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Despite recent advances in the management of post–cardiac arrest syndrome (PCAS),

the survival rate, without neurologic sequelae after resuscitation, remains very low.

Whole-body ischemia, followed by reperfusion after cardiac arrest (CA), contributes

to PCAS, for which established pharmaceutical interventions are still lacking. It has

been shown that a number of different processes can ultimately lead to neuronal

injury and cell death in the pathology of PCAS, including vasoconstriction, protein

modification, impaired mitochondrial respiration, cell death signaling, inflammation, and

excessive oxidative stress. Recently, the pathophysiological effects of inhaled gases

including nitric oxide (NO), molecular hydrogen (H2), and xenon (Xe) have attracted much

attention. Herein, we summarize recent literature on the application of NO, H2, and

Xe for treating PCAS. Recent basic and clinical research has shown that these gases

have cytoprotective effects against PCAS. Nevertheless, there are likely differences in

the mechanisms by which these gases modulate reperfusion injury after CA. Further

preclinical and clinical studies examining the combinations of standard post-CA care and

inhaled gas treatment to prevent ischemia–reperfusion injury are warranted to improve

outcomes in patients who are being failed by our current therapies.

Keywords: cardiac arrest, cardiopulmonary resuscitation, ischemia-reperfusion injury, neuroprotection, nitric

oxide, xenon, molecular hydrogen (H2), PCAS

INTRODUCTION

Cardiac arrest (CA) is a significant cause of death worldwide;∼356,000 cases occur out-of-hospital
(OHCA) (1), and 200,000 cases occur in-hospital (IHCA) (2) per year in the United States. In
recent years, rates of layperson-initiated cardiopulmonary resuscitation (CPR) and layperson use
of automated external defibrillators have increased over time (1). Despite such recent advances
in social awareness and management of CA, the survival rate without neurologic sequelae after
resuscitation remains very low, representing a public health challenge (1–5). To date, no specific
pharmaceutical drugs are effective against post-CA syndrome (PCAS) (3–5).
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Over the past decades, resuscitation guidelines have
emphasized the lifesaving value of high-quality CPR methods
and rapid defibrillation for achieving the return of spontaneous
circulation (ROSC), as well as treatment strategies such as
hypothermia for post-CA brain injury. In 2002, two randomized
controlled trials (RCTs) showed that therapeutic hypothermia
(TH) significantly improved long-term outcomes in patients
with PCAS who presented with ventricular fibrillation (VF) as
an initial rhythm, drawing attention to the multidisciplinary
treatment approach for those patients (3, 4, 6, 7). However,
a large European RCT conducted by Nielsen et al. in 2013,
including 939 comatose patients after ROSC, showed no
significant benefit of improving the neurological outcomes when
TH cooled down to 33◦C compared to the management at a
near-normal temperature of 36◦C (8). This report questioned
the effectiveness of TH for PCAS, which has been recommended
in the international guidelines for a decade. In light of this
controversy, a large RCT conducted by Bernard et al. in 2016,
including 1,198 OHCA patients, demonstrated that the induction
of mild TH, using a rapid large-volume intravenous cold saline
infusion during CPR, indeed decreased the rate of ROSC in adult
patients with an initial shockable rhythm and did not improve
the survival rate (9). Recent RCT conducted by Lascarrou et al. in
2019 has evaluated targeted temperature management (TTM) for
comatose patients who had been resuscitated from CA with non-
shockable rhythm. They concluded that moderate TH at 33◦C for
24 h led to a higher survival with a favorable neurologic outcome
at 90 days compared to targeted normothermia (10). Also, the
latest American Heart Association guidelines recommended
TTM for comatose adults after ROSC from OHCA and IHCA
with any initial rhythm (11). Despite these evidences, many
uncertainties within the topic of TTM remain, and therefore, the
development of alternative approaches with or without TTM is
an unmet medical need in improving the prognosis of PCAS.

Prolonged ischemia during CA results in a variety of cellular
insults. After achieving ROSC, ischemia–reperfusion injury
(IRI) causes oxidative stress in the reperfused tissues, leading
to exacerbation of the cellular injury (12). Recently, it has
been shown in several scientific publications that nitric oxide
(NO) (13), molecular hydrogen (H2) (14), xenon (Xe) (15),
carbon monoxide (16), argon (17), and hydrogen sulfide (18)
have protective effects against organ injuries related to IRI. In
general, gases are small molecules; therefore, they have excellent
diffusivity and easily permeate the cell membrane, targeting
different organelles including the mitochondria and the nuclei.
Especially, the cytoprotective effects of NO, H2, and Xe have
attracted much attention in PCAS in not only animal models
but also clinical settings. Therefore, the scope of this review is to
describe those selected gases that have transitioned from bench
to bedside and that have been already administered in patients.
Herein, we briefly introduce the pathophysiology of PCAS and
present a review of recent biomedical research developments on
NO, H2, and Xe that have been proposed in recent literature.

