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Abstract: Polymer nanoparticles are a promising approach for cancer treatment and detection, due
to their biocompatibility, biodegradability, targeting capabilities, capacity for drug loading and
long blood circulation time. This study aims to evaluate the impact of poly (styrene–acrylic acid)
latex particles on colorectal and cervical cancer cells for anti-tumor efficiency. Latex particles were
synthesized by a surfactant-free radical emulsion polymerization process and the obtained polymer
particles were characterized in terms of size, size distribution, morphology using scanning electron
microscopy (SEM) and transmission electron microscopy (TEM), and electrokinetic property (i.e.,
zeta potential). Human colorectal and cervical cancer, and normal cell lines, were then treated with
different concentrations of poly (styrene–acrylic acid) latex particles. The cell morphology changes
were pointed out using an optical microscope and the nanoparticles’ (NPs) cell cytotoxicity was
evaluated using MTT assay. The obtained results showed that poly (styrene–acrylic acid) latex
particles are effective against colorectal and cervical cancer cells if treated with an appropriate particle
concentration for 48 h. In addition, it showed that normal cells are the least affected by this treatment.
This indicates that these NPs are safe as a drug delivery carrier when used at a low concentration.

Keywords: poly (styrene–acrylic acid) latex nanoparticles; HCT-116; HELA; cancer; delivery

1. Introduction

The main characteristic of malignant tumors is that the cells grow continuously and
uncontrollably. A variety of treatment options, including radiation therapy, chemotherapy,
targeted therapy and surgery, are used to prolong a patient’s survival with a better quality
of life. Cancer remains the leading cause of death worldwide [1,2]. Colorectal cancer
and cervical cancer are the most diagnosed cancers [3,4]. Colorectal cancer is considered
the second most deadly cancer worldwide [5,6]. Despite notable progress in treatment,
approximately 86% of colorectal cancer patients with advanced stage cancer die within five
years of the diagnosis [7]. On the other hand, cervical cancer is the third most common
cancer that affects women worldwide after breast and colorectal cancers, and a major
cause of death from gynecological cancer [8,9]. To date, multidrug resistance (MDR) is
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one of the top challenges in clinical anti-tumor chemotherapy [10–13]. Furthermore, the
delivery of chemotherapeutic drugs to target-specific sites is a major challenge in the
available treatment of cancer, as only a small number of chemotherapy drugs may reach
the target site [14–16].

Thus, there is an urgent need to develop and design novel therapeutic strategies to
overcome these challenges. A variety of nano-drug delivery systems have been established
for the systemic delivery of insoluble drugs, including microemulsions [17], micelles [18],
lipid-based NPs [19], polymeric NPs [20], and liposomes [21]. Among these, polymeric
NPs are ideal drug carriers for anti-tumor medicines [22–24]. The main advantage of using
polymeric NPs is their good biocompatibility and sustained drug-release capabilities at the
target site [25].

Polymeric NPs are a strong platform for cancer therapy where they can encapsulate
both hydrophilic and hydrophobic drugs, and have drawn great attention due to their
possible application as drug delivery vehicles [26], such as poly (styrene–acrylic acid)
latex. Styrene is mostly used in copolymerization because of its chemical characteristic,
hydrophobic property, translucence and low cost. In addition, acrylic acid possesses high
reactive double bonds that add crucial properties, such as top stability and polarity in an
aqueous manner for copolymers because the copolymer surface has carboxylic groups
and hydrophilicity [27].

