, there is no effective treatment

or sepsis. Sepsis is characterized by concurrent excessive in-

ammatory response and immune suppression,[ 13 ] which mani-

est as fever or hypothermia, leukocytosis, or leukopenia. Hyper-

nflammation and immunosuppression are the dominant causes

f death in the early and late stages of sepsis, respectively.[ 14 ] 
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In early stage sepsis, pattern-recognition receptors on host

mmune cells identify components of the pathogen, such as

eichoic acid in Gram-positive bacteria and lipopolysaccha-

ide in Gram-negative bacteria. This recognition process in-

uces the release of inflammatory cytokines and activates sig-

aling transduction pathways, thereby triggering systemic in-

ammatory response syndrome (SIRS).[ 15 , 16 ] Patients with early

tage sepsis may simultaneously suffer from compensatory anti-

nflammatory response syndrome[ 17–21 ] due to immune cell

poptosis and functional defects,[ 22–24 ] as well as alterations in

ytokine expression,[ 25 ] leading to immune suppression. If the

atient’s immune response cannot be maintained at an appropri-

te level, patients may suffer from a persistent inflammation-

mmune suppression catabolism syndrome.[ 26 ] Therefore, the

iscovery of means to restore homeostasis is of great signifi-

ance for improving the survival of patients with sepsis. 

Nafamostat mesilate (NM), also termed FUT-175, is a

ynthetic broad-spectrum serine protease inhibitor. It exerts

trong inhibitory effects on various serine proteases, such as

rypsin[ 27 ] and serine protease components of the comple-

ent system,[ 28 ] coagulation system,[ 29 ] contact system,[ 30 ] etc.
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hus, it is primarily utilized in the treatment of acute and

hronic pancreatitis[ 31 ] and disseminated intravascular coagu-

ation (DIC).[ 32 ] In addition, NM has been used in the treatment

f Middle-East respiratory syndrome. Its mechanism of action is

rimarily associated with the inhibition of transmembrane ser-

ne protease 2 ( TMPRSS2 ).[ 33 ] The virus Middle-East respiratory

yndrome-coronavirus and severe acute respiratory syndrome-

oronavirus 2 (SARS-CoV-2) share structural similarities. Hence,

his drug has also been used in the treatment of the novel coron-

virus disease-2019 (COVID-19). TMPRSS2 activation is related

o the entry of SARS-CoV-2 into cells. The spike protein of SARS-

oV-2 is cleaved by TMPRSS2 on the surface of airway epithe-

ial cells. This leads to binding with angiotensin-converting en-

yme 2 (ACE2), which facilitates membrane fusion and entry

nto the cell.[ 34 , 35 ] Therefore, inhibition of serine protease may

elp to reduce the entry of SARS-CoV-2 into cells, achieving a

herapeutic effect against COVID-19. Several clinical[ 36–39 ] and

reclinical[ 40–42 ] studies of NM have been conducted, with some

ndicating positive effects on COVID-19. Thus, NM may improve

he outcome of patients with sepsis. 

Evidence suggests that NM can attenuate inflammation and

onsequent organ damage in vitro and in vivo ,[ 43–46 ] and benefit

atients with sepsis on blood purification.[ 47 ] The mechanism

y which NM improves sepsis may be related to changes in the

athophysiological function of the following three systems. 

ontact System 

Contact system, also termed plasma kallikrein-kinin system,

onsists of high-molecular-weight kininogen (HK), coagulation

actor XII (FXII), coagulation factor XI (FXI), and prekallikrein

PKK).[ 48 ] This system has essential physiological functions,

ncluding maintaining normal coagulation, regulating vascu-

ar permeability, promoting fibrinolysis, and promoting pro-

nflammatory responses.[ 49 ] These functions are mainly gener-

ted through FXII activation and cleavage of HK by PKK.[ 50 ] A
igure 1. Potential effects of NM on the contact and intrinsic coagulation systems. 

ystem. Green indicates the contact system. Orange indicates the common pathway o

K: Bradykinin; FI: Coagulation factor I; FII: Coagulation factor II; FIX: Coagulation fa

actor XII; FXIII: Coagulation factor XIII; HK: High-molecular-weight kininogen; KK: K

454
chematic diagram of the contact system is shown in Figure 1 .

n this section, we discuss the functions of HK and relevant re-

earch progress. Its downstream products FXII and FXI are dis-

ussed in the coagulation system section of this article. 

K 

HK is an important component of the contact sys-

em associated with numerous diseases, such as hereditary

ngioedema,[ 51 ] coronary heart disease,[ 52 ] and rheumatoid

rthritis.[ 53 ] Moreover, HK is a useful biomarker for var-

ous parenchymal malignancies, including lung squamous

ell carcinoma,[ 54 ] hepatocellular carcinoma,[ 55 ] colorectal

ancer,[ 56 , 57 ] and glioma.[ 58 ] 

Studies on the role of HK and its downstream products in the

evelopment of various types of inflammation have attracted

ur attention. Research progress on the role of kininogen in the

athogenesis of infectious disease is shown in Table 1 . 

n vitro studies 

Scholars found that lipopolysaccharides (LPS) of Escherichia

oli ( E. coli ), as well as peptidoglycan and teichoic acid of Staphy-

ococcus aureus ( S. aureus ), activated the contact system and trig-

ered the activation of PKK in purified human plasma.[ 59 ] 

In vitro studies confirmed that plasma levels of HK were

ignificantly lower in various bacterial infections compared to

he normal levels observed in healthy individuals.[ 60 , 61 ] The

ontact system could be activated by bacterial surface compo-

ents, including fibrous bacterial surface proteins, curli, and

mbriae in E. coli and Salmonella , caused the consumption of HK

nd the production of bradykinin (BK), and activated the pro-

nflammatory pathway. Apart from bacteria, fungi (e.g., Candida

lbicans ) also activate the contact system and the absorption of

K by their cell surface mannoproteins.[ 62 , 80 ] 

Nevertheless, activation of the contact system was not

ecorded in Streptococcus pneumoniae infections, indicating that
Dark/light yellow indicates the intrinsic/extrinsic pathway of the coagulation 

f coagulation. 

ctor IX; FX: Coagulation factor X; FXI: Coagulation factor XI; FXII: Coagulation 

allikrein; NM: Nafamostat mesilate; PKK: Prekallikrein; SP: Serine protease. 
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Table 1 

Research progress on the role of kininogen in the pathogenesis of inflammatory disease. 