POST-CA SYNDROME

PCAS is described as a unique and complex pathophysiological
condition that involves (a) systemic IRI, (b) post-CA brain injury,

and (c) post-CA myocardial dysfunction (3, 4). This condition
is often complicated by a fourth component: the unsolved
condition that caused the CA (3).

All clinical and biological manifestations associated with
PCAS are putatively attributed to the IRI in vital organs
including the brain and heart (3–5). The whole-body IRI with
consequent oxygen debt causes a generalized activation of
the cell-mediated immunologic response, vascular endothelial
damage, hypercoagulability, and immunosuppression (3, 19–
21). It has been observed that sharp increases in various
cytokines occur in the bloodstream as early as 3 h after CA.
Several cytokines have shown greater elevations in non-survivors
than in survivors (20). Accordingly, it has been proposed that
the pathophysiology of PCAS has several similar features as
those of sepsis (19). The causes of post-CA organ damage
may include increased activation of leukocytes, upregulated
cytokines production, intracellular Ca2+ overload, mitochondrial
dysfunction (22), and the generation of excessive reactive oxygen
species (ROS) (23, 24). Excessive ROS production leads to
DNA damage and lipid peroxidation, ultimately resulting in
increased necrosis, apoptosis, and necroptosis (12, 25, 26).
Compelling evidence has shown that mitochondria play a
crucial role as effectors and targets of IRI (27–32). In fact,
mitochondria are considered as one of the most susceptible
subcellular targets of brain ischemia (33–35). A dysfunctional
mitochondrial electron transport chain (METC) can result in an
electron “leakage” phenomenon, reduced free oxygen, and the
utilization of oxygen as an ubiquitous electron donor (substrate)
to produce ROS (36). A body of evidence from preclinical studies
has demonstrated that post-CA normoxic therapy improves
neurological impairment, histological neuronal cell death, and
cerebral metabolism (37–42).

Post-CA brain injury includes anoxic neuronal degeneration
due to global ischemia during CA and/or shortly after
ROSC, as well as delayed neurodegeneration, which can ensue
within hours or several days after CA (43, 44). In a cohort
study of 187 patients who underwent brain autopsy after
CA, histopathologically determined severe hypoxic–ischemic
encephalopathy was observed in patients with bilaterally
absent cortical somatosensory-evoked potentials, gray–white
matter ratio of brain computed tomographic imaging <

1.10, highly malignant electroencephalographic patterns, and
serum neuron-specific enolase concentration > 67 µg/L (45).
In response to the stress due to global ischemia, several
cytokine/chemokines, adhesion molecules, and ROS are released
by different cells, including leukocytes, endothelial cells, and
activated platelets (46). Aberrant ROS generation causes damage
to fatty acids in the cell membrane, leading to increased
membrane permeability and disruption of the blood–brain
barrier (BBB). Cell membrane damage and BBB disruption
result in cell swelling and cerebral edema, which, in turn,
leads to further exacerbation of brain ischemia. Hypoperfusion
during CPR and/or shortly after ROSC leads to a mismatch
between oxygen demand and supply, resulting in secondary
hypoxia (47). The delayed neurodegeneration after ROSC
involves complex and multiple mechanisms including cytotoxic
free radical production, neuronal excitability, activation of
apoptotic signaling pathways, intracellular Ca2+ overflow, and
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mitochondrial dysfunction, among others (22, 28, 30, 48).
Neuronal cell damage in the brain regions that are vulnerable to
ischemia, such as the hippocampus and cerebral cortex, becomes
irreversible within a few hours after the onset of ischemia,
thus requiring early therapeutic interventions. Notably, some
evidence suggests that the brain function after ROSC could be
preserved indirectly, supporting the homeostasis of damaged
organs other than the brain itself (49).

Most cases of PCAS exhibit a widespread left ventricular wall
motion abnormality that is transient and reversible, in cases of
normal or near-normal coronary flow or non-cardiomyopathy.
This phenomenon is called post-CA myocardial stunning, which
has been recently recognized as a leading cause of early death
after a successful ROSC (3). In one study assessing the prevalence
of coronary artery disease and acute coronary artery occlusion
after resuscitation for OHCA presenting with VF as an initial
rhythm, significant coronary artery lesions were found in 71%
(50). Approximately 30% of patients had significant coronary
artery lesions even in the absence of chest pain symptoms
before CA and ST-segment elevation after ROSC (50). A meta-
analysis focusing on studies for OHCA patients pointed out
that acute coronary angiography should be strongly considered
irrespective of electrocardiographic findings, due to the high
prevalence of coronary artery disease in patients without an
obvious non-cardiac etiology (51). Preexisting coronary artery
disease exacerbates the myocardial damage associated with
PCAS. The presence of myocardium stunning prolongs the
recovery of wall motion through IRI (52), which includes
excessive ROS production (53) and Ca2+ overload (54, 55),
resulting in hemodynamics destabilization after ROSC. In
addition, clinical studies have shown that right ventricular
or biventricular dysfunction can contribute to poor outcomes
after ROSC (56, 57). Therefore, hemodynamic stabilization is
particularly important to maintain adequate cerebral blood flow
and prevent late-onset neuronal damage.