The emulsion polymerization process is a powerful tool for the production of nano-
sized polymeric NPs [28]. This process involves emulsification of hydrophobic monomers
by an oil-in-water emulsifier, then reaction initiation with a water-soluble initiator (e.g.,
potassium persulfate (K2 S2 O8)) [29]. Photochromic latex containing 1′-(2-acryloxyethyl)-
3′3′-dimethyl-6-nitrospiro-(2-H-1-benzopyran-2,2′-indoline (spiropyran ethyl acrylates)
showed robust photoactivity under UV radiation [30]. Polyspiropyran methacrylate la-
tex nanoparticles that have been reported using reversible addition–fragmentation chain
transfer mediated emulsion polymerization exhibited a reversible stimuli property. Spiropy-
ran with photochromic properties tends to interact with polymer and show photo/pH
responsivity [31]. Copolymer nanolatex based on poly (methyl methacrylate-co-N-vinyl
caprolactam) synthesized by a microemulsion technique exhibited a thermosensitive
property [32]. SPIONs/Poly (N-isopropylacrylamide) with amine functionalization in
the form of microgel was reported to encapsulate polyphenol (curcumin) efficiently and
trigger release under a magnetic field [33]. Poly (N-isopropylacrylamide)-based polymers
are studied for their thermosensitive characteristics, exhibiting a lower consolute tempera-
ture at about 32 ◦C. Polymer nanogel with a triple environmental (temperature/pH/redox)
responsive P (N-isopropylacrylamide–N,N′-dimethylaminoethyl methacrylate and N,N′-
bis(acryloyl)cystamine (PND-BAC) nanoparticles has been reported as an effective nanocar-
rier for DOX release [34].

Surfactant-free emulsion polymerization has been reported to be an attractive tech-
nique to prepare colloidal microspheres. Styrene with various functional modalities has
been effectively used to prepare monodisperse microspheres [35]. Magnetic submicronic
latexes with superparamagnetic properties have been reported using styrene and divinyl-
benzene as cross-linker [36] for shell preparation. Acrylic acid possesses high polymer-
ization reactivity in water and leads when copolymerized with styrene to submicron
monodisperse particles. The molar ratio of acrylic acid over styrene leads to controlling the
particle size. The particles obtained from such a process, using styrene/acrylic acid, exhibit
good colloidal stability against salinity and hydrophilic particle surface, induced by the
hydrophilic character of the carboxylic group of acrylic acid [27,37]. This study shows that
the polydispersity index is generally close to one, indicating uniform submicron particle
size distributions. In addition, irrespective of the polydispersity index, the latex particle
size of the styrene/acrylic acid system was found to be inversely proportional to the acrylic
acid concentration in the polymerization medium [37,38].

This work aims to investigate the potential of using poly (styrene–acrylic acid) latex
particles P(St/AA) on colorectal and cervical cancer cells by studying various parame-
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ters. These surfactant-free P(St/AA) latex particles were specially synthesized by batch
emulsifier-free emulsion polymerization in the presence of an anionic radical initiator
(potassium persulfate).

2. Materials and Method

Styrene monomer (St, Mw 104.15 g/mol), anhydrous acrylic acid (AA, Mw 72.06 g/mol)
and potassium persulfate (KPS, Mw 270.322 g/mol) were purchased from Fluka (Fisher
Scientific, Illkirch, France). Monomers were purified by distillation under reduced pressure
before being stored at −20 ◦C. KPS, sodium chloride (NaCl, Merck, Analytical, Merck
KGaA, Darmstadt, Germany), sodium hydroxide (NaOH, VWR, BDH, Prolabo) and hy-
drochloric acid (HCl, VWR, BDH, Prolabo) were used as received. Deionized water (milli-Q)
was used throughout the work.

2.1. Preparation of Polystyrene Particles

Surfactant-free emulsion copolymerization of styrene and acrylic acid, in the presence
of potassium persulfate (KPS) as an initiator, was performed in a glass reaction vessel
equipped with a mechanical stirrer, condenser, and nitrogen inlet and outlet. Deionized
water (190 g) was charged into a 200 mL glass reaction vessel, while the remaining water
was used to dissolve the KPS initiator. After purging with nitrogen for about 1 h while
stirring at 350 rpm, the distilled St (20 g) and AA (2 g) monomers were added into the
reactor. The polymerization temperature was controlled at 70 ◦C by using an external
batch water circulation. The reaction was started by adding KPS (0.1 g) dissolved in
10 g of deionized water. Polymerization was carried out for 12 h and the polymerization
conversion was determined gravimetrically.