Author Year Research object Pathogen/disease Conclusions 

Kalter et al.[ 59 ] 1983 In vitro E. coli and Staphylococcus 

aureus 

A mixture of purified human FXII, PKK, and HK was activated 

by those components. 

Herwald et al.[ 60 ] 1998 In vitro E. coli and Salmonella Plasma HK, FXII was activated by those bacteria. 

Mattsson et al.[ 61 ] 2001 In vitro Staphylococcus aureus Plasma levels of BK were significantly higher in Staphylococcus 

aureus septic patients instead of Streptococcus pneumoniae . 

Rapala-Kozik et al.[ 62 ] 2008 In vitro Candida albicans Plasma HK was absorbed by Candida albicans’ cell surface 

mannoproteins. 

Yang et al.[ 63 ] 2017 Mice Endotoxemia HK knockout can reduce the mortality of endotoxemia mice. 

Ding et al.[ 64 ] 2018 Mice Klebsiella pneumoniae -induced 

sepsis 

Depletion of HK did not improve the survival rate in septic 

mice. 

Hu et al.[ 65 ] 2020 Mice Polymicrobial sepsis Expression of kininogen 1 in the lung tissues of septic mice was 

significantly increased, downregulating kininogen 1 expression 

attenuate sepsis-induced acute lung injury. 

Köhler et al.[ 66 ] 2020 Mice Streptococcus pyogenes sepsis Depletion of kininogen 1 inhibited the spread of Streptococcus , 

reduced levels of pro-inflammatory cytokines. 

Pixley et al.[ 67 ] 1992 Baboons Lethal hypotensive 

bacteremia 

Contact system was activated, HK was significantly lower. 

Pixley et al.[ 68 ] 1993 Baboons Lethal bacteremia Contact system was activated, HK was significantly lower. 

Using a mAb to factor XII, hypotension was reversed and life 

was extended. 

Jansen et al.[ 69 ] 1996 Baboons Lethal bacteremia Release of IL-6 was decreased in anti-factor XII-treated animals. 

Silasi et al.[ 70 ] 2019 Baboons Heat-inactivated 

Staphylococcus aureus 

Anti-FXI antibody 3G3 inhibited the activation of contact, 

coagulation, and complement system, prolong the survival time 

of baboons. 

Mason et al.[ 71 ] 1970 Human Gram-negative bacteremia Plasma level of HK was significantly lower. 

Smith-Erichsen et al.[ 72 ] 1982 Human Septic shock Plasma levels of PKK and HK were significantly lower. 

Aasen et al.[ 73 ] 1983 Human Surgical patients with 

complicating septicemia 

Plasma levels of PKK were significantly lower. 

Martinez-Brotons et al.[ 74 ] 1987 Human Septic shock Plasma levels of FXII, PKK, and HK were significantly lower. 

Wuillemin et al.[ 75 ] 1995 Human Meningococcal septic shock Plasma levels of FXII, PKK, and FXI were significantly lower. 

Asmis et al.[ 76 ] 2008 Human Sepsis Contact system was activated, 47 kDa HK was significantly 

higher. 

Leskelä et al.[ 77 ] 2021 Human Endotoxemia Endotoxemia is highly correlated with the contact system and 

serine protease. 

Ruiz-Sanmartín et al.[ 78 ] 2022 Human Sepsis Plasma kininogen 1 exerts a negative correlation with 

mortality in septic patients. 

Fang et al.[ 79 ] 2023 Human Sepsis/COVID-19 Network pharmacology indicated that KNG1 is the potential 

target against sepsis/COVID-19. 

BK: Bradykinin; COVID-19: Novel coronavirus disease-2019; FXI: Coagulation factor XI; FXII: Coagulation factor XII; HK: High molecular weight kininogen; IL-6: 

Interleukin-6; KNG: Kininogen; KNG1 : Kininogen 1; PKK: Prekallikrein. 
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his system is not activated by all bacterial species. Subsequent

urine experiments, which involved Klebsiella pneumoniae in-

ection, corroborated this finding.[ 64 ] 

urine models 

A study demonstrated that HK knockout reduced mortal-

ty among mice with endotoxemia.[ 63 ] Nevertheless, further re-

earch asserted that exhaustive depletion of HK did not improve

urvival in mice with K. pneumoniae -induced sepsis.[ 64 ] This

nding may be explained by the fact that the Gram-negative

acterium K. pneumoniae does not activate HK and its down-

tream pathway. 

Another study demonstrated that the expression of kinino-

en 1 ( KNG1 ) in the lung tissues of septic mice significantly

ncreased, and downregulation of KNG1 expression could atten-

ate sepsis-induced acute lung injury.[ 65 ] Depletion of mouse

NG1 using antisense oligonucleotides inhibited the spread

f Streptococcus and reduced the levels of pro-inflammatory

ytokines.[ 66 ] 

rimate models 

Baboon models were used to investigate the activation of the

ontact system and the plasma levels of its components. Pixley

t al.[ 67 ] showed that injections of a lethal dose of E. coli into

aboons resulted in a significant reduction in HK, with clinical
455
ymptoms of irreversible fatal hypotension. However, follow-

ng the injection of FXII monoclonal antibody C6B7 to inacti-

ate FXII, the plasma levels of HK significantly increased, and

he clinical symptoms and survival time were significantly im-

roved as well.[ 68 ] Further investigation in baboons showed that

6B7 could significantly reduce the levels of pro-inflammatory

ytokines, and significantly weaken the activation of the com-

lement system. These observations suggested the existence of

rosstalk between the contact system, the endogenous coagula-

ion system, and the complement system.[ 69 ] 

uman data 

It was observed that patients with Gram-negative bacteremia

ad significantly lower levels of HK in their plasma com-

ared to patients without Gram-negative bacteremia.[ 71 ] Subse-

uent clinical studies[ 72–76 ] confirmed these conclusions. Köh-

er et al.[ 66 ] also reported that the plasma levels of KNG1

ere negatively correlated with Acute Physiology and Chronic

ealth Evaluation II (APACHE-II) scores in patients with sep-

is. A study utilizing high-performance liquid chromatogra-

hy/tandem mass spectrometry showed that human endotox-

mia is highly correlated with the contact system and en-

ogenous coagulation system.[ 77 ] A single-center study from

pain revealed a negative correlation between plasma KNG

nd mortality in patients with sepsis [ 78 ] . Recently, a network
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harmacology study identified KNG1 as a possible therapeu-

ic target for both sepsis and COVID-19.[ 79 ] In addition to its

mportant role in the contact system, HK may be involved in

ro-inflammatory responses. Early studies found that HK influ-

nces leukocyte recruitment[ 81 ] and interactions in the vascular

ystem.[ 82 ] It has been demonstrated that HK or KNG1 plays

n important role in several signaling pathways related to in-

ammation, such as nuclear factor- 𝜅B (NF- 𝜅B)[ 65 ] and phos-

hatidylinositol 3 kinase-protein kinase B (PI3K-AKT).[ 58 ] 

