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Abstract 

Background: Biopriming as a new technique of seed treatment involves the application of beneficial microorgan‑
isms on the seed surface to stimulate seed germination, plant growth, and protect the seed from soil and seed‑borne 
pathogens. The present investigation was carried out on seed germination, seedling vigor and biochemical traits of 
one of the most important vegetable crops (Tomato, Solanum lycopersicum L.). The treatments comprised viz. T1: Non 
primed seeds (Control), T2: Hydropriming, T3: Biopriming with C‑phycocyanin (C‑PC) (Spirulina platensis extract), T4: 
Biopriming with Trichoderma asperellum, T5: Biopriming with T. viride, T6: Biopriming with Beauveria bassiana.

Results: Extraction and purification of C‑phycocyanin (C‑PC) from the dry S. platensis powder using various methods 
was performed. The purity after dialyses was 0.49 and its ultimate purity  (A620/A280) after ion‑exchange chromatogra‑
phy was 4.64. The results on tomato seedlings revealed that the maximum germination percentage (100%), germina‑
tion index (15.46 and 15.12), seedling length (10.67 cm), seedling dry weight (1.73 and 1.97 mg) and seedling length 
vigor index (1066.7) were recorded for tomato biopriming with T. viride, and B. bassiana (T5 and T6). Moreover, the 
quantitative estimation of total carbohydrates and total free amino acids contents in bioprimed tomato seedlings 
indicated a significantly higher amount with T. viride, followed by those bioprimed with T. asperellum, B. bassiana and 
C‑PC extract.

Conclusion: Thus, our results indicated that biopriming of tomato seeds with beneficial fungal inoculants and C‑PC 
was very effective. The most operative biostimulants were those bioprimed with T. viride and B. bassiana compared to 
other biostimulants (T. asperellum and C‑PC). Therefore, to ensure sustainable agriculture, this study offers new pos‑
sibilities for the biopriming application as an alternative and ecological management strategy to chemical treatment 
and provides a valuable basis for improving seed germination.
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Background
Agricultural practices are continually being modernized 
to keep up with the ever-changing environment, with 
the introduction of genetically modified crops, plant 
growth regulators, fungicides, fertilizers, pesticides and 

Open Access

*Correspondence:  re_hamed87@yahoo.com; rababmicro2009@gmail.com
Botany and Microbiology Department, Faculty of Science, Zagazig 
University, Zagazig 44519, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-022-02509-x&domain=pdf


Page 2 of 17Metwally et al. BMC Microbiology          (2022) 22:108 

so on. Their advantages, however, come at a price: some 
are time-consuming and costly to implement, while oth-
ers are regarded as detrimental to consumer health and 
the environment in the long run [1, 2]. As a result, sci-
entists must devise strategies that improve agricultural 
yield while minimizing hazards. Plant growth regula-
tors and biostimulants are gradually becoming the pri-
mary research fields among many scientific researchers 
to improve plant growth and development [3–5]. Addi-
tionally, the positive association and interaction of rhizo-
competent microbes are frequently employed for plant 
bio fertilization and stress-induced damage mitigation 
[6]. A plant biostimulant is a product that encourages 
plant nutrition processes independently of its nutrient 
content. The sole purpose of it is the enhancement one or 
more of the subsequent characteristics of the plant and 
its rhizosphere such as accessibility of restricted nutri-
ents in soil or rhizosphere, nutrient use performance, 
tolerance to abiotic stress and quality characters [7, 8]. 
Moreover, the biostimulant stimulates the response to 
the environment, such as stress circumstances or phy-
topathogenic attack [9, 10]. Furthermore, it can as well 
help plants to grow and develop in a variety of ways 
from seed germination to maturity, including improving 
metabolism to improve yield and crop quality, interact-
ing with nutrient assimilation and translocation, facilitat-
ing plant defense against adverse conditions, and so on 
[11]. Also, Rouphael et al. [7] and Calvo et al. [11] stated 
that the stimulation of germination, seedlings and plant 
growth as well as crop productivity in response to plant 
biostimulants has been usually related to the action of 
signaling bioactive molecules in the primary and sec-
ondary metabolisms. To fully understand the biologi-
cal role of biostimulants, it’s necessary to evaluate the 
subject plants’ growth stage and pattern, as well as their 
developmental reactions [1, 3]. As a result, seed germina-
tion, being a crucial step in the growth of a new plant, 
it reflects the plants’ lateral growth pattern, the fitness, 
survival, persistence and evolutionary potential of plants 
[12]. Internal and external factors are heavily regulating 
the seed’s dormancy status and germination potential at 
this stage.

