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Abstract: A lightweight image encryption algorithm is presented based on chaos induction via a
5-dimensional hyperjerk oscillator (5DHO) network. First, the dynamics of our 5DHO network
is investigated and shown to exhibit up to five coexisting hidden attractors in the state space that
depend exclusively on the system’s initial values. Further, a simple implementation of the circuit was
used to validate its ability to exhibit chaotic dynamical properties. Second, an Arduino UNO platform
is used to confirm the usability of our oscillator in embedded system implementation. Finally, an
efficient image encryption application is executed using the proposed chaotic networks based on the
use of permutation-substitution sequences. The superior qualities of the proposed strategy are traced
to the dynamic set of keys used in the substitution process which heralds the generation of the final
ciphered image. Based on the average results obtained from the entropy analysis (7.9976), NPCR
values (99.62), UACI tests (33.69) and encryption execution time for 512 × 512 images (0.1141 s), the
proposed algorithm is adjudged to be fast and robust to differential and statistical attacks relative to
similar approaches.

Keywords: hyperjerk oscillator; embedded systems; multiple coexisting attractors; information
security; image encryption
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1. Introduction

A lot of development in internet and multimedia technology has been witnessed over the past
decade. This has facilitated seamless exchange and transfer of confidential information. Moreover, the
confidentiality, authentication and integrity (CIA) triad is widely cited as the cornerstone of information
security. Among others, it provides the effective copyright protection and confidentiality needed in
business, entertainment, healthcare, military, etc. communication. Encryption of sensitive data is one
of the most important information security strategies that is necessary for confidentiality. Available
encryption and decryption algorithms used to forestall malicious attacks from unauthorised parties
include DES, 3-DES, AES, IDEA, RSA, etc. [1–3]. However, due to data capacity resource demands and
high correlation among pixels in image files, these standard algorithms withered in providing efficient
protection for images [4]. Moreover, although widely used in cryptanalysis, computer science and
electrical engineering, pseudo random number generators (PRNG) are less effective in cryptography.
As a solution, chaos-based protocols have continued to gain traction in mitigating image security
issues [5–11].

Many studies have focused on ergodicity, deterministic dynamics, unpredictable behaviors,
non-linear transformation, sensitivity dependence, etc. of the system. Research efforts have explored
the use of striking periodic attractors, chaotic attractors or hyperchaotic attractors, antimonotonicity,
period doubling, hysteresis, coexisting bifurcations, etc. in investigating the dynamic behaviours
of systems and their possible applications [12–17]. Interestingly, some of these characteristics have
been found useful in image encryption [6,18]. In [19], Shuqin and collaborators presented a novel
encryption algorithm based on chaos and SHA-256 whose experimental results show that it was
efficient and reliable. This was further enhanced in [12], wherein Quing et al. proposed an S-box design
algorithm based on a new compound chaotic system. In their effort, in [20], Biham et al. demonstrated
the exploitation of the weakness inherent to piecewise linearity of the tent map and its limitation to
75 random bits to violate the intensity of the system using a pair of known and chosen plain text
attacks. Similarly, in [21], Baptista suggested the use of a chaotic attractor, plaintext and logistic map
for image encryption.

Due largely to its relatively cheap pricing and utility, a large community has arisen around the
Arduino open-source computer hardware and software platforms and through them hundreds of free
scripts for different projects are easily available. Mauricio et al., presented a communication system
based on chaotic logistic maps and an experimental realization of it using Arduino board. Therein, the
input message was moderated using a Delta modulator and encrypted using a logistic map. The key
signal is also encrypted using the same logistic map but with different initial conditions. On the receiver
side, the binary-coded message is decrypted using the encrypted key signal that is sent through a
communication channel. In [22], Adolfo and collaborators designed, implemented and evaluated a
compact two axes solar tracking system. The system incorporates a video processing-based sensor
connected to an Arduino board that computes a sun-positioning algorithm. The main advantage of
such systems is the elimination of expensive computing systems where closed loop solar tracking is
facilitated via simple, low cost networks with minimal configuration. The assessment of their results
indicates the system’s efficiency relative to some existing approaches. Arduino have also been used to
handle sensor- and vision-based image processing techniques [23,24]. In [24], Nikhil et al. studied a
traffic monitoring system for road vehicle traffic. The study in [25] is aimed at minimising human
support and avoiding accidents on the roads.