K and its receptors 

BK, the downstream product of HK, has also been associ-

ted with signaling transduction of the inflammatory process

hrough bradykinin receptor B1 (B1R) and bradykinin receptor

2 (B2R).[ 83–85 ] B1R is expressed in low levels in healthy tissues

nd is only upregulated under pathological states (e.g., injury

nd inflammation).[ 86 , 87 ] B2R is the main receptor for BK.[ 88 ] 

y binding to these receptors, BK promotes the release of pro-

nflammatory cytokines, including interleukin-6 (IL-6) and IL-

.[ 89 ] In COVID-19, the increased secretion of BK may aggravate

linical symptoms.[ 90 , 91 ] 

Similar results have been reported in sepsis. Knockout of BK

eceptors or the antagonist of B1R (R-954) reduced mortality

nd improved organ dysfunction by maintaining normal vascu-

ar permeability and hemodynamic stability in polymicrobial

eptic mice.[ 92 , 93 ] As mentioned above,[ 64 ] this phenomenon

oes not occur in K. pneumoniae infections.[ 93 ] 

ssociation between contact and coagulation systems 

The contact system is also highly relevant to coagulation.

he endogenous coagulation system initiator FXII is crucial for

he coagulation system.[ 50 ] Notably, HK in the contact system

lso exerts an effect on coagulation. A study revealed that HK

ould inhibit platelet adhesion and aggregation,[ 94 ] and acted

s an antithrombotic agent by inhibiting plasminogen activa-

or inhibitor-1.[ 95 ] Subsequent studies confirmed that deletion

f the murine kininogen gene in mice delayed thrombosis,[ 96 ] 

ighlighting the strong correlation between the contact and co-

gulation systems. 

oagulation System 

The coagulation system comprises both endogenous and ex-

genous pathways. The endogenous coagulation system is ac-

ivated by FXII, while the other is activated by tissue factor.

ubsequently, a series of downstream serine protease-mediated

oagulation cascade reactions are initiated, converting soluble

brinogen into insoluble fibrin to achieve coagulation.[ 97 ] Main-

aining the normal physiological function of the endogenous co-

gulation system is essential for homeostasis. Coagulation sys-

em dysfunction is associated with inflammation, implying that

nflammation activates coagulation, which in turn significantly

ffects inflammatory activity.[ 98 ] Coagulation dysfunction is a

ajor pathophysiological feature of COVID-19,[ 99 ] marked by

 significant increase in d -dimer levels[ 100 ] that enhances fib-

inogen and platelet activation.[ 101 ] Pathologically, the dysfunc-

ion is characterized by thickened vessel walls, narrowed vessel
456
umens, and microvascular thrombosis.[ 102 ] Clinical manifesta-

ions of COVID-19 include deep venous thromboembolism, pul-

onary embolism,[ 99 ] and organ dysfunction due to microvas-

ular thrombosis.[ 103 ] Abnormal coagulation parameters (e.g.,

ncreased levels of d -dimer, fibrinogen, and fibrinogen degra-

ation products), as well as prolonged prothrombin time and

ctivated partial thromboplastin time, are strongly associated

ith poor prognosis of patients with COVID-19.[ 104 ] 

Similarly, sepsis-induced coagulopathy (SIC) is associated

ith a worsened prognosis of patients with sepsis.[ 105 ] Co-

gulation system dysfunction occurs throughout the course

f sepsis.[ 106 ] Clinical studies demonstrated a significant as-

ociation between DIC and mortality in patients with severe

epsis.[ 107–109 ] This association is primarily attributed to the hy-

ercoagulable state of blood in the early stage of sepsis, which

eads to numerous microvascular thromboses. This process im-

airs the function of vital organs, resulting in multiple organ

ysfunction syndrome.[ 110 ] Furthermore, the consumption of co-

gulation factors and fibrinogen causes severe bleeding in the

ate stage of SIC. A schematic diagram of the intrinsic coagula-

ion system is shown in Figure 1 . Research progress on the role

f FXII, FXI, and FX in the pathogenesis of infectious disease is

hown in Table 2 . 

XII and FXI 

Research studies have been conducted to knockout or antag-

nism of various coagulation factors in both endogenous and

xogenous coagulation systems, such as FVII,[ 117 ] FXI,[ 119 , 132 ] 

nd FXII.[ 112 ] FXII and FXI are essential components of the con-

act and coagulation systems. Research progress regarding these

wo coagulation factors is discussed below. 

n vitro studies 

An increase in IL-1 secreted by monocytes was observed fol-

owing the addition of FXIIa and LPS to the culture medium.[ 111 ] 

xcept for the pro-inflammatory effects on monocytes, FXII

an also induce neutrophil degranulation. Neutrophils in FXIIa-

eficient plasma release only 30 % of the elastase released by

hose in normal plasma. In addition, FXIIa inhibitor d -Pro-Phe-

rg-CH2 Cl (PPACK) and Cl-inhibitor significantly inhibited the

elease of elastase by > 90 % in normal plasma.[ 114 ] Subsequent

tudies indicated that Acinetobacter baumannii can inactivate

XII by releasing the metalloprotease CpaA. This weakens an im-

ortant antimicrobial defense mechanism, thus facilitating bac-

erial spread.[ 113 ] 

FXI also plays an important role in immune cell function. PKK

nd FXI bind to neutrophil cell membranes through kininogen,

hereby initiating downstream biological effects.[ 115 ] 

urine models 

A study showed that the usage of FXII and PKK inhibitor H-

 -Pro-Phe-Arg-chloromethylketone significantly reduced the re-

ease of BK after Salmonella invasion and improved lung injury

n rats.[ 116 ] FXII-knockout mice exhibited the same inflamma-

ory response as wild-type mice in S. pneumoniae pneumonia.

owever, following infection with K. pneumoniae , those mice

howed higher survival rates and lower bacterial burden with-

ut impairment of their coagulation function.[ 132 ] 
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Table 2 

Research progress on the role of FXII, FXI, and FX in the pathogenesis of inflammatory diseases. 