Microbial biopriming is an adaptive approach for 
improving a plant’s defensive capacity, resulting in 
enhanced resistance/stress tolerance and/or a more 
exacerbated defense response to stress-inducing cir-
cumstances before germination [13, 14]. It also effec-
tively reduces the dependence on chemical fungicide for 
diseases management [6, 15]. In seed biopriming, seeds 
were coated with a variety of agriculturally significant 
microorganisms, resulting in quick and consistent seed 
colonization [14, 16]. However, if seeds are infected 
with undesired indigenous microorganisms, they may 

proliferate during priming and may reduce the surviv-
ability of beneficial microbes [17], hence disinfecting the 
seeds before priming is required [15, 16].

The stimulatory consequence of biostimulants, such as 
algal extracts and plant-growth promoting fungi (PGPF), 
on seed germination and seedlings growth has been pre-
viously documented [14, 18, 19]. A representative, cyano-
bacteria can be used to make useful plant products such 
as fertilizers that play an important role in sustainable 
agriculture, helping to increase soil fertility, crop devel-
opment, and environmental quality [20, 21]. Vitamins, 
amino acids, polypeptides, phytohormones (gibberel-
lins, auxins, cytokinins), antioxidants, and substances 
with antibacterial and antifungal effects can all be found 
in Spirulina platensis, which can be exploited as a rich 
source of macro, micronutrients and proteins such as 
phycobiliproteins for plants [20, 22]. One of the most 
important phycobilliproteins is C-phycocyanin (C-PC; 
derived from cyanobacteria like S. platensis) which has 
been used as a natural blue dye in commercial applica-
tions [23].

Makhaye et  al. [24] estimated the influence of algal 
extract and biostimulant biopriming on the seed ger-
mination parameters such as germination percentage 
and germination index of Abelmoschus esculentus. Also, 
Zhang et al. [19] determined the effect of PGPF (Tricho‑
derma longibrachiatum) on wheat seedlings’ growth and 
improvement under stress, besides examining the role of 
T. longibrachiatum in inducing the resistance at physi-
ological and biochemical levels. Trichoderma spp. rhizo-
competent’s nature allows it to colonize roots, boost the 
plant immune system and have been explored as a pos-
sible biocontrol agent [25, 26]. Additionally, the coloniza-
tion of these beneficial fungi promotes plant growth and 
protects the host plants from abiotic and biotic stressors 
[5]. Moreover, Russo et al. [27] estimated the improving 
effect of endophytic fungus Beauveria bassiana on seed 
germination percentage of Zea mays.

One of the most important and extensively used veg-
etable crops is tomato plant (Solanum lycopersicum L.), 
it contains a variety of metabolites that have health and 
nutritional benefits. It also includes easy-to-maintain 
diploid genetics, a minimal generation time, and routine 
transformation technologies [28]. Together these make 
tomato an excellent model plant for biologists for both 
basic and applied plant research. Tomato plants ham-
pered with a load of pathogenic seed microflora that led 
to a number of nurseries such as seed rot and other field 
diseases. The infected seeds thus used are responsible 
not only for the poor germination seedlings stand but 
also for the carryover of pathogens to the field. Moreo-
ver, the germination time of tomato seeds is very high 
as compared to field crops which lead to non-uniform 
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seedling stand and low vigor seedlings [29]. Consider-
ing this, to ensure sustainable agriculture, biopriming is 
regarded as the most effective method of seed protec-
tion. Thus, the present study was conducted to extract 
and purify C-PC from the dry Spirulina powder using 
various methods and to evaluate its biological activ-
ity. Furthermore, the comparative effects of biopriming 
with fungal inoculums such as T. viride, T. asperellum, 
B. bassiana and C-PC on tomato seedling growth pro-
motion was studied to consider their significant bio-
logical applications, in addition, to assess the hydrolytic 
enzymes activity and other biochemical attributes of 
tomato seedlings.