RECENT DEVELOPMENTS IN GAS
RESEARCH AS THERAPEUTIC AGENTS
FOR PCAS

In light of the limited clinical evidence supporting TH and
other conventional approaches, recent preclinical studies have
been focusing on alternative strategies that could increase
neuroprotection immediately after ROSC. Significant attention
has been paid to the possible use of inhaled gases such as NO,
H2, and Xe, which have shown cytoprotective effects on organ
injuries related to PCAS (13, 58–62). The main function of the
lungs is to work as a gas exchanger, which allows oxygen to
diffuse from the inhaled gas in the alveolus to the blood. The
blood then carries and delivers oxygen to tissues to assist in the
complex process of oxidative phosphorylation (63). Inhaled gas
is a unique route of drug delivery, distinct from the intravenous
or oral administration of medications, which allows for inhaled
gaseous molecules to pass from the lung directly into the arterial
circulatory system. Alternatively, it is conceivable that circulating
cells are directly exposed to the gases as they pass through the

pulmonary capillaries and may interact with or “pacified,” by a
certain mechanism of each inhaled gas before the cells reach the
reperfused peripheral tissues including the brain and heart.

Nitric Oxide
The biological effects of NO are mediated through the
activation of guanylyl cyclase (GC), followed by cyclic guanosine
monophosphate (cGMP) production (GC pathway) (64). The
biological effects of NO are also mediated through protein S-
nitrosylation (SNO), which is the covalent attachment of NO to
cysteine residues of target proteins (SNO pathway), by cGMP-
independent mechanisms (65, 66). Both of these mechanisms
have been implicated in the bioprotective effects of NO in IR
disorders. Thus, several mechanisms that are responsible for
the beneficial effects of NO on PCAS have been suggested (67).
Potential mechanisms responsible for the beneficial effects of
NO on the outcomes of PACS are shown in Figure 1. It has
been reported that the administration of NO through inhalation
(13, 58, 68, 69) or with an NO-donating compound (70)
improves outcomes after CA in multiple species. Additionally,
in mice lacking the NO synthase 3 gene, the protective effect
of TH after CA/CPR is abolished (71), suggesting that NO
may play an important role in TH. Furthermore, given the
well-established pulmonary vasodilating effects of inhaled NO
(72), it is conceivable that inhaled NO reduces the CA-induced
pulmonary vascular resistance, thus enhancing the right-sided
ventricular function and improving the outcomes of PCAS.
Additionally, NO inhibits leukocyte adhesion (73) and migration
(74), platelet activation (75), and acute inflammation (76). It
has been reported that poor survival after CA/CPR is associated
with leukocyte infiltration in the brain, heart, lung, liver, and
kidney in mice (77, 78). It has also been demonstrated that NO
is transported from the lung to the peripheral tissues through
the hemoglobin, plasma protein SNOs, and nitrite ion generation
and that NO in the periphery is released in the local ischemic
region that exhibits acidosis where acid–base changes produce
various physiological effects (79).

Minamishima et al. reported that NO breathing improves the
outcomes after ROSC in mice by GC-dependent mechanisms
(13). Wild-type mice were subjected to 7.5min of potassium
chloride–induced CA and subsequently resuscitated. One hour
after CPR, mice were extubated and breathed air alone or
air supplemented with 40 ppm NO for 23 h. The post-CA
mice breathing air alone (air group) exhibited a poor 10-day
survival rate (4 of 13 [30.7%]), depressed neurological and left
ventricular function, increased caspase-3 activation, and cytokine
driven inflammation in the brain. NO breathing attenuated
the neurological and cardiac dysfunction 4 days after CA/CPR
and markedly improved the 10-day survival rate (11 of 13
[84.6%]; P = 0.003 vs. air group) (13). They also found that
GC-1α deletion abolished the ability of inhaled NO to inhibit
the production of inflammatory cytokines in the brain and to
improve the neurological function and survival rate after CA
(13). These observations suggest that the protective effects of
inhaled NO on outcomes after ROSC are largely mediated by
GC-1α-dependent mechanisms. Another research group showed
that NO inhalation starting at initiation of CPR until 30min after
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ROSC prevented myocardial injury and improved neurologic
function and survival in rats (68). It was also shown that
NO breathing, starting with the left ventricular assist device–
supported CPR for 5 h, increased the transpulmonary blood
flow by reducing the pulmonary artery pressure and improving
neurological outcomes in pigs (69). Moreover, inhaled NO
improved pulmonary artery relaxation pressure during CPR,
coronary perfusion pressure during the postresuscitation phase,
and short-term survival in a porcine model of CA. Interestingly,
these benefits occurred despite fewer vasopressor doses and
shallower chest compressions (80).