Target Author Years Research object Pathogen/disease Conclusions 

FXII and FXI Wachtfogel et al.[ 111 ] 1986 In vitro Cytochalasin B FXIIa plays a role in inflammatory responses by activating neutrophils. 

Toossi et al.[ 112 ] 1992 In vitro LPS Activation of FXII-induced monocyte expression of IL-1 protein in the 

presence of LPS. 

Henderson et al.[ 113 ] 1994 In vitro Cytochalasin B PKK and FXI bound to neutrophil cell membranes through kininogen, 

initiating downstream biological effects. 

Waack et al.[ 114 ] 2018 In vitro Acinetobacter baumannii Acinetobacter baumannii inactivated FXII by releasing the metalloprotease 

CpaA. 

Persson et al.[ 115 ] 2000 Mice Salmonella FXII and PKK inhibitors reduced the release of BK after Salmonella invasion. 

Tucker et al.[ 116 ] 2008 Mice Peritoneal sepsis FXI KO mice reduced their coagulopathy and mortality rates. 

Tucker et al.[ 117 ] 2012 Mice Sepsis An anticoagulant antibody improved the survival rates of septic mice by 

selectively inhibiting FXI activation. 

Bane et al.[ 118 ] 2016 Mice Polymicrobial sepsis FXI KO mice improved survival and reduced cytokine response. 

Stroo et al.[ 119 ] 2017 Mice Klebsiella pneumoniae, 

Streptococcus 

pneumoniae -induced sepsis 

FXII KO mice improved survival and reduced bacterial growth in Klebsiella 

pneumoniae infection. 

Silasi et al.[ 70 ] 2019 Baboons Staphylococcus aureus FXII-neutralizing antibody 5C12 reduced the production of 

proinflammatory cytokines. 

Inhibition of FXI decreased inflammation and prolonged the survival time 

of baboons. 

Hess et al.[ 120 ] 2017 Human ARDS Non-survivors had significantly higher FXII levels in their BALF compared 

to survivors. 

Papi et al.[ 121 ] 2023 Human COVID-19 The inhibition of FXIIa did not confer a clinical benefit over placebo. 

FX Jones and Geczy[ 122 ] 1990 In vitro LPS In the presence of LPS stimulation, FXa, together with thrombin, enhances 

IL-1 generation. 

Laurent et al.[ 123 ] 2014 In vitro LPS Rivaroxaban and fondaparinux suppressed some chemokine secretion 

produced by activated macrophages. 

Akahane et al.[ 124 ] 2001 Rats LPS Inhibition of FXa reduces TF and MCP-1 expression in the liver of rat 

endotoxemia. 

Daci et al.[ 125 ] 2020 Rats LPS Rivaroxaban pre-treatment attenuates LPS-induced acute vascular 

inflammation and contractile dysfunction. 

Taylor et al.[ 126 ] 1991 Baboons E. coli sepsis DEGR-Xa can inhibit DIC induced by infusion of E. coli , this inhibitor fails to 

block the lethal effects of the bacterial infusion. 

Welty-Wolf et al.[ 127 ] 2006 Baboons E. coli sepsis Blockade of tissue factor-factor X binding attenuates sepsis-induced 

respiratory and renal failure of E. coli sepsis baboon. 

Schöchl et al.[ 128 ] 2017 Baboons E. coli sepsis Dual inhibition of thrombin and FXa protected organ function and 

ameliorated inflammation in severe Gram-negative sepsis in baboons. 

Hollenstein et al.[ 129 ] 2002 Human Endotoxin Danaparoid did not alter endotoxin-induced cytokine levels, activation of 

leukocytes, but selectively attenuates endotoxin-induced coagulopathy. 

Katoh et al.[ 130 ] 2017 Human Inflammation of NVAF FXa inhibitors have not only an anti-coagulant effect but also 

anti-inflammatory effects in patients with NVAF. 

Nakase et al.[ 131 ] 2018 Human Inflammation of acute 

ischemic stroke 

Both apixaban and dabigatran equally showed the anticoagulation activity 

and the reduction of inflammatory response. 

BALF: Bronchoalveolar lavage fluid; BK: Bradykinin; DEGR-Xa: Dansyl-glutamyl-glycyl-arginine chloromethyl ketone; DIC: Disseminated intravascular coagulation; 

FX: Coagulation factor X; FXI: Coagulation factor XI; FXIIa: Activated coagulation factor XII; IL: Interleukin; KO: Knock out; LPS: Lipopolysaccharides; MCP-1: 

Monocyte chemoattractant protein-1; NVAF: Non-valvular atrial fibrillation; PKK: Prekallikrein; TF: Tissue factor. 
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An anticoagulant antibody termed 14E11, which selectively

nhibits prothrombotic FXI activation, was used in septic mice.

he results indicated that 14E11 can inhibit pro-inflammatory

ytokine production, including IL-6 and tumor necrosis factor-

(TNF- 𝛼). It can also reduce platelet consumption and its

ascular deposition, thus significantly improving the survival

ate of mice with sepsis caused by intestinal perforation, with-

ut increasing the risk of bleeding.[ 119 ] Compared with wild-

ype mice, FXI knockout in mice reduced coagulopathy and

ortality rate, and induced smaller increases in plasma lev-

ls of TNF- 𝛼, IL-10, IL-1 𝛽, and IL-6 during cecum ligation and

uncture-induced sepsis.[ 118 , 120 ] Nevertheless, in S. pneumoniae-

nd K. pneumoniae- induced pneumonia-derived sepsis, FXI defi-

iency worsens the survival rate, increases bacterial burden, and

nhances inflammatory responses; the capacity of neutrophil

hagocytosis was also impaired in FXI-knockout mice.[ 132 ] 

rimate models 

Inhibition of FXII using an FXII antibody significantly im-

roved the prognosis of septic baboons.[ 67–69 ] Further investiga-

ion confirmed that using FXII-neutralizing antibody 5C12 in ba-
457
oons with sepsis caused by S. aureus reduces the production of

ro-inflammatory cytokines (e.g., TNF, IL-1 𝛽, IL-6, IL-8, and IL-

0), and prevents fever, terminal hypotension, respiratory dis-

ress, and multiorgan failure.[ 112 ] 