2.2. Particle Size, Distribution, and Morphology

Particle size was measured both by Quasi Elastic Light Scattering (QELS) and by
Transmission Electron Microscopy (TEM). The QELS was investigated using NanoZS from
Malvern Instruments (Malvern, UK). The measurements were performed at least four
times and the reported values are the average values. TEM analysis was investigated
using a Hitachi S 800 (Hitachi High-tech, Europe GmbH, Paris, France). This method gives
information on the particle size and distribution of latexes under a dried state. Samples
for TEM were prepared by placing a drop of the dispersion directly onto a grid and
drying the latex at room temperature. SEM was performed using a FEI Quanta 250 FEG
microscope (FEI Europe, Amsterdam, The Netherlands) at the “Centre Technologique des
Microstructures” (CTµ) at the University of Lyon (Villeurbanne, France). A drop of the
diluted aqueous suspension of nanoparticles was deposited on a flat steel holder and dried
at room temperature. The sample was finally coated under vacuum by cathodic sputtering
with copper. The samples were observed by SEM under an accelerating voltage of 15 kV.

2.3. Electrokinetic Study

The electrophoretic mobility of latexes was measured using the NanoZS from Malvern
Instruments (Malvern, UK). The experiments were carried out using highly diluted latex
particles in a 10−3 M NaCl concentration at a given pH. The electrophoretic mobilities were
determined as a function of pH at 20 ◦C. Each value was obtained by taking the average of
at least three measurements.

2.4. Cell Culture and Nanoparticle Treatments

Human colon cancer cells (HCT-116, ATCC® CCL-247™), human cervical cancer cells
(HELA, ATCC® CCL-2™) and normal human foreskin fibroblast cells (HFF-1, ATCC®

SCRC-1041™) were used in this study. The cells were sub-cultured in DMEM media, sup-
plemented with 1% L-glutamine, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin
(HyClone, GE Healthcare, Chicago, IL, USA), and maintained in a humidified incubator
(Thermo Scientific, Waltham, MA, USA) with 5% CO2 at 37 ◦C. When the cells achieved
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80% confluence, they were sub-cultured in 96-well plates (1.5 × 104/well). The cells were
then treated with different concentrations of poly (styrene–acrylic acid) latex nanoparticles
(0, 25, 50, 100, 200, 400 µg/mL) for 24 h and 48 h of treatment with 5% CO2 at 37 ◦C.

2.5. MTT Assay

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay is a dye
reduction test, used as an indicative of cell viability. Cell viability was measured by the
ability of the living cells to convert yellow-colored MTT (tetrazolium dye) into a purple-
colored formazan dye that can be detected spectrophotometrically. The exponentially
growing HCT-116 and HELA cells were seeded in 96-well plates at an initial density of
1.5 × 104/well, treated with different concentrations (0, 25, 50, 100, 200, 400 µg/mL) of
newly synthesized poly (styrene-acrylic acid) latex particles, and maintained for 24 h at
37 ◦C in a 5% CO2 incubator (Thermo Scientific, Waltham, MA, USA). The media were
then carefully removed from the wells, and the cells were incubated in 20 µL of MTT
(Sigma-Aldrich, St Louis, MO, USA) at a concentration of 10 mg/mL in phosphate buffer
saline (PBS) for 3 h at 37 ◦C. Formazan dye that crystalized in live cells was solubilized by
100 µL of isopropanol and 0.04% HCl for 1 h at 37 ◦C and measured in a microtiter plate
reader (Tecan Infinite 200 PRO, Geneva, Switzerland) at 570 nm. Cell proliferation was
expressed as a percentage of cell viability of those treated relative to the untreated control.