On the other hand, the protein SNO pathway has recently
attracted considerable attention (65, 66, 81). Protein SNOs have
demonstrated the capacity to inhibit mitochondrial proteins such
as complex I in the electron transport chain, cytochrome c
oxidase, and F1F0ATPase (complex V), as well as to modulate
mitochondrial ROS production, influence calcium-dependent
opening of the mitochondrial permeability transition pore,

promote selective importation of mitochondrial proteins, and
stimulate mitochondrial fission (65, 81). Furthermore, SNO
proteins play a crucial role in intracellular Ca2+ handling, protein
trafficking, and regulation of cellular defense against apoptosis
and oxidative stress (65).

S-nitrosoglutathione (GSNO), which is the most abundant
intracellular S-nitrosothiol in human tissue, plays an important
role as a reservoir of NO bioactivity (82). GSNO has potent
antioxidant and anti-inflammatory effects in animal models of
IR (83, 84). In physiological conditions, GSNO and protein
SNOs remain at equilibrium, whereas GSNO reductase (GSNOR)
centrally regulates the reduction of GSNO (Figure 2) (85).
GSNOR is normally expressed in all tissues including the brain,
liver, vascular endothelium, and smooth muscle cells (86). As
GSNOR reduces the intracellular level of protein SNO and NO
bioavailability, the genetic deletion or pharmacological inhibition
of GSNOR has been reported to increase the tissue levels of
the protein SNO, as well as to induce vasodilation and reduce

FIGURE 1 | Potential mechanisms by which inhaled nitric oxide (iNO) improves outcomes in post–cardiac arrest syndrome (PCAS). GC, guanylyl cyclase; GTP,

guanosine triphosphate; cGMP, cyclic guanosine monophosphate; SNO, S-nitrosylation.

FIGURE 2 | Outline of nitric oxide metabolism. (A) Cardiac arrest and resuscitation increase the activity of GSNOR. (B) Genetic or pharmacological inhibition of

GSNOR increases the tissue levels of protein SNO and NO bioavailability. GC, guanylyl cyclase; cGMP, cyclic guanosine monophosphate; SH, cysteine thiols; GSNO,

S-nitrosoglutathione; GSNOR, GSNO reductase; GSSG, glutathione disulfide; NH3, ammonia; NO, nitric oxide; SNO, S-nitrosylation.
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inflammation. Previous animal studies suggest that GSNOR
inhibition may be beneficial for systemic and brain inflammation
as well as for ischemic cardiomyopathy (87–89).

To determine the role of GSNOR in the outcomes after
CA/CPR, Hayashida et al. evaluated the effects of both GSNOR
inhibitors and GSNOR gene deletion on the survival and
neurological outcomes after CA in mice (90). They found
that GSNOR activity increased in the plasma and brain after
CA/CPR and that protein SNO levels in the brain decreased
after 6 h in the placebo group, whereas GSNOR inhibitors,
administered 15min after ROSC, attenuated the upregulated
GSNOR activity and restored protein SNO levels in the brain
(90). Additionally, in wild-type mice after CA/CPR, GSNOR
inhibitors improved the neurological deficit score and survival
rate (81.8 vs. 36.4%, P = 0.031). Similarly, GSNOR-deleted mice
prevented the reduction of the brain protein SNOs, suppressed
neuronal damage, and improved survival. Both GSNOR inhibitor
and GSNOR deletion attenuated the disruption of the BBB after
CA/CPR. In PCAS patients, it was found that plasma GSNOR
activity was higher than that in preoperative cardiac surgery
patients or healthy volunteers (P < 0.0001) (90). In another
publication, they demonstrated that plasma NO consumption in
post-CA patients was 3-fold greater than in healthy volunteers
(91). Overall, these observations suggest that increased GSNOR
activity and the subsequent NO consumption may play an
important pathogenetic role after ROSC and that the inhibition
of GSNOR is a novel molecular target to improve neurological
outcomes after CA/CPR (Figure 2).