The inhibition of FXI exerts similar effects. Pretreatment

ith the anti-FXI antibody 3G3 in baboons infused with heat-

nactivated S. aureus inhibited the activation of the contact,

oagulation, and complement systems, reduced the production

f pro-inflammatory cytokines, and protected the structure and

unction of multiple vital organs, thus prolonging the survival

ime.[ 70 ] 

uman data 

FXII levels are significantly higher in bronchoalveolar lavage

uid of non-survivors vs . survivors of acute respiratory distress

yndrome. Moreover, FXII can induce various pro-inflammatory

ytokines in human lung tissue, including IL-8, IL-1 𝛽, IL-6, C-X-C

otif chemokine ligand 5 (CXCL5), and TNF- 𝛼.[ 133 ] 

Therefore, inhibition or depletion of FXII or FXI may signif-

cantly improve coagulation dysfunction and the prognosis of

atients with sepsis. Consequently, numerous small molecules,
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eptides, proteins, oligonucleotides, siRNAs, and monoclonal

ntibodies targeting FXII and FXI have been developed.[ 134 , 135 ] 

ome of those agents (e.g., garadacimab) are currently under

nvestigation in clinical trials. The first-in-human and random-

zed dose-escalation trial of FXIIa inhibitor garadacimab was re-

ently completed.[ 121,136 ] Of note, treatment with garadacimab

id not confer a clinical benefit vs . placebo in patients with

OVID-19.[ 137 ] 

X 

FX is an important component of both the intrinsic and ex-

rinsic coagulation pathways. The role of FX in the occurrence

nd progression of various inflammation-related diseases, as

ell as advancements in research on drugs targeting FX, is de-

cribed below. 

n vitro studies 

Research indicated a synergistic interaction between FXa

nd pro-inflammatory cytokines like TNF, IL-1 𝛽, and CD40 lig-

nd (CD40L), leading to endothelial dysfunction. This partly

xplains the vascular complications occurring in sepsis.[ 138 ] 

Xa concentration-dependently stimulates the production of IL-

, IL-8, and monocyte chemoattractant protein-1 (MCP-1) in

uman umbilical vein endothelial cells. Additionally, it en-

ances the expression levels of E-selectin, intercellular adhe-

ion molecule-1 (ICAM-1), and vascular cell adhesion molecule-

 (VCAM-1), thereby increasing the adhesion of polymorphonu-

lear leukocytes to endothelial cells.[ 122 ] In the presence of sub-

ptimal levels of endotoxin, FXa enhances the production of IL-

 in macrophages.[ 139 ] Currently, clinically employed FXa in-

ibitors include rivaroxaban,[ 140 ] apixaban,[ 141 ] edoxaban,[ 142 ] 

etrixaban,[ 123 ] and among others. Treatment with rivaroxaban

ignificantly suppressed the secretion of chemokines by acti-

ated macrophages.[ 124 ] This evidence showed that FXa exerts a

ro-inflammatory effect during the course of inflammatory dis-

ase. 

urine models 

Research focused on inhibiting FXa activity to examine its

nti-inflammatory role. Subcutaneous injection of DX-9065a, a

pecific FXa inhibitor, significantly inhibited liver tissue fac-

or expression and plasma MCP-1 concentration in rats with

ndotoxemia.[ 125 ] Similarly, rivaroxaban significantly improved

PS-induced acute vascular inflammation.[ 128 ] 

rimate models 

However, studies in baboons showed a different pattern.

reatment with a dual short-acting thrombin and FXa in-

ibitor SATI attenuated DIC and protected organ function in

eptic baboons.[ 127 ] Blocking tissue factor-FX binding allevi-

ted sepsis-induced respiratory and renal failure.[ 126 ] Single use

f dansyl-glutamyl-glycyl-arginine chloromethyl ketone (DEGR-

a) to block the activity of FXa inhibited the DIC induced by E.

oli infusion, but could not prevent mortality.[ 129 ] 

uman models 

Similarly, in randomized controlled trials involving healthy

olunteers, the FXa inhibitor danaparoid selectively mitigated

ndotoxin-induced coagulopathy. However, it did not alter
458
ndotoxin-induced cytokine levels, leukocyte activation, or

onocyte tissue factor expression.[ 130 ] The anti-inflammatory

ffects of rivaroxaban and apixaban have been observed in

apanese patients with atrial fibrillation.[ 131 ] Furthermore, the

nti-inflammatory effects of apixaban were also recently demon-

trated in patients with ischemic stroke in the acute phase.[ 143 ] 

ssociation between coagulation and complement systems 

The coagulation and complement systems exhibit overlap-

ing functionalities. For example, C3 convertase inhibitor comp-

tatin prevents sepsis-induced complement activation and coag-

lopathic responses by inhibiting C3 convertase, thereby main-

aining the endothelial anticoagulant properties.[ 144 ] Inhibition

f C5 also significantly improved SIC in septic mice.[ 145 ] Evi-

ence suggests that FXIIa initiates a classical pathway of the

omplement system.[ 146 ] While within the complement sys-

em, C1q can interact with the C1q receptor on platelets, me-

iating platelet aggregation and activation.[ 147 ] Furthermore,

annose-binding lectin-associated serine protease-1 ( MASP1 )

n the mannose-binding lectin pathway activated platelets in a

urine model of occlusive thrombosis.[ 148 ] In addition, com-

lement system activation can induce the release of neutrophil

xtracellular traps from neutrophils. These neutrophil extracel-

ular traps provide a scaffold for blood cells and platelets to form

lots.[ 149 , 150 ] Moreover, the bleeding time of C3-deficient mice

as significantly prolonged, and the incidence of thrombus and

he size of thrombus were reduced. 