Results and discussion
Extraction and purification of C‑PC
C-PC was extracted and purified in three steps: crude 
extract preparation (Step I), dialysis (Step II), and ion-
exchange chromatography (Step III). The concentra-
tion and purity of C-PC were verified and improved 
with each purifying process (Table 1). The purity after 
dialysis was 0.49 and its ultimate purity  (A620/A280) 
after ion-exchange chromatography was 4.64, where 
was eluted as a brilliant blue colored solution during 
the column chromatography. The purity of C-PC was 

evaluated at each fraction and increased about 9 times 
in the third fraction (highest purity) more than dialy-
sis (Table  1). The highly pure C-PC’s absorption spec-
tra revealed a strong peak at 615 nm (Fig.  1). Eriksen 
[30] documented that Spirulina is widely implemented 
as a high-quality protein for C-PC as a cyanobacterial 
accessory pigment with a variety of agricultural and 
industrial uses. A variety of publications on the extrac-
tion and purification of C-PC from cyanobacterial 
strains are available [31–33].

Extract purities not only vary per strain, but they are 
also influenced by the extraction methods used, and 
further purification techniques are frequently used 
to improve the purity of the extracts [34]. Safaei et  al. 
[35] employed a four-step purification procedure com-
prising the adsorption of impurities with chitosan, 
activated charcoal, ammonium sulfate precipitation, 
and ion-exchange chromatography, reaching a high 
purity form of C-PC of 5.26. Furthermore, Schipper 
et  al. [32] discovered that the extraction buffer and 
cell disruption technique has an impact on the C-PC 
content and extract purity from Leptolyngbya sp. and 
Arthrospira platensis and reported that the cell disrup-
tion technique with  CaCl2 was the best approach for 
A. platensis, while it was the second-best method for 
Leptolyngbya sp. In comparison to other approaches, 
Diethylaminoethyl (DEAE) column chromatography 
was considered to be an essential method for purifying 
C-PC from S. platensis according to Moovendhan et al. 
[33]. However, Seo et  al. [36] extracted C-PC from S. 
platensis using a hexane separation method and a high-
pressure process.

FT‑IR spectral analysis
In the current investigation, the C-PC of S. platensis 
revealed functional groups, with peak frequencies of 
686.31 and 748.78  cm− 1 representing the presence of the 
C–H bond in the molecule. The  CH2 bending vibration 

Table 1 Purity of phycocyanin at each purification step

Step C‑PC (μg  ml− 1) Purity 
 (A620/
A280)

Crude Extract 85.43 0.26

Dialysis 680.84 0.49

Fractions of Ion Exchange 
Chromatography

2 59.75 0.64

3 248.72 4.64

4 202.86 1.62

5 91.71 1.35

6 52.80 1.20

Fig. 1 Ultraviolet spectrum of C‑PC from S. platensis 
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was identified at 1455  cm− 1, and the protein amide II 
band was detected at 1558  cm− 1 (C=O stretching). Fur-
thermore, the presence of carboxylic acids, C = N and 
N–H bond in the molecule were shown at 2337.10, 1660 
and 3205  cm− 1 respectively. These functional groups 
were recorded according to Gokel [37] (Fig. 2). Our find-
ings are similar to those of Moovendhan et al. [33], who 
studied S. platensis C-PC and found functional groups at 
peak frequencies of 673.86, 794.67, 1456.26, 1539.20, and 
2358.94, which are virtually identical to our data. The 
FT-IR spectrum of Ulva lactuca extract revealed C-PC 
as the most bioactive component, with transmittance 
maxima at 1652, whereas our results were 1660  cm− 1, 
which is mostly suggested by COO, CO, and conjugated 
double bonds. These bonds had spectral bands peaking 
at 2985  cm− 1, 2860  cm− 1, and 2986  cm− 1 [38], which 
corresponded to 2874  cm− 1 in our investigation.