Dezfulian et al. conducted a single-center, randomized,
double-blind pilot clinical study to determine the effect of low-
dose (∼9.6mg) intravenous sodium nitrate, a donor of NO, on
OHCA patients (92). The patients were eligible to be enrolled
in this study if the patient was successfully resuscitated from
non-traumatic CA and survived to the intensive care unit
(ICU) admission. Patients who had hypoxemia, hypotension,
or inability to receive intravenous sodium nitrate within 12 h
of onset were excluded. The results showed that there was no
adverse effect on heart rate, systolic blood pressure, or blood
methemoglobin level within 30min of administration in the
sodium nitrate group (n= 7) compared to the control group (n=
4). Plasma protein SNO and cGMP levels, which have protective
effects on IRI (93), were elevated in the sodium nitrate group. The
authors concluded that NO drug can be feasible for patients with
PCAS and that further investigation is warranted (92). The same
investigators are currently conducting a clinical trial to examine
the effects of inhaled NO therapy on PCAS (ClinicalTrials.gov
identifier: NCT04134078)1. Taken together, NO gas inhalation
and NO-related drugs are currently one of the most promising
pharmaceutical treatments for PCAS.

Molecular Hydrogen (H2)
H2 is a colorless, odorless, and non-toxic gas at room
temperature. H2 gas is explosive in air at a wide concentration
range of 4.0–75.0% by volume, whereas in oxygen, the explosive
limit is from 4.0 to 94.0% (94). The ignition point of H2 (527

◦C)

1https://clinicaltrials.gov/ct2/show/NCT04134078.

is higher than that of gasoline (500◦C), and it is difficult to
ignite it spontaneously at standard conditions of pressure. These
lines of evidence suggest that H2 is relatively safe in daily life
when its concentration is < 4% (94, 95). H2 is enzymatically
metabolized as an energy source by providing electrons toMETC.
These enzymes catalyze the reversible redox reaction between
H2 and its constituent two protons and two electrons (96).
The use of inhaled H2 to diminish ischemic injury has been
applied successfully in several rodent models, such as stroke
(14, 97), acute myocardial infarction (MI) (98), and CA (60, 61).
Consequently, clinical pilot studies have shown the beneficial
effects of H2 in patients with acute MI (99) and OHCA (100).

While the mechanism of H2 protection has not been fully
determined, many experts believe that its protective action is
based on antioxidant properties with direct effects on ROS
(101–104). Mitochondrial respiration chain, xanthine oxidase,
uncoupling of NOS, and the family of nicotinamide adenine
dinucleotide phosphate oxidases are significant sources of ROS
(105). ROS includes superoxide anion radicals ( rO2− ), hydrogen
peroxide (H2O2), hydroxyl radical ( rOH), peroxynitrite
(ONOO−), and nitric oxide (NO r). rO2− is putatively the
primary ROS mostly generated by electron leakage from the
METC (106–109). H2O2 is enzymatically converted from
rO2− by superoxide dismutase. rOH is a highly reactive, toxic
ROS, and the major cause of oxidative stress (110); there is no
detoxifying system for rOH in vivo. rOH is generated from
H2O2 or rO2− through the Fenton or Weiss reaction in the
presence of catalytically active metals such as Fe2+ and Cu+

(111). rO2− reacts with rNO to generate ONOO−, which is a
highly active nitrogen species (112). Oxidative stress caused by
H2O2 and rNO induces the production of enzymes involved in
antioxidation and tolerance to protect the cells against oxidative
stress, such as NF-E2–related factor 2 (113). Noteworthy,
research has shown that many antioxidant supplements
could not prevent cancer, MI, and atherosclerosis but rather,
conversely, cause increased mortality (114–116); therefore,
awareness of side effects is very important for developing an
effective and safe antioxidant for ROS-related diseases. An ideal
antioxidant should mitigate excessive oxidative stress without
disturbing the redox homeostasis. In other words, an ideal
molecule would simultaneously reduce strong oxidants such as
rOH, while maintaining signaling molecules such as H2O2 (95).
Preclinical studies have shown that H2 specifically quenches
detrimental ROS such as rOH and ONOO−, while maintaining
other less potent ROS (14). Potential mechanisms responsible
for the beneficial effects of H2 on PACS are shown in Figure 3.
However, more precise mechanisms of the beneficial effects of
H2 remain elusive.

In 2007, Ohsawa et al. found that H2 acts as an antioxidant
by selectively reducing highly cytotoxic ROS, such as rOH and
ONOO− in cultured cells, and that 2–4% ofH2 has cytoprotective
effects against IRI in vivo (14). Furthermore, it was demonstrated
that H2 did not react with stable, lowly active ROS, such as
H2O2, rO2− , and

rNO in vitro (14). In a rat model of MI,
2% H2 inhalation starting 5min after the ligation of a coronary
artery and continued for 60min after reperfusion reduced the
infarct size and inhibited the left ventricular remodeling (98). The
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FIGURE 3 | Potential mechanisms by which hydrogen (H2) inhalation improves

outcomes in post–cardiac arrest syndrome (PCAS). NADPH, nicotinamide

adenine dinucleotide phosphate; rO2− , superoxide anion radicals; H2O2,

hydrogen peroxide; rOH, hydroxyl radical; ONOO−, peroxynitrite; rNO, nitric

oxide; SOD, superoxide dismutase; CAT, catalase.