omplement System 

As an important part of the innate immune system, the com-

lement system is an irreplaceable barrier protecting the body

rom foreign pathogen invasion.[ 151 ] According to its activation

athway, the complement system is divided into three path-

ays, namely the classical, alternative, and mannose-binding

ectin. Based on its biological functions, it can be divided into

omplement components, complement regulatory proteins, and

omplement receptors.[ 152 ] Complement components include

1–C9, mannan-binding lectin (MBL), MASP, factor B (CFB),

actor D (CFD), and factor P; complement regulatory proteins

nclude C1-esterase inhibitor (C1 INH); also termed SERPING1,

actor I, factor H, etc.; complement receptors are receptors of

he complement components, including CR1–CR5, C4aR, and

5aR.[ 153 ] Through combined action, the complement system

ventually produces a membrane attack complex (MAC) that

yses cells and stimulates inflammatory responses to remove

athogens.[ 154 ] Activation of the complement system also leads

o the production of anaphylatoxins (e.g., C3a and C5a), which

rigger mast cell degranulation, enhance phagocytosis activity

f neutrophils and monocytes, and trigger local inflammatory

esponses. Moderate complement activation plays an indispens-

ble role in maintaining normal immune function. Nonethe-

ess, excessive complement activation may lead to various

iseases, including atypical hemolytic-uremic syndrome,[ 155 ] 

lzheimer’s disease, Parkinson’s disease,[ 156 ] and amyotrophic

ateral sclerosis.[ 157 ] A schematic diagram of the complement

ystem is shown in Figure 2 . Research progress on the role of

3 and C5 in the pathogenesis of infectious disease is shown in

able 3 . 
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Figure 2. Potential effects of NM on the complement system. Yellow indicates the classical pathway of the complement system. Green indicates the alternative 

pathway of the complement system. Yellow-green represents the common path of both pathways. 

CF: Complement factor; CFB: Complement factor B; CFD: Complement factor B; CFI: Complement factor I; MAC: Membrane attack complex; NM: Nafamostat mesilate; 

SP: Serine protease. 
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3 and C5 

n vitro studies 

As a strong chemoattractant, C5a can stimulate hu-

an polymorphonuclear leukocytes to acquire a polarized

orphology.[ 158 ] C3a and C5a also induce the release of oxy-

en radicals in granulocytes; therefore, inhibiting C3a and C5a

ay attenuate endothelial damage.[ 159,160 ] 

Studies showed that expression of C5R in rat alveolar

pithelial cells and mouse dermal microvascular endothelial

ells increased the production of TNF- 𝛼, IL-1 𝛽, macrophage

nflammatory protein-2 (MIP-2), and cytokine-induced neu-

rophil chemoattractant-1 (CINC-1) under the stimulation of

PS.[ 161 , 162 ] Subsequent experiments conducted in human um-

ilical vein endothelial cells confirmed these findings.[ 163 ] 

Importantly, the epithelial integrity was significantly im-

roved by antagonizing C3aR and C5aR expressed on human

irway epithelia during SARS-CoV-2 infection.[ 165 ] 

urine models 

Studies in rats with endotoxin-induced shock suggested that

he use of a rabbit anti-rat C5a antibody elevated the plasma

evels of C3a and C5a, and significantly improved the mean ar-

erial pressure and vascular permeability.[ 166 ] Additional stud-

es confirmed that C5a blockade had protective effects in septic

ats.[ 164 , 167 ] Another study showed that C5aR mRNA expression

as significantly elevated in lung, liver, kidney, and heart of

eptic mice. Inhibition of C5aR may markedly increase the sur-

ival rates, while reducing the pro-inflammatory cytokine lev-

ls and organ bacterial burden.[ 168 ] Recently, another murine

tudy using C5aR antagonist PMX 205 suggested that inhibition

f C5aR decreased the mortality rate associated with Neisseria
459
eningitidis -induced sepsis and the levels of pro-inflammatory

ytokines.[ 172 ] 

rimate and mammalian models 

Earlier animal studies had shown a strong activation of the

omplement system in E. coli -infected baboons, manifested by

n increase in C3b/c, C4b/c, and C5b-9 levels.[ 169 ] Further stud-

es suggested that inhibition of the complement system using

obra venom factor or monoclonal antibodies significantly im-

roved the prognosis of septic pigs.[ 170 , 173 ] This finding has been

onfirmed in recent studies. C3 convertase inhibitor compstatin

ignificantly improved coagulation function, organ dysfunction,

nd leukocyte infiltration in baboons.[ 174 ] C5 inhibitors reduced

ortality and protected against coagulation dysfunction and or-

an failure in septic baboons.[ 171 , 175 ] 

uman data 

Scholars reported that the serum levels of C3a, C4a, and C5a

ere significantly higher in non-survivors than survivors of sep-

is. Moreover, their concentrations were highly correlated with

ortality. These data confirmed that the complement system

as overactivated during sepsis.[ 185 ] Overactivation of the com-

lement system was observed in patients with COVID-19.[ 186 ] 

pecifically, in the cytokine storm caused by COVID-19, exten-

ive complement activation and depletion occurred.[ 187 ] These

ffects manifested by a significant increase in the plasma lev-

ls of MAC, C4d, and C5a,[ 180 , 188 ] and a significant decrease in

he levels of C3 and C4, which were both highly correlated with

atient prognosis.[ 176 ] 

Several inhibitors have been developed to inhibit comple-

ent overactivation. Eculizumab (an antibody targeting com-

lement component C5) is among the earliest inhibitors devel-
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Table 3 

Research progress on the role of C3 and C5 in the pathogenesis of inflammatory diseases. 

Author Year Research object Pathogen/disease Conclusions 

Sacks et al.[ 158 ] 1978 In vitro Cytochalasin B C3a and C5a triggered oxygen radical release in granulocytes, leading to endothelial damage. 

Marder et al.[ 157 ] 1985 In vitro NA C5a strongly attracted human polymorphonuclear leukocytes and induced their polarization. 

Riedemann et al.[ 159 ] 2002 In vitro Baculovirus C5R activation in RAEC enhanced inflammatory responses under LPS stimulation. 

Mollnes et al.[ 160 ] 2002 In vitro E. coli C5a-C5aR interaction was important in E. coli -induced inflammation and could be a target 

for treating tissue damage. 

Laudes et al.[ 161 ] 2002 In vitro E. coli C5R activation in MEMDC enhanced inflammatory responses under LPS stimulation. 

Monsinjon et al.[ 162 ] 2003 In vitro E. coli C3a or C5a caused a strong up-regulation of IL-8, IL-1beta, and RANTES mRNA. 

Posch et al.[ 163 ] 2021 In vitro SARS-CoV-2 Antagonizing C3aR and C5aR on human airway epithelia improved epithelial integrity. 

Huber-Lang et al.[ 164 ] 2001 Mice Sepsis The blockade of C5aR highly improved the survival rates of septic mice. 

Smedegård et al.[ 165 ] 1989 Rats Endotoxin Neutralization of C5a with reduce the hypotensive response to endotoxin and prevent lethal 

septic shock both in animals and in man. 

Czermak et al.[ 166 ] 1999 Rats Sepsis C5a blockade reduces bacterial burden in the spleen and liver of septic rats. 