Motivated by the applications of Arduino networks highlighted above, we consider its deployment
in the embedded system implementation [26] of our 5DHO chaos generation network. The contributions
of our study are enunciated in the sequel.

Our Contributions

In this study, we present a multidimensional oscillator (5DHO) network for use as a chaos
generator and cubic nonlinearity to the network in [27]. The choice of the proposed system utilises
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semiconductor diodes rather than analogue multipliers. Specifically, we utilise a network of diode
operational amplifiers and resistors to derive a piecewise linear (PWL) approximation of the cubic
and quadratic functions needed for chaotic non-linearity [28]. Therefore, low cost, convenient circuits
whose output is the square or cube of their input are used to realise 5-D hyperjerk characteristics.
Additionally, an Arduino UNO board is used to establish the dynamics of our oscillator and its usability
in embedded systems technologies.

Finally, a lightweight encryption algorithm is designed based on permutation-substitution boxes
and the sequences of the 5DHO. Our strategy offers a dynamic set of keys for use in generating the
ciphered image.

The remainder of paper is structured as follows: Section 2 introduces the dynamics of the
proposed multidimensional hyperjerk oscillator. Analogue and embedded systems implementations
of the proposed network are presented in Section 3. Following that, Section 4 presents our proposed
encryption and decryption procedures as well as their performance analysis are also reported.

2. Dynamics of the Proposed Multidimensional Hyperjerk Oscillator

2.1. Mathematical Formulation of Proposed 5-D Hyperjerk Oscillator Network

The mathematical model of the proposed 5-D hyperjerk system is formalised in the set of
differential equations in (1). 

.
x1 = x2
.
x2 = x3
.
x3 = x4
.
x4 = bx5
.
x5 = −a0x5 − a1x3 − a2x2 − a3x1 − y

(1)

where y = a4x4(x4 − l1)(x4 − l2) = a4l1l2x4 − a4(l1 + l2)x2
4 + a4x3

4 is the nonlinear function containing
both cubic and quadratic nonlinearities. In the present study, these nonlinearities are implemented
without any analog multiplier. xi(i = 1, 2, 3, 4, 5) are state variables and and a0 ∈ [0.8; 2],a1 ∈ [2.7; 6],
a2 ∈ [1; 5], a3 ∈ [0.1; 1.5],a4 ∈ [0.1; 1.5],b ∈ [0.1; 1.5],l1 ∈ [0; 3],l2 ∈ [0; 3] are positively valued constants.

The fourth order Runge-Kutta algorithm with a trifling integration step to will be used analyse the
behaviour of the 5-D hyperjerk system in (1) through Hopf bifurcation diagrams, Lyapunov exponents
and phase space trajectories.

2.2. Fixed Point and Stability

Since the unique equilibrium (origin) point O(0, 0, 0, 0, 0) of the proposed model in (1) is the
solution of the nonlinear system:

.
x1 =

.
x2 =

.
x3 =

.
x4 =

.
x5 = 0, the stability of the equilibrium can be

described by the following characteristic equation:

λ5 + a0λ
4 + a4bl1l2λ3 + a1bλ2 + a2bλ+ a3b = 0 (2)

As the real parts of the correlated eigen values are always negatively valued; the
equilibrium is stable for the entire region of system parameters. For instance, if we set
b = 3; a0 = 1.5; a1= 3; a2= 2; a3= 1; a4= 1; l1= 1; l2= 2.6 then its eigen values can be calculated as:

λ1 = − 0.1194 + 2.5677i; λ2 = − 0.1194 − 2.5677i; λ3 = − 0.8425 + 0.0000i
λ4 = − 0.2094 + 0.7036i; λ5 = − 0.2094 − 0.7036i

(3)

It is a general conclusion that since the equilibrium point is always stable, it can be predicted that a
point attractor coexists with a strange attractor [27,28]. This is further clarified later in the next section.
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2.3. Bifurcations and Multistability

The bifurcations of an oscillator with respect to parameter a2 can be investigated when parameters
values are assigned as (a 0 , a1 , a3 , a4 , b , l1 , l2) = (1.5 , 2.6 , 1 , 0.6, 3 , 1 , 2.6). Figure 1a shows that
the oscillator studied in our study exhibits the reverse period doubling paths to chaos with the primary
value (6, 0, 0, 0, 0). It is patent that the oscillator experiences antimonotonicity behaviour. Lyapunov
spectrum [29–32] is also used to attest the chaotic dynamics of the system (Figure 1b). Figure 2 provides
four views of the 5-D Hyperjerk chaotic attractor where the stable equilibrium point is shown as a
red dot.
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10 