authors confirmed that H2 diffuses into the myocardial ischemic
tissues in a blood flow–independent manner, suggesting that H2

rapidly dissolved into the blood immediately after the start of
inhalation and has the potential advantage of excellent diffusion
even into ischemic regions (98). Another research group reported
the inhibitory effect of H2 on myocardial IR damage in a dog
model of acute MI (117). Moreover, the safety and efficacy of
inhaled H2 for the prevention of reperfusion injury in patients
with acute MI undergoing percutaneous coronary intervention
have been assessed (99). In a single-center, open-label, pilot study,
inhalation of 1.3% H2 did not reduce the infarct size during
the acute phase after acute MI. However, the left ventricular
stroke volumes assessed by magnetic resonance imaging (MRI)
were improved at 6 months in comparison with 1 week after
MI only in the H2 inhalation group (99). This suggests that H2

inhalation can be safely administered to patients with acute MI
and can suppress adverse left ventricular remodeling at 6 months
after infarction.

Hayashida et al. demonstrated that inhalation of 2% H2

starting at the beginning of CPR and administered for 2 h after
ROSC significantly improves the outcomes in a rat model of CA
with VF (60). H2 inhalation, but not TH, prevented an increase
in the left ventricular end-diastolic pressure and myocardial
injury and suppressed systemic inflammation after ROSC. The
survival rate at 72 h after ROSC was 31% in the control group
and 69% in both the TH and H2 groups and was even higher
at 77% in the combined therapy (inhaled 2% H2 plus TH)
group. Further, the same study group tested the benefit of H2

administered after ROSC under a normoxic condition, which was
considered essential for clinical application (61). In this study,

inhaled 1.3% H2 with 26% O2 was started 5min after ROSC and
continued for 2 h. The survival rates at 7 days were 38% in the
control group, 71% in either the H2- or the TH-alone groups,
and 86% in the combined therapy of H2 plus TH group. At 7
days after CA/CPR, H2 improved the motor activity and special
memory assessed by the Y-maze test. Immunohistochemistry
studies showed that H2 inhalation alone or in combination with
TH inhibited neuronal injury in the hippocampus 7 days after
ROSC. These results indicate that H2 inhalation after ROSC
is as effective as TH for improving the neurological prognosis
in rats with PCAS, whereas combined therapy had an additive
effect (61). Further, Nemeth et al. showed that, in a hypoxic–
ischemic encephalopathy piglet model, treatment with 2.1% H2

for 4 h reduced oxidative stress and improved neural recovery
(118). Moreover, Cole et al. demonstrated the protective effects
of inhaled H2 on neurologic injury after cardiopulmonary bypass
in a porcine model of neonatal circulatory arrest (119).

In a single-center, prospective, open-label, single-arm study,
Tamura et al. demonstrated the safety and feasibility of H2

inhalation after ROSC in comatose patients with a consciousness
level ≤8 points on the Glasgow Coma Scale and a systolic blood
pressure ≥90 mmHg (irrespective of vasopressor use) (100). In
this study, the patients received 2% H2 for 18 h using a ventilator
in combination with TTM of 33–36◦C. The rates of survival with
Cerebral Performance Category (CPC) 1–2 were assessed at 90
days after CA. The rates of survival with CPC 1–2 were assessed
at 90 days after CA. One CA patient with severe pneumonia
and septic shock died of respiratory deterioration 22 h after
the discontinuation of H2 inhalation. An outcome of CPC 1
was achieved in 4 of all 5 eligible patients. The independent
data monitoring committee concluded that no adverse event
was attributable to inhaling hydrogen gas in this study. This
study concluded that inhaled H2 could be feasible and performed
safely in patients with PCAS. Currently, a phase II, multicenter,
prospective, randomized, double-blind, placebo-controlled trial
to verify the efficacy of H2 inhalation in patients with PCAS is
underway (identifier: UMIN000019820) (120).