Riedemann et al.[ 167 ] 2002 Mice Sepsis C5a blockade reduces serum levels of IL-6 and TNF-alpha and bacterial counts in various 

organs were significantly reduced during CLP. 

Herrmann et al.[ 168 ] 2018 Mice Neisseria meningitidis 

sepsis 

The mortality rates and the level of pro-inflammatory cytokines were both down-regulated 

by inhibiting C5aR. 

Höpken et al.[ 169 ] 1996 Pigs E. coli sepsis Anti-C5a monoclonal antibodies significantly reduced IL-6 synthesis. 

Mohr et al.[ 170 ] 1998 Pigs E. coli sepsis Complement depletion and C5a inhibition enhanced oxygen utilization and mitigated severe 

sepsis symptoms. 

Stevens et al.[ 171 ] 1986 Baboons E. coli sepsis Anti-C5a antibodies attenuated some of the systemic manifestations of sepsis. 

de Boer et al.[ 172 ] 1993 Baboons E. coli C3b/c, C4b/c, and C5b-9 had increased. 

Silasi-Mansat et al.[ 173 ] 2010 Baboons E. coli sepsis C3 convertase inhibitor significantly improved coagulation function, organ dysfunction, and 

leukocyte infiltration. 

Keshari et al.[ 174 ] 2017 Baboons E. coli sepsis The inhibition of C5 cleavage could prevent organ failure and death. 

Nakae et al.[ 175 ] 1994 Human Sepsis Higher serum levels of C3a, C4a, and C5a correlated with increased sepsis severity. 

Rother et al.[ 176 ] 2007 Human Paroxysmal nocturnal 

hemoglobinuria 

Eculizumab targeted C5 to effectively treat paroxysmal nocturnal hemoglobinuria, 

demonstrating the value of complement inhibition. 

Diurno et al.[ 177 ] 2020 Human COVID-19 Eculizumab showed potential in treating severe COVID-19 cases in a study and reduced 

inflammation. 

Mastaglio et al.[ 178 ] 2020 Human COVID-19 A patient was safely and successfully treated using AMY-101. 

Kulasekararaj et al.[ 179 ] 2020 Human COVID-19 Ravulizumab and eculizumab dampened the hyperinflammatory lung damage. 

Carvelli et al.[ 180 ] 2020 Human COVID-19 Blocking the C5a-C5aR1 axis reduced excessive lung inflammation. 

Urwyler et al.[ 181 ] 2020 Human COVID-19 Conestat alfa leaded to clinical improvements and reduced inflammation. 

Araten et al.[ 182 ] 2020 Human COVID-19 Patients on anti-complement therapy showed no increased susceptibility to SARS-CoV-2 and 

experienced a mild course of COVID-19. 

Mastellos et al.[ 183 ] 2020 Human COVID-19 Targeting C3 and C5, effectively reduced COVID-19 hyper-inflammation. 

Zelek et al.[ 184 ] 2020 Human COVID-19 The transient blockade of C5 was sufficient to interrupt the hyperinflammatory cycle in 

severe COVID-19. 

AMY-101: Compstatin-based complement C3 inhibitor; CLP: Cecum ligation and puncture; COVID-19: Novel coronavirus disease-2019; IL: Interleukin; LPS: 

Lipopolysaccharides; MEMDC: Mouse dermal microvascular endothelial cells; NA: Not available; RAEC: Rat alveolar epithelial cells; RANTES: Regulated upon 

activation on normal T expressed and secreted; SARS-CoV-2: Severe acute respiratory syndrome- coronavirus 2; TNF: Tumor necrosis factor. 
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ped and has been used for > 16 years.[ 179 ] Numerous comple-

ent system inhibitors are currently under investigation in clin-

cal trials. 

C5 inhibitors ravulizumab, tesidolumab, and eculizumab in-

errupt the hyper-inflammatory cycle in patients with severe

OVID-19, reduce the inflammatory response, and improve clin-

cal symptoms.[ 177,178,182,184 ] C3 inhibitor AMY-101 showed a

ood safety profile in the treatment of COVID-19, reduced mark-

rs of inflammatory response, and resulted in significant clinical

mprovement.[ 183 , 181 ] Recombinant human C1 INH conestat alfa

owers C-reactive protein levels and resolves fever.[ 189 ] 

Similar to the contact and coagulation systems, excessive

ctivation and consumption of the complement system dur-

ng the course of sepsis can contribute to an imbalance in im-

une response, coagulation dysfunction, perfusion deficits, al-

erations in the tissue and cellular microenvironment, and organ

ysfunction.[ 190–192 ] Therefore, inhibition of the overactivated

omplement system can also benefit patients with sepsis. 

1 INH 

C1 INH is a natural serine protease inhibitor found in human

lasma and a member of the Serpin family. It inhibits various

erine proteases, such as C1r, C1s, and MASP2 in the comple-
460
ent system, thrombin and FXI in the coagulation system, and

KK and FXII in the contact system.[ 193 ] Thus, animal and clini-

al studies were conducted to investigate the therapeutic effect

f C1 INH. Animal studies showed that C1 INH can reduce hep-

tic leukocyte–endothelial interaction in septic rats[ 194 ] ; reduce

he expression of TNF- 𝛼 and improve the bactericidal activity

f neutrophils and peritoneal exudate leukocytes and the sur-

ival rate of mice[ 195 , 196 ] ; and reduce the mortality rate and pro-

nflammatory cytokines in baboons.[ 197 ] Clinical studies yielded

he following results: in a case series, C1 INH weakened the ac-

ivation of the contact and complement systems[ 198 ] ; utilization

f C1 INH improved sepsis-related capillary leak syndrome[ 199 ] ;

nd subsequent research suggested that C1 INH exerted a bene-

cial effect on renal dysfunction in patients with sepsis.[ 200 ] 

FB and CFD 

CFB and CFD are serine proteases and crucial constituents

f the complement system, participating in the activation of

he alternative pathway. This pathway enables direct recog-

ition and targeting of pathogens without the involvement

f the antigen-antibody complex. CFB binds to C3b, forming

3bB; subsequently, CFD activates C3bB to generate C3bBb,

hereby constituting the alternative pathway C3 convertase.
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his cascade triggers a series of complement reactions, ulti-

ately culminating in the formation of the MAC and the de-

truction of target cells.[ 201 , 202 ] However, overactivation of CFB

nd CFD also causes damage, leading to various diseases, such

s atypical hemolytic uremic syndrome,[ 203 , 204 ] cardiovascular

iseases,[ 205 ] and several malignant tumors.[ 206–208 ] There are

vailable inhibitors targeting CFB and CFD, including modified

NA aptamers,[ 209 ] antisense oligonucleotides,[ 210 ] and small-

olecule inhibitors[ 211 , 212 ] ; notably, these inhibitors have been

tilized in the treatment of COVID-19.[ 213 ] Hence, utilization of

hese inhibitors in the treatment of sepsis holds promise for fa-

orable outcomes. 