Green 23.405 a 3.454 
 Downward (4,0,0,0,0,0) 

Red 23.405 a 3.454 
 Downward (4.4,0,0,0,0,0) 

Blue 23.405 a 3.454 
 Upward (5.2,0,0,0,0,0) 

Black 23.405 a 3.454 
 Downward (0.4,0,0,0,0,0) 

Cyan 23.405 a 3.454 
 Downward  (1.2,0,0,0,0) 

2a

Figure 1. Dynamics of the 5-D oscillator for conditions
(a 0 , a1 , a3 , a4 , b , l1 , l2) = (1.5 , 2.6 , 1 , 0.6, 3 , 1 , 2.6). (a) bifurcation diagram and
(b) Lyapunov spectrum.
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Figure 2. Four views of the 5D Hyperjerk attractor with stable equilibrium point (shown as a red dot)
with various projections: (a) x1 − x2, (b) x3 − x1, (c) x2 − x4, (d) x3 − x5.
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Furthermore, coexisting bifurcation diagrams are used to illustrate the phenomenon of
multistability in the system (1) (see Figures 3 and 4) where we point out that these graphs are
the plots of the local maximums of the variable x1 against parameter a2.Sensors 2019, 11, x FOR PEER REVIEW 6 of 24 
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While details of strategies used are presented in Table 1, it is evident from these graphics that up
to four attractors can coexist (Figures 5 and 6). Table 2 provides initial solution and system parameters
in each case. Offset boosting is another striking behaviour observed in the system presented in (1). For
illustration, (1) is rewritten by replacing the state x1 with x1+k as presented in (4).

.
x1 = x2
.
x2 = x3
.
x3 = x4
.
x4 = bx5
.
x5 = −a0x5 − a1x3 − a2x2 − a3(x1 + k) − a4x4(x4 − l1)(x4 − l2)

(4)
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Table 1. Strategies and parameter settings used to obtain coexisting bifurcations (as indicated in
the table).

Figure Number Graph Colour Parameter Range Sweeping
Direction

Initial State
(x1(0),x2(0),x3(0),x4(0),x5(0))

7

Green 2 ≤ a2 ≤ 4 Downward (4,0,0,0,0,0)

Red 2 ≤ a2 ≤ 4 Downward (4.4,0,0,0,0,0)

Blue 3.212 ≤ a2 ≤ 4 Upward (5.2,0,0,0,0,0)

Black 2 ≤ a2 ≤ 4 Downward (0.4,0,0,0,0,0)

10

Green 3.405 ≤ a2 ≤ 3.454 Downward (4,0,0,0,0,0)

Red 3.405 ≤ a2 ≤ 3.454 Downward (4.4,0,0,0,0,0)

Blue 3.405 ≤ a2 ≤ 3.454 Upward (5.2,0,0,0,0,0)

Black 3.405 ≤ a2 ≤ 3.454 Downward (0.4,0,0,0,0,0)

Cyan 3.405 ≤ a2 ≤ 3.454 Downward (1.2,0,0,0,0)Sensors 2019, 11, x FOR PEER REVIEW 7 of 24 
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Figure 6. Illustration of coexistence of strange atrractor with limit cycles for different initial conditions:
(a) (0.4,0,0,0,0) and (1.2,0,0,0,0); (b) (5.2,0,0,0,0); (c) (4,0,0,0,0); (d) (4.4,0,0,0,0).

Table 2. Numerical initial conditions for multistability analysis for selected parameters
(a 0 , a1, a3 , a4 , b , l1 , l2) = (1.5 , 3 , 1 , 1 , 3 , 1 , 2.6).