2.6. Morphological Characterization of Nanoparticle-treated HCT-116 and HELA Cells

The cytomorphological changes of treated HCT-116 and HELA cells and the control
were studied under an optical microscope (TS100F Eclipse, Nikon, Tokyo, Japan). The HCT-
116 cells were treated with different concentrations (0, 25, 50, 100, 200, 400 µg/mL) of newly
synthesized poly (styrene–acrylic acid) latex particles. The treated cells were incubated
for 24 h and 48 h at 37 ◦C in a 5% CO2 incubator (Thermo Scientific, Waltham, MA, USA).
After treatment, the morphological changes were observed under an optical microscope.

2.7. Statistical Analysis

The obtained results were expressed as mean ± standard deviation (SD), and MTT
data were analyzed with a t-test and one-way analysis of variance (ANOVA). The difference
was considered statistically significant at p < 0.05. All experiments (n = 3) were carried out
in triplicate.

3. Results and Discussion
3.1. Characterization of Synthesized Poly (Styrene–Acrylic Acid) Latex Particles

The importance of nanoparticle size in cancer treatment is heavily studied. The size
of the administered particles can affect the biodistribution, in that particles with certain
size intervals are more likely to accumulate in specific organs. Moreover, particle size has a
direct effect on their clearance. Particles with a diameter larger than 200 nm are more likely
to be cleared by the mononuclear phagocytic system [39].

Using QELS, the hydrodynamic size of P(St/AA) particles was measured in 1 mM
Sodium Chloride at 20 ◦C. It was found that the average hydrodynamic particle size is
around 280 nm (+/−10 nm), and the obtained size distribution is reported in Figure 1. The
observed narrow size distributed, reported in Figure 1, shows good monodispersity of the
latex particles.

Additionally, the surface charge of the particles was proven to be around−50 mV. This
high negativity will lead to a long-term stability of the particles in the dispersed medium
due to electrostatic repulsion.
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Figure 1. Hydrodynamic size of P(St/AA) latex particles measured in 1 mM NaCl and at 20 ◦C.

The morphology of the particles was examined using both scanning and transmission
electron microscopy (SEM) and transmission electron microscopy (TEM), as shown in
Figure 2A,B, respectively. It was found that the particles are spherical with a smooth
surface. As can be seen from Figure 2B, the average particle size from TEM is around
275 nm; slightly lower than the hydrodynamic size as generally reported. This difference is
attributed to the difference between the analysis in dispersed media based on Brownian
motion and the measurement of the dried sample by TEM.
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Figure 2. (A) Scanning electron microscopy image of P(St/AA) particles. (B) Transmission electron
microscopy images of P(St/AA) particles.

The zeta potential of P(St/AA) latex particles was determined by measuring the elec-
trophoretic mobility as a function of pH at 20 ◦C. The measured electrophoretic mobilities
are transformed to Smoluchowski’s zeta potential. Figure 3 represents the variation of the
zeta potential as a function of the pH in 1 mM NaCl solution. As expected, the deduced
zeta potential was found to be negative in the pH range between pH 3 and 10, revealing
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that the particles are negatively charged. This surface charge is originated from initiator
fragments (sulfate compounds) and carboxylic acid from the acrylic acid monomer. It is
interesting to notice that the sulfate group is a strong acid and consequently, its disso-
ciation is pH-independent, and particles bearing only such groups exhibit negative and
constant zeta pH 3. The observed slight increase in zeta potential as a function of pH can
be attributed to carboxylic groups from the acrylic acid monomer.
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The absolute zeta potential values above 20 mV revealed a high surface charge and
consequently guaranteed good colloidal stability.