ssociation between complement and contact systems 

FXIIa is the common factor of the contact and coagulation

ystems that can cleave C1r (component of the complement

ystem).[ 214–216 ] Members of the serpin family (e.g., C1 INH, and

ntithrombin) can simultaneously suppress the overactivation

f both systems, thus maintaining homeostasis. Moreover, the

omplement and contact systems have another thing in com-

on, they are the common downstream of diseases (e.g., hered-

tary angioedema, COVID-19, sepsis, etc.). 

ow Does NM Treat Sepsis by Acting on the Contact, 

oagulation, and Complement Systems 

The contact, coagulation, and complement systems contain

arious serine proteases and are overactivated during sepsis.

herefore, it is possible to concurrently inhibit the functionality

f all three systems by inhibiting these serine proteases, thereby

ntercepting the pathophysiological changes and progression of

epsis. As a broad-spectrum, synthetic serine protease inhibitor,

M exhibits similarities to C1 INH. Hence, it has been clinically

tilized in the anticoagulation field. Beyond its inhibitory ef-

ects on the coagulation system, it may also inhibit the contact

nd complement systems. Its usage in the treatment of various

nflammatory conditions has been reported.[ 43–47 ] 

ffects of NM on the contact system in sepsis 

The studies above suggested that the contact system and its

omponents play important roles in the development of sepsis.

pecifically, HK and its downstream product BK contribute to

he development of sepsis caused by polymicrobial infection or

ram-negative bacteria. By knocking out, depleting, or antago-

izing HK and its downstream product BK or its receptor, it is

ossible to significantly improve the survival rate and progno-

is of patients with sepsis. This provides new directions for the

reatment of sepsis. Focusing on HK, the following interventions

an be carried out toward the treatment of sepsis. 

First, a reduction in HK production through knockout, de-

letion, or antagonism. Anti-HK antibody 3E8 significantly re-

uced the activation of the contact system and HK production in

nimals.[ 217 ] Currently, there is a lack of clinical studies on the

eduction of HK production due to limitations in gene editing

nd mRNA vaccination technology, makes it difficult to reduce

K production, therefore, more effective method to inhibit the

ontact system should be considered. 

Second, reduction of downstream product effects, such as

nockdown or antagonism of the BK receptor. BK antagonists

461
ave been clinically utilized, though their indications are mostly

imited to the regulation of vascular permeability (e.g., in hered-

tary angioedema).[ 218 ] Hence, the therapeutic effects of BK an-

agonists on sepsis remain unclear. 

Third, reduction of HK catabolism by kallikrein (i.e., reduc-

ion of the production of downstream products of BK). Drugs

argeted at kallikrein effectively reduce the conversion of HK

o downstream products, thereby intervening in the develop-

ent of sepsis. Hence, the development of drugs that can in-

ibit kallikrein may be clinically important. NM is a drug that

nhibits PKK, thus reducing HK catabolism and its downstream

iological effect. 

ffects of NM on the coagulation system in sepsis 

The coagulation system, particularly the endogenous coagu-

ation system, consists of numerous serine proteases (e.g., FIIa,

Xa, and FXIIa). Serine protease inhibitors, such as NM, can in-

ibit these coagulation factors. Therefore, NM is often used in

linical practice as an effective anticoagulant in extracorporeal

ife support,[ 219 ] extracorporeal membrane oxygenation,[ 220 ] 

nd continuous renal replacement therapy.[ 221 ] 

Inhibition of coagulation factors by NM exerts an anticoagu-

ation effect and plays an important role in sepsis. Early admin-

stration of NM in sepsis can effectively reduce the consump-

ion of various coagulation factors and fibrinogen. Moreover, it

an avoid the vital organ dysfunction caused by microvascular

hrombosis in the early stage and the serious bleeding tendency

ue to the large consumption of coagulation factors in the late

tage. 

ffects of NM on the complement system in sepsis 

The serine protease components within the complement sys-

em include C1r, C1s, C2, CFD, CFB, and factor I ( Figure 2 ). The

se of serine protease inhibitors may suppress the activity of

hese components. NM effectively inhibits the activation of the

omplement system,[ 222 , 223 ] thereby exerting positive effects on

atients with sepsis. 

M: potential applications in the treatment of sepsis 

Sepsis is highly correlated with the overactivation of the con-

act, complement, and coagulation systems. NM may inhibit ser-

ne protease components (e.g., PKK) in the contact system, and

ttenuate the vascular leakage caused by BK, thereby preventing

he ensuing multiple organ dysfunction syndrome. In addition,

M can inhibit FXIIa, FXa, and FIIa in the intrinsic coagulation

ystem, thus reducing the formation of fibrin clot and the inci-

ence of consequent DIC. Furthermore, it inhibits C1r and C1s in

he classical pathway of the complement system, CFB and CFD

n the alternative pathway of the complement system, reduces

AC formation, and decreases anaphylatoxins (e.g., C3a C4a,

nd C5a) ( Figure 3 ). 

onclusions 

In this review, we discuss the pathophysiology of sepsis, ex-

lore the functional changes in the contact, coagulation, and

omplement systems, as well as their core components (e.g.,

K, BK, FXII, FXI, C3, C5, etc.). NM may exert its therapeu-

ic effect on sepsis by inhibiting the activation on the contact,
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Figure 3. Potential therapeutic effect of NM on the pathophysiological changes in sepsis. 

BK: Bradykinin; CFB: Complement factor B; CFD: Complement factor B; HK: High-molecular-weight kininogen; MAC: Membrane attack complex; NM: Nafamostat 

mesilate; PKK: Prekallikrein. 
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oagulation, and complement systems, thus improving damage

o vital organs and prognosis. Further research is warranted to

onfirm this hypothesis. Currently, several clinical trials inves-

igating the utilization of NM in the treatment of sepsis, may

ield useful results.[ 224 , 225 ] 
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