Xenon
Xe is one of the noble gases, which are the elements of group
18 on the periodic table. It has anesthetic properties, which
were recognized ∼50 years ago (121). It has the lowest blood–
gas partition coefficient among anesthetic gases (122). It has the
advantage of being non-flammable and non-teratogenic, and it
has less cardiovascular effects and no adverse effects on cognitive
function in animal models (123–126). In recent years, there
has been increased interest in noble gases as novel treatments
for ischemic and traumatic brain injury (127–129). Excessive
activation of N-methyl-D-aspartate (NMDA)–type glutamate
receptors is, in general, a key mechanism of excitotoxicity
after brain injury (130, 131). During excitotoxicity, excessive
glutamate release results in the activation of NMDA receptors,
leading to calcium overload inside the neurons and the different
types of neuroglia. This calcium overload triggers prodeath
signaling pathways, ROS production, and mitochondrial damage
(132–137), resulting in cell necrosis, apoptosis, and necroptosis
(138). Additionally, the linkage of NMDA receptor and activation

Frontiers in Medicine | www.frontiersin.org 6 January 2021 | Volume 7 | Article 586229

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hayashida et al. Inhaled Gas Therapy for PCAS

of microglia has been suggested (139, 140). Interestingly,
studies have shown that NMDA-mediated excitotoxicity occurs
unequally in different brain cells because neuroglia such as
astrocytes do not express NMDA receptors in the same way
as neurons do, making astrocytes relatively resistant to NMDA
toxic effects (141, 142). Xe is an antagonist of NMDA-type
glutamate receptors (143), and subsequent animal studies have
reported that Xe has neuroprotective properties in animal
models of stroke (144) and CA (59, 62, 145, 146). Additionally,
Xe exhibits neuroprotection by inhibiting the activation of
microglia and attenuating neural damage in the hippocampus
after experimental subarachnoid hemorrhage (147). In a porcine
model of CA, Fries et al. demonstrated that a single inhalation
of Xe started 1 h after ROSC and continued for 1 h significantly
improved functional recovery and reduced neuronal damage
in a porcine model of CA (146). Furthermore, they showed
that administration of Xe as early as 10min after ROSC (59)
and extending up to 5 h (146) did not result in additional
neuroprotection. Subsequently, they demonstrated that only
the combination of Xe and mild TH provided significant and
persistent improvements in functional recovery in a clinically
relevant, porcine model of CA/CPR. In contrast to mild TH
alone, this approach also preserved cardiac output in the early
postresuscitation period (62). Potential mechanisms responsible
for the beneficial effects of Xe on the outcomes of PACS are shown
in Figure 4.

In 2013, Arola et al. reported that Xe inhalation in
combination with TH can be safely applied to patients with PCAS
(148). Subsequently, Laitio et al. demonstrated that Xe had a
neuroprotective effect on PCAS in a randomized, single-blind
phase 2 clinical trial (149). In this study, 110 patients with PCAS
admitted to the ICUs were randomly assigned to receive either
TH alone (control group) or inhaled Xe in combination with TH
(33◦C) for 24 h (Xe group). The main inclusion criteria were the

FIGURE 4 | Potential mechanisms by which xenon (Xe) inhalation improves

outcomes in post–cardiac arrest syndrome (PCAS). NMDA;

N-methyl-D-aspartate.

presence of a witness, initial electrocardiogram waveform VF or
non-perfused ventricular tachycardia, and ROSC ≤45min after
resuscitation. The primary endpoint was the severity of ischemic
white matter brain injury as evaluated by fractional anisotropy
from diffusion tensor MRI, which was scheduled at 36–52 h after
ROSC. Xe inhalation was started within 4 h after ROSC, and
the mean end-tidal Xe concentration was 48.2%. The fractional
anisotropy was significantly lower in 41.7% of the voxels in the
control group than in the Xe group (i.e., 58.3% of the voxels
did not significantly differ between the groups), indicating that
cerebral white matter and myelin damage were suppressed in
the Xe group. Specifically, the mean global fractional anisotropy
value adjusted for age, sex, and site factors was 3.8% higher
in the Xe group than in the control group (P = 0.006). The
adjusted radial diffusivity value was 3.9% lower in the Xe group
than in the control group (P = 0.03). There were no significant
differences in the secondary endpoints of 6-month survival and
brain function outcomes between the two groups (27.8% in
the Xe group vs. 34.5% in the control group; adjusted hazard
ratio, 0.49, P = 0.053) (149). Given that myelin is required
for the normal functioning of the central nervous system and
its damage is related to neurocognitive dysfunction (150), this
study suggested that Xe may protect the cerebral white matter
by preventing brain myelin injury after ROSC (149). Although
there was no significant difference in survival in this study, Xe
can be potentially a novel treatment for PCAS. Subsequently,
Arola et al. demonstrated that among comatose survivors of
OHCA, in comparison with TH alone, inhaled Xe combined
with TH resulted in significantly reduced release of troponin-T,
which suggests that Xe results in less severe myocardial injury,
supporting its cardioprotective effects (151). These two recent
clinical trials suggest the translational potential of Xe inhalation
for the management of PCAS (149, 151). These studies have
demonstrated that Xe inhalation in combination with TH is
safe and feasible. Currently, phase III, multicenter, prospective,
randomized, single-blind, placebo-controlled trial to evaluate
the efficacy of Xe inhalation on neurofunctional outcomes after
OHCA is underway (identifier: NCT03176186)2.