3.2. In Vitro MTT Assay of Synthesized Poly (Styrene–Acrylic Acid) Latex Particles

MTT assays were performed on human colon cancer cells (HCT-116, ATCC® CCL-
247™), cervical cancer cells (HELA, ATCC® CCL-2™) and normal foreskin fibroblast cells
(HFF-1, ATCC® SCRC-1041™). The results showed that, for HCT cells, the 24 h treatment
shows a decrease in cell viability starting from a 25 µg/mL P(St/AA) particle concentration.
The decrease continues with the increasing number of nanoparticles to reach viability
of around 75% at 400 µg/mL. The 48 h treatment follows the same pattern, with higher
efficacy. At 400 µg/mL the cell viability reaches 52% at 400 µg/mL (Figure 4A). Similar
behavior is observed with HELA cells (Figure 4B).

In the case of normal foreskin fibroblast cells HFF-1, for both 24 and 48 h treatment, no
significant effect was observed on cell viability with nanoparticle concentrations of 25 and
50 µg/mL. However, a slight decrease in cell viability can be observed for a nanoparticle
concentration higher than 100 µg/mL. At 400 µg/mL the cell viability reaches 90% at
48 h and around 85% at 24 h treatment (Figure 4C). These results show the efficacy of the
P(St/AA) particles against colorectal and cervical cancer cells, and their safety against the
normal cell.

For better confirmation, images of the three cell cultures were taken by optical mi-
croscopy after treatment with nanoparticles (Figure 5). The increase in the amount of
brown debris with the increase in nanoparticle concentration can be noted. The debris was
mostly observed in the case of HCT-116 colon cancer cells (Figure 5A). It was also observed
in a significant amount with HELA cells (Figure 5B). This debris is present in a minimal
amount in the case of normal cells (Figure 5C). These images confirm the results of the
MTT assay.
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with synthesized poly (styrene–acrylic acid) latex particles at different concentrations. Data are the
means± standard deviation (SD). The t-test was performed on three independent sets of experiments
conducted in triplicate. * p values < 0.05. ** p values < 0.01. *** p values < 0.001.

The selectivity of P(St/AA) particles towards cancer cells can be attributed first
to the characteristics of cancer cells. Tumor cells often possess a unique permeability
that, in addition to the optimal particle size (20–200 nm), can increase the anti-cancer
activity of the particles. In addition, cancer cells usually have a higher receptor expression
compared to normal cells [40]. Therefore, the improved efficacy of P(St/AA) particles
against cancer cell lines can possibly be attributed to: (i) as the fetal bovine serum is present
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in the cell culture medium (DMEM), the possible adsorption of FBS on P(St/AA) [41]
may lead to the screening of particle surface charge density and a biocompatible surface
and (ii) the presence of carboxylic groups induced by acrylic acid monomer can also
induce cell–particle interactions via hydrogen bonding, and consequently improve the
cellular uptake. In general, P(St/AA) particles were proven to be a promising candidate
against cancer cells in terms of toxicity and specificity. Using these particles as a vehicle
for anti-cancer drugs can increase the efficacy of the latter through better targeting and
synergistic effect.
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4. Conclusions

The prepared surfactant-free carboxylic-containing particles were prepared and well
characterized in terms of physical chemistry. These particles are negatively charged and of
high colloidal stability, irrespective of the incubation pH. The effect of particle amount on
cell viability via MTT assays was assessed on human colon cancer cells (HCT-116, ATCC®

CCL-247™), cervical cancer cells (HELA, ATCC® CCL-2™) and normal foreskin fibroblast
cells (HFF-1, ATCC® SCRC-1041™). The obtained results are encouraging, since they
point out that the prepared surfactant-free particles were investigated, and the obtained
results show that P(St/AA) nanoparticles have a marked effect on human colon cancer
cells (HCT-116, ATCC® CCL-247™) and cervical cancer cells (HELA, ATCC® CCL-2™).
The results show that poly (styrene–acrylic acid) latex nanoparticles are effective against
colorectal and cervical cancer cells if treated with appropriate particle concentrations and
for 48 h. Consequently, surfactant-free poly (styrene–acrylic acid) latex indicates that these
submicron polymer particles are (i) safe as a carrier in drug delivery when used at low
concentrations and (ii) are promising for treating or killing cancerous cells.
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