Figure Number Type of Coexistence Control Parameter (a2) Numerical Initial Conditions

8 One cycle and a chaotic
attractor with fixed point

2.9 (4,0,0,0,0,0), (6,0,0,0,0,0)

11 Three different limit
cycles and a chaotic
attractor with fixed point

3.454 (a) (0.4,0,0,0,0), (1.2,0,0,0,0);
(b) (5.2,0,0,0,0);
(c) (4,0,0,0,0);
(d) (4.4,0,0,0,0)

When switching parameter k, the chaotic signal x1 can be transferred from a bipolar signal to a
unipolar signal as illustrated in Figure 7.
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3. Experimental Analysis of Proposed Oscillator

3.1. Analogue Simulation Results on the Designed Circuit Using Spice

This section highlights the intricacies in the design of our proposed 5-D hyperjerk oscillator and
its simulation. We start by recalling that this system exhibits both cubic and quadratic polynomials.
The circuit in Figure 8 produces an output that is the square of its input, while the one in Figure 9
implements a PWL approximation of a circuit whose output is the cube of its input. These circuits are
convenient for low-cost analogue realization of our proposed network that is depicted in Figure 10.
Here, state variables xi (i = 1 . . . 5) of the system in (1) are associated with the voltages vi (i = 1 . . . 5)
across the capacitors Ci (i = 1 . . . 5) respectively. By linking the state variable xi (i = 1 . . . 5) with the
voltages vi (i = 1 . . . 5) across the capacitors Ci (i = 1 . . . 5), we derive circuit equations in the form
presented in (5). 

C1
dυ1
dt = υ2

R

C2
dυ2
dt = υ3

R

C3
dυ3
dt = υ4

R

C4
dυ4
dt = υ5

Rb

C5
dυ4
dt = − υ5

Ra0
−

υ3
Ra1
−

υ2
Ra2
−

υ1
Ra3
−
υ4
R1
−
υ2

4
R2

+
υ3

4
R3

(5)
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Resistance 6.66 KΩ  

  
Resistance 3.33 KΩ  

 
Resistance 3.5 KΩ  

 
Resistance 10 KΩ  

 
Resistance 3.33 KΩ  

 
Resistance 3.85 KΩ  

 
Resistance 277.77 KΩ  

 
Resistance 0.1 KΩ  

R

0aR

1aR

2aR

3aR

bR

1R

2R

3R

Figure 9. Circuit design for implementation of proposed 5-D hyperjerk system.
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Similarly, by rescaling time and other variables: te = tRC; υi = xinVT (i = 1, 2, 3) and subject to
adjustments in parameter values in (6), the system in (5) can be seen to be identical to the one in (1).

a0 =
R

Ra0

; a1 =
R

Ra1

; a2 =
R

Ra2

; a3 =
R

Ra3

; a4l1l2 =
R
R1

; a4(l1 + l2) =
R
R2

; a4 =
R
R3

; (6)

Pspice simulation is used to validate the theoretical expectations of the circuit in Figure 9 in terms
of coexistence of hidden attractors. Ra2 is used as the main control resistor and the rest of circuit
components are fixed as mentioned in Table 3. The synergy between the theoretical results (i.e., in
Figures 2 and 5) and the Pspice simulation results (in Figures 11 and 12) shows the feasibility of the
suggested chaotic system with hidden attractors based on the stated electronic components whose
evidence of presence of coexisting hidden chaotic attractors are presented in Figure 13.

Table 3. Component values used in circuit simulation analysis.

Components Property Rating

R Resistance 10 kΩ

Ra0 Resistance 6.66 kΩ

Ra1 Resistance 3.33 kΩ

Ra2 Resistance 3.5 kΩ

Ra3 Resistance 10 kΩ

Rb Resistance 3.33 kΩ

R1 Resistance 3.85 kΩ

R2 Resistance 277.77 kΩ

R3 Resistance 0.1 kΩ

Ci(i = 1, . . . 5) Capacitance 10 ηF

Ui(i = 1, . . . 5) Operational Amplifier TL084
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Figure 13. Evidence of presence of coexistence of hidden chaotic attractor with a hidden limit cycle
as observed via Pspice simulation of the network for component values listed in Table 3 and initial
conditions are set at (1, 1, 1, 1, 1) and (10, 0, 0, 0, 0).

3.2. Arduino Based Implementation of Proposed Oscillator

While Field Programmable Gate Arrays (FPGA) are the popular option for providing
configurable circuits practical implementation of embedded systems using chaos [33], recently some
microcontroller-based chaotic systems have been considered due to their equally flexible and cheap
pricing for different programming applications [34–41]. In this study, we use an Arduino UNO board
platform to compute and visualise the solutions (for example, using an oscilloscope) of our chaos
generator. The Arduino board used in our study is presented in Figure 14 and further details pertaining
to its implementation are outlined in the sequel.