1H NMR spectral analysis
In our investigation, 1H NMR spectra were measured at 
ppm level ranging from 21 to 13 ppm. The chemical shifts 
of C-PC signal 2.71 (δ), 2.87 (δ) and 3.76 (δ) confirmed 
the presence of Alkyne (C. C-H) type protons. Chemi-
cal shifts 6.86 (δ), 6.89 (δ), 6.92 and 6.98 (δ) proved the 
presence of an alkene with C-H type protons and N-H. 
Whereas chemical shift 7.3(δ) confirmed the presence of 
aromatic with H on the phenyl ring NH. Also, a pyrrolic 
NH signal was observed at 7.36 (Fig.  3). Wiegand et  al. 

[39] used NMR spectroscopy to investigate the structural 
characteristics of phycoerythrocyanin peptides from 
thermophilic cyanobacterium Mastigocladus lamino‑
sus and Fischerella sp., and reported different functional 
groups with different proton types at various ppm and 
chemical shifts. Similarly, Moovendhan et  al. [33] sug-
gested the presence of 14 chemical shifts (δ) and con-
firmed the presence of alkyl halide, alkene and aldehyde 
proton in 1HNMR analysis of phycocyanin. With varying 
concentrations of pigments extracted from Chattonella 
verruculosa, Mangoni et al. [40] observed 19 and 6 chem-
ical changes.

Germination and growth indices of tomato seedlings 
after seed biopriming
Seed biopriming improves the initial step of plant devel-
opment by encouraging more uniform seed germination, 
inducing profound changes in plant characteristics and 
providing protection before seedling emergence [41]. 
Figure 4(a-d) depicts the comparative effects of bioprim-
ing with fungal inoculums (T. viride, T. asperellum and 
B. bassiana) and C-PC extract on germination percent-
age (%), germination index (GI), seedling weight vigor 
index (SWFI) and seedling length vigor index (SLVI) 
of tomato seedlings after 12 days of growth. Also, the 
photograph was taken for S. lycopersicum seedlings to 
show the effect of the priming on the growth indices 
as compared to unprimed seedlings (Fig.  5). Likewise, 

Fig. 2 FT‑IR spectrum of C‑PC
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the morphological data for tomato seedlings can be 
observed in Table  2. Concerning germination indices, 
an increase in SWVI in tomato seedlings primed with 
T. asperellum, T. viride and C-PC (160 and 173) and 
the maximum records were documented for the tomato 
seeds bioprimed with B. bassiana (197) compared to the 
unprimed or hydroprimed ones (125 and 137). Moreo-
ver, seed biopriming produced a staggering improve-
ment in seedling’s FW, DW, shoot height and radicle 
length, where the highest values for the seedling FW 
were recorded for seedlings primed with T. viride 
(49.8 mg) and T. asperellum (48.8 mg). In contrast, the 
unprimed or hydroprimed seeds exhibited significantly 
(p < 0.05) lower records (19.9 and 28.9 mg). Our results 
are in harmony with Aamir et  al. [6] who reported 
that the biopriming of tomato seeds with T. erinaceum 
caused a profuse growth in morphological attributes. 
Sánchez-Rodríguez et  al. [42] recorded an enhance-
ment in wheat growth colonized by B. bassiana. Moreo-
ver, Metwally and Al-Amri [43] and Metwally et  al. [5] 
reported an increase in shoot length, root length, shoot 
and root FW and DW of onion with T. viride. Moreo-
ver, Russo et  al. [27] reported that the percentage of 
corn seed germination was significantly increased with 
B. bassiana. As, Trichoderma spp. and B. bassiana are 
endophytic fungi, enhance plant growth by increasing 

nutrient uptake and production of plant growth regu-
lators along with induction of secondary root devel-
opment through indoles acetic acid (IAA), gibberellin, 
cytokinins and siderophores production [44]. As well, 
these fungi produce phosphatase as well organic acids 
which solubilize the inaccessible phosphate to make it 
available, also help to increase the  N2 use efficiency in 
plants [5, 44].