Xe has many properties as an ideal general anesthetic, and
because the noble gases emit light when an electric field is applied,
they are often used as gas lasers in medical applications such as
surgery (152). However, Xe has not been widely used in clinical
practice as it is rare and relatively expensive (152). Therefore, as a
relatively large amount of gas is expected to be used for inhalation
therapy for PCAS, the feasibility in terms of the cost has been
regarded as a potential problem. Hence, further investigations for
the clinical application of Xe will be required.

Other Considerations
NO is a toxic molecule (153) synthesized by NO synthases, which
include three isoforms: neuronal NOS (NOS1), inducible NOS
(NOS2), and endothelial NOS (NOS3) (154). In contrast to NO,
mammalian cells do not have to produce intracellular Xe and
H2. Although Xe is non-toxic, many of its compounds are toxic
because of their strong oxidative properties. Xe readily penetrates
the BBB, offering rapid onset of action, and titration of dose

2https://clinicaltrials.gov/ct2/show/NCT03176186.
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TABLE 1 | Summary table of the past and current clinical trials on inhaled gases as therapies for PCAS (as of 1st, Dec, 2020).

Intervention Study title Status Locations Identifier

Nitric oxide Improving outcomes in cardiac arrest with inhaled nitric oxide Recruiting USA NCT041340781

Molecular hydrogen Efficacy of inhaled hydrogen on neurological outcome following

brain ischemia during post-cardiac arrest care: HYBRID II trial

(Phase II)

Recruiting Japan UMIN000019820 (120)

Xenon Xenon for neuroprotection during post-cardiac arrest syndrome in

comatose survivors of an out of hospital cardiac arrest

(XePOHCAS)

Recruiting USA NCT031761862

Molecular hydrogen The effect and safety of hydrogen inhalation on outcome following

brain ischemia during post cardiac arrest care: HYBRID study

Completed Japan UMIN000012381 (100)

Xenon Effect of xenon and therapeutic hypothermia, on the brain and on

neurological outcome following brain ischemia in cardiac arrest

patients (Xe-hypotheca)

Completed Finland NCT00879892 (148, 149)

Nitric oxide Inhaled nitric oxide after out-of-hospital cardiac arrest Terminateda USA NCT03079102

aThe study has stopped early because of slow enrollment and planned change of institution by a principal investigator and will not start again.

and response are rapid because of a low blood–gas partition
coefficient (122). H2 has no known cytotoxicity even at high
concentrations (155, 156).

As the primary target of NO, heme-based proteins play a
central role. Integrated approaches revealed the physiological
significance of NO on mitochondrial cytochrome c oxidase,
a central mediator of mitochondrial respiration (157). Xe
exerts neuroprotective effects by acting as an antagonist of the
excitotoxic NMDA receptors (143). Excessive inflow of calcium
mediated by NMDA receptors triggers complex biochemical
cascades that ultimately lead to neuronal cell death (134).
Although the molecular mechanisms of H2 have not yet been
clarified, it has been shown that H2 does not reduce the
oxidized heme of cytochrome c (14). In addition, a combined
inhalation of NO plus H2 during IRI reduced the infarct size,
maintained cardiac function, and reduced the generation of
myocardial nitrotyrosine, which is associated with NO inhalation
(158). Therefore, the primary targets of these gases seem to
differ from different standpoints. Moreover, the optimal timing,
concentration, and therapeutic window may differ among these
gases. The exact underpinning mechanisms of these therapies
remain to be unveiled in future studies. Elucidation of the
mechanism of action will accelerate the translation into clinical.
Summary of the past and current clinical trials investigating the
effects of gases on PCAS are shown in Table 1. Because these
gases are colorless, odorless, and difficult to check visually, they
require a pressure regulator and flowmeter and must be handled
under the local high-pressure gas safety control act, in clinical
translation. It is important to clarify and establish the safety,
toxicity, flammability, operability, and cost, individually, for the
clinical application. However, we would like to emphasize that
gas inhalation therapy may not require extensive equipment
or advanced medical technology and is relatively easy to be

introduced in a large number of facilities. In addition, dedicated
gas cylinders can be installed in public areas or on ambulances
to provide earlier therapeutic interventions during CPR or
immediately after ROSC.

CONCLUSION

We reviewed the developments in research on basic and
clinical applications of NO, H2, and Xe for PCAS. The
discussed studies provide insights on new frontiers regarding
the fact that gas therapy may bring promising improvements
in the prognosis of patients after ROSC. Nevertheless, there
are substantial differences in the mechanisms by which these
gases modulate IRI after ROSC. Further preclinical and clinical
studies examining the combinations of standard post-CA care
plus inhaled gas treatment to prevent IRI are warranted to
improve outcomes in patients who are being failed by our
current therapies.
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