Step 1: Set pins 1 and 2 as outputs. The solutions of our chaotic oscillator will be written here.
Step 2: Define the discrete chaotic oscillator, its parameters and initial conditions under an infinite loop.
Step 3: Write the solutions of the discrete chaotic oscillator on Arduino pins. Pin 1 is activated when
x2 > 0.5 and pin 2 is activated when x1 > 1.
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The above algorithm is executed using the open-source platform Arduino 1.8.9 and the
experimental result (in Figure 15) is recovered via traces on an oscilloscope connected at pin 2
with scales set at X = 2 V/div and Y = 500 ms/div.
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Meanwhile, by using “millis()”function on the Arduino platform, the experimental time can be
printed. Here, a readout of 0.064 ms for a 16 MHz crystal oscillator (the frequency of the quartz
mounted on the card) using only 10% of the Arduino memory is obtained.

4. Application of Proposed Network as a Cryptosystem

4.1. Chaos-Based Image Encryption Using Proposed 5-D Hyperjerk Oscillator Network

Employing a permutation-substitution procedure, we propose the use of our 5-D hyperjerk chaos
generator for image encryption, which requires refinements to our 5-D hyperjerk chaos generator as
presented in (7): 

.
x1 = x2mod1
.
x2 = x3mod1
.
x3 = x4mod1
.
x4 = bx5mod1
.
x5 = (−a0x5 − a1x3 − a2x2 − a3x1 − a4x4(x4 − l1)(x4 − l2))mod1

(7)

This proposed scheme is outlined in Figure 16 and its execution is realized via the following steps
where we use a plain image (P) and key parameters (x1, x2, x3, x4, x5, a0, a1, a2, a3, a4, b, l1, l2) for
iterating 5-D hyperjerk chaos generator as input and the cipher-image (c) as output.

Step 1: Iterate the 5-D hyperjerk chaos generator for h*w times, where h*w is the size of the plain
image P, which produces output is five sequences x1, x2, x3, x4, and x5 as output.
Step 2: Using the first sequence x1, construct a permutation sequence of length h with h distinct
elements from 1 to h as follows:

− Order the elements of first h elements and discard the first 10 elements in ascending order.

Eh= order (x1(11:h+10))
− Obtain the index of each element of the sequence Eh as a sequence x1(11:h+10).

Ph=index (Eh in x1(11:h+10))
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Step 3: Using the first sequence x2, construct a permutation sequence of length w with distinct elements
from 1 to w.

− Order the elements of first w elements and discard the first 10 elements in ascending order.

Ew= order (x2(11:w+10))
− Obtain the index of each element of the sequence Ew as a sequence x2(11:h+10).

Pw=index (Ew in x2(11:w+10))

Step 4: Using the first sequence the third and fourth sequences x3 and x4, construct the substitution
sequence of length 256, which have 256 distinct elements in the range 0 to 255

− Y=x3(11:266) + x4(11:266)
− Order the elements of Y sequence in ascending order.

Ey= order(Y)
− Obtain the index of each element of the sequence Ey as a sequence Y.

Sb=index (Ey in Y)

Step 5: Using the fifth sequence X5, construct the key matrix K with size h×w.

K = f ix
(
X5× 1012

)
mod256

Step 6: Permute the plain image P using the permutation sequences Ph and Pw (which originate from
Step 2 and Step 3, respectively), each targeting the rows and columns.

for i=1 to h
for j=1 to w

Per(i,j)=P(Ph(i),Pw(j));
end

end

Step 7: Substitute the permutated image ‘Per’ (in Step 6) using Sb substitution sequence (in Step 4).

Sub=zeros(a,b);
for i=1 to h

for j=1 to w
Sub (i,j)=Sb(Per(i,j)+1);

end
end

Step 8: Perform bitwise XOR operation on substituted image ‘Sub’ (in Step 7) using key matrix K (in
Step 5). C=bitxor(Sub,K)
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x1, x2, x3, x4, x5 of the 5-D hyperjerk chaotic generator.

4.2. Performance Tests

To test the performances of our encryption scheme, we set system parameters and initial values
within the window of coexisting attractors as (a0, a1, a2, a3, a4, b, I1, I2) =(1.5, 3, 3.454, 1, 1, 3, 1, 2.6)
respectively (x1, x2, x3, x4, x5) = (0.7752,0.6733,0.9534,0.8735,0.8736). Further, we simulated
implementation of the proposed scheme using 256×256 sized versions of the Boats, Bridge, and
Clock greyscale images in Figure 17a–c on an Intel® coreTM i5-2450M and 6 GB RAM workstation with
a preinstalled MATLAB R2016b software. As seen from the outcome in Figure 17d–f, the encrypted
images are visually imperceptible. However, the simple visual inspection remains insufficient to
judge the quality of a good encryption scheme. It is well known that many encryption schemes
have been successfully violated using simple statistical and differential analysis are widely used to
successfully validate the efficiency of encryption schemes [42–54]. The robustness of our proposed
technique is similarly established via these simple, yet important tests as presented in the remainder of
this subsection.
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4.2.1. Statistical Tests

Correlation of Adjacent Pixels

In sensitivity analysis of encryption keys, quantitative analyses are undertaken using the correlation
coefficient [40] metric. In such analysis, the neighbouring pixels of a plain image should be highly
correlated with correlation coefficient close to unity (i.e., 1) in each direction. Furthermore, an ideal
encryption scheme must produce cipher image with no correlation between neighboring pixels (i.e.,
correlation coefficient should be close to 0 in each direction). For this purpose, correlation coefficient is
computed using the definition in (8).

rxy =

M∑
i=1

(xi − x)(yi − y)√
M∑

i=1
(xi − x)2 M∑

i=1
(yi − y)2

(8)

where a pixel r is defined by r(xi,yi) and M is the total number of pixels in the cipher image. Table 4
provides the correlation coefficients for the plain and encrypted versions of images in Figure 17 and
from this table it is apparent that the input and encrypted images are highly correlated since correlation
coefficient of the encrypted images are very close to 0 in each direction. Consequently, we conclude
that the proposed encryption algorithm produces efficiently correlated ciphered images.

Table 4. Correlation coefficients for the plain image and the related encrypted version.

Correlation Coefficients

Image Plain Image Cipher Version

Direction Diagonal Horizontal Vertical Diagonal Horizontal Vertical

[10] 0.9466 0.9839 0.9526 −0.0474 −0.033 0.0068
[11] 0.9116 0.9282 0.9644 −0.0319 0.0245 0.0295
[55] 0.8888 0.9567 0.9239 −0.00012 0.0006 −0.0052

Proposed method
Boats 0.9452 0.9266 0.8855 −0.0007 0.0007 −0.0015

Bridge 0.9203 0.9403 0.8866 −0.0027 0.0008 −0.001
Clock 0.9767 0.9578 0.9426 −0.0001 0.0007 −0.0023



Sensors 2020, 20, 83 16 of 23

Histogram Tests

An image histogram is the representation of each pixel in the image with respect to its intensity
value [55–57]. This analysis is very useful in deciding the statistical strength of an encryption algorithm.
As a representation of incomprehensible information, the histogram of a cipher image is uniformly
distributed, while the non-uniform nature of a pristine un-enciphered image depicts the details therein.
Figure 18 presents the histograms of the plain and ciphered images used in our experiment, outcomes of
which further establish the performance of our proposed scheme in resisting statistical manipulations
to the content of the encrypted image.
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Figure 18. Histograms of original and encrypted images in Figure 17.

Information Entropy

Another statistical metric that is widely used to assess the capability of a cipher scheme to resist
statistical attacks is the measure of its information entropy. The distribution (entropy) of each pixel xi

with the probability p(xi) in a given image can be defined as:

E(X) = −
2L
−1∑

i=1

p(xi) log2(p(xi)) (9)

Given that a greyscale image has 256 possible values, the ideal entropy value should be close to
8. Table 5 provides information entropy values for the encrypted images in comparison with values
obtained via previous studies as indicated in the table.
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Table 5. Assessment of information entropy for encrypted image.

Encryption Algorithm Entropy

[10] Greyscale flower image 7.9969

[11] Cameraman image 7.9455

Proposed method

Boats 7.9976

Bridge 7.9974

Clock 7.9975

4.2.2. Differential Test: NPCR and UACI

In addition to performing well in the statistical tests reported above, a well design encryption
algorithm should be very sensitive to slight changes in the composition of the plain image [51–54].
This sensitivity can be evaluated by computing the Number of Pixels Change Rate (NPCR) and the
Unified Average Changing Intensity (UACI) which are defined in (10) and (11) respectively.

NPCR =

∑
i; j

D(i, j)

w× h
× 100% , D(i, j) =

{
0 i f IC1(i, j) = IC2(i, j)
1 i f IC1(i, j) , IC2(i, j)

(10)

UACI =
100

w× h

∑w

1

∑h

1

∣∣∣IC1(i, j) − IC2(i, j)
∣∣∣

255
(11)

where IC1 and IC2 are two encrypted images obtained from plain images different in just one pixel,
w and h are the dimensions of the images. For an image to be uniformly distributed, the minimum
expected values of NPCR and UACI should satisfy (12) and (13) respectively.

NPCRmax = (1− 28) × 100 = 99.609375% (12)

UACImax =

28
−1∑

j=1
j( j + 1)

28(28 − 1)
× 100 = 33.46354% (13)

The results in Table 6 validate the sensitivity and ability of images obtained via proposed scheme
to withstand differential attacks aimed at violating their integrity.

Table 6. Comparative analysis of UACI and NPCR values with respect to encrypted image.

Encryption Algorithm NPCR (%) UACI (%)

[10] Grey flower image 99.15 33.21

[11] Cameraman image 99.34 33.61

Proposed method

Boats 99.62 33.69

Bridge 99.60 33.24

Clock 99.64 35.26

4.2.3. Key Sensitivity Test

An efficient and robust encryption algorithm must show sensitivity to even the slightest changes
in the composition of its secret key [38–41,55–57]. This is especially important in resisting brute force
attacks. To evaluate the key sensitivity of our proposed scheme, the encrypted image is decrypted
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using four slightly different test keys. The results presented in Figure 19 show the impact of slight
modifications to key parameters in yielding erroneous outcomes, i.e., ensuring the encrypted image is
inaccessible unless with the exact key parameters.
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4.2.4. Time and Complexity Analysis

The speed of an algorithm depends on some important factors such as the specifications and
structure of the CPU, the size of memory, the size of image, the software used, etc. To assess our
algorithm with those in [43,52–54], we ensured a level playing ground by first attuning it with those in
compared studies using 512 × 512 sized images. Second, we simulate the execution under the same
environment: A laptop with Intel coreTM i5-2450M 6 GB RAM and a preinstalled MATLAB R2016b
software. The total encryption time of the proposed approach includes iterating the 5-D hyperjerk
chaos generation, constructing permutation sequences (Ph and Pw), constructing substitution sequence
(Sb), and encryption process. Table 7 gives the detailed time analysis for each process in the encryption
procedure. Consequently, only temporal constraints arising from diffusion and confusion procedures
of each algorithm are assessed. Further, Table 8 provides the time analysis for our scheme based on the
specs outlined in comparison with results from similar techniques as reported.

Table 7. Encryption time (in seconds).

Process
Image Size

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Iterations for 5DHO chaos
generation 0.000166 0.000728 0.002900 0.010600 0.041200 0.178700

Constructing permutation
sequences (Ph and Pw) 0.000105 0.000172 0.000433 0.002200 0.009500 0.032100

Constructing substitution
sequence (Sb) 0.000730 0.000730 0.000730 0.000730 0.000730 0.000730

Encryption process 0.001100 0.004500 0.014900 0.053700 0.062700 0.968700

Total time 0.002100 0.006130 0.018963 0.067230 0.114130 1.180230
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Table 8. Encryption time (in seconds) where N.R. = Not reported implies that the parameter was not
reported in the cited study.

Encryption
Algorithm

Image Size

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

[43] N.R 0.0045 0.0163 0.0629 0.2673 1.2157

[52] N.R N.R N.R 0.0460 0.2300 0.9530

[53] N.R N.R N.R 0.0790 0.2454 N.R

[54] N.R N.R N.R N.R 0.2141 N.R

Proposed method 0.0021 0.0062 0.0190 0.0672 0.1141 1.1802

In addition to encryption time tests, we also undertook a complexity analysis [56] as outlined here.
For uniformity and level playing ground, this analysis is done in terms of CPU operations required to
execute the different methods. Therefore, each step of our proposed method as well as those to be used
in the comparison are used to estimate the complexity cost.

- Step 1: (5*h*w) steps are required to iterate the chaotic map
- Step 2: (h2) steps each are required to retrieve h elements and obtain the index
- Step 3: (w2) steps each are required to retrieve w elements and obtain the index
- Step 4: (256*256) steps each are required to retrieve 256 elements, and obtain the index of

h elements
- Step 5: (h*w) steps are each required for the multiplication mod operations
- Step 6: (h*w) steps are required for the permutation operation
- Step 7: (h*w) steps are required for substitution operation
- Step 8: (h*w) steps are required for number of exclusive-XOR operations in the final step

Therefore, the complexity of the algorithm proposed to execute the encryption procedure is
O(max(h2, w2, h*w) which is an improvement over the complexity reported in [55].

4.2.5. NIST Test

To establish the effectiveness of the presented encryption mechanism, we assessed the randomness
property of the resulting fifth sequence (for example) as stipulated via NIST SP 800-22 tests, which are
considered as the industry standard. These tests consist of 15 examinations that are performed on
the fifth generated sequence with 106 bits length and as presented in Table 9 the generated sequence
passed tests administered.

4.2.6. Key Space Analysis

A well-designed image encryption approach should have a sufficiently large key-space which
is known as the several keys that can be used in brute-force attacks [38–41,55–57]. For our proposed
technique, the image encryption algorithm utilizes the key parameters (a,b,y,x1,x2,x3,x4,x5) to generate
the encryption key K. For context, suppose that the calculation precision (floating point operations) for
each key is 1016, then the total key space of whole system is 10128, which is within thresholds expected
from state-of-the-art encryption algorithms.
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Table 9. NIST SP 800-22 tests results.

Test-Name p-Value Result

Frequency 0.890240 Passed

Block-frequency 0.563092 Passed

DFT 0.378341 Passed

Rank 0.236565 Passed

Runs 0.089504 Passed

Longest runs of ones 0.172795 Passed

Overlapping templates 0.320178 Passed

No overlapping templates 0.465065 Passed

Universal 0.518372 Passed

Approximate entropy 0.844091 Passed

Linear complexity 0.042035 Passed

Cumulative sums (forward) 0.793995 Passed

Cumulative sums (reverse) 0.899532 Passed

Serial test 1 0.179396 Passed

Serial test 2 0.662233 Passed

Random excursions x = 1 0.207249 Passed

Random excursions variant x = 1 0.042985 Passed

4.2.7. Impact of Noise on the Transmission of Cipher Images

In providing a thorough assessment of our proposed technique, it is important to evaluate the
effect of noise on the cipher image during the transmission. For this, we consider a black cut out that is
obtained by modifying 1024 pixels (32× 32) in the encrypted image and setting their values to zero.
We then execute the decryption procedure on the noisy encrypted image as presented in Figure 20.
From this result we observe that despite the noise, the original boats image can be recovered with high
visual fidelity (see Figure 20b). Consequently, we can infer the utility of our proposed scheme for
public transmission.
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5. Concluding Remarks

This study has proposed, designed, and implemented a 5-D hyperjerk oscillator for chaos
generation. Extensive numerical analysis employed showed that the proposed oscillator network
comprised of diodes and resistors can produce nonlinearities (both square and cubic) required to
generate chaos. Moreover, in addition to being cheaper than standard analogue multipliers, our
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proposed network was shown to exhibit the capacity to experience coexistence of hidden attractors
in the phase space. Furthermore, we exploited the efficient cost-effective design of our network to
explore deployment of its lightweight version as an image cryptosystem. Based on this application
and outcomes of standard security analysis that were undertaken, the performance and utility of our
proposed image encryption scheme were validated. Additionally, an Arduino UNO set up was utilized
to implement the network and experimental results showed that our proposed chaos generator could
have useful applications in emerging paradigms for information and communication security. For
future and ongoing work, our study is being improved in the following directions. First, we note
that despite their relative objectivity, statistical tests do not cover all aspects of cryptanalytical attacks.
Therefore, following necessary refinements, we plan on integrating differential trails over the encryption
process. These are reputed to be more powerful then permutation-only and substitution paradigms.
Additionally, in ongoing work, we are exploring the use of Cobweb diagrams (representation of phase
plot for digital systems) for chaos generation based on the Arduino platform. Insights from this and
other improvements to this study will be used to improve image complexity analysis, develop faster
and more robust encryption strategies for colour images aimed primarily at securing medical images
for applications in telemedicine.
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