Similarly, the enhancement in both germination 
and growth indices of tomato seedlings primed with 
C-PC was in agreement with Muñoz-Rojas et  al. [45] 
and Chua et  al. [46] that the biopriming of Eucalyptus 
gamophylla, Senna notabilis and Acacia hilliana seeds 
with Microcoleus sp and Nostoc sp produced seedlings 
with a longer shoot and root lengths. Also, Haroun and 
Hussein [47] demonstrated an increase in growth indi-
cators in Lupius termis treated with Cylindrospermum 
muscicola and Anabaena oryzae extracts. Essa et  al. 
[48] recorded an elevation in the seed germination and 
the seedling growth criteria of Sorghum durra with 
Anabaena oryzae and Synechococcus sp. This elevation 
could be attributed to cyanobacteria’s bioactive com-
pounds, minerals and trace elements, which have the 
ability to enhance the phytohormones levels and play a 
crucial role in plant growth regulation, metabolism, and 
development [46, 49].

Fig. 3 1H NMR spectrum of purified C‑PC from S. platensis 
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Effects of seed biopriming on primary metabolites
Changes in the accumulation of the biomolecules show 
the real impact of treatments in the plants. To assess the 
effects of C-PC, T. viride, T. asperellum and B. bassi‑
ana on the accumulation of the primary metabolites, 
we measured total carbohydrates, protein and TFAA 
contents in tomato seedlings (Fig.  6a-c). Also, Pear-
son’s correlation was analyzed to demonstrate the rela-
tion between growth indices and primary metabolites; 
there were significant positive correlations between the 
seedling DW with protein (r = 0.856), carbohydrates 
(r = 0.825), and TFAA (r =0.766) (Table  3). From the 
quantitative estimation of Fig. 6, there were significantly 

(p < 0.05) higher amounts of total carbohydrates and 
TFAA contents in tomato seedlings bioprimed with T. 
viride (459.32 mg/g DW and 7.87 mg/g FW; respectively), 
followed by seedlings bioprimed with C-PC (401.31 mg/g 
DW and 7.14 mg/g FW) and B. bassiana (398.17 mg/g 
DW and 7.87 mg/g FW).

These results may highlight the promoting effect of 
fungal endophytes on the contents of these primary 
metabolites. Also, the results showed that the level of 
amino acids increased with a parallel increase in protease 
activity (Fig.  8) in all biopriming treatments. As, amino 
acids are derived from the degradation of intracellular 
proteins and their amount in plant tissues are carefully 

Fig. 4 Percentage germination (%), Germination index (GI), seedling length and weight vigor of tomato after seed priming with fungal inoculums 
and C‑PC extract. Tomato seeds were primed for 24 h and germinated for 12 days; (T1) unprimed S. lycopersicum seedlings (T2) hydroprimed S. 
lycopersicum seedlings (T3) S. lycopersicum bioprimed with C‑PC (T4) S. lycopersicum bioprimed with T. asperellum (T5) S. lycopersicum bioprimed 
with T. viride (T6) S. lycopersicum bioprimed with B. bassiana. *Values are means ± SE (Standard Error). Bars labeled with the different alphabet(s) are 
significantly different (Duncan’s Multiple Range Test, p < 0.05)
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regulated to just meet the requirements for the biosyn-
thesis of proteins [50].

Our findings of increasing the protein and carbohy-
drates contents are in agreement with Singh et  al. [51] 
who recorded a significantly higher amount of total sol-
uble sugar and proteins in the roots and leaves of Zea 
mays plants bioprimed with Pseudomonas aeruginosa. 
The enhancement of protein, TFAA and carbohydrates 
contents was also evident from increased plant growth 
parameters (Table  2). Macuphe et  al. [44] revealed a 
significant increase in protein content of lettuce plants 
following endophyte colonization which is involved in 
carbohydrate metabolism, defense and photosynthe-
sis [52, 53]. Since, proteins play an important role in the 

growth and nutritive value of plants and can mediate the 
production of antioxidants [54]. Also, White and Torres 
[55] reported that plants colonized by endophytes pro-
duce more glucose and fructose.

Moreover, the C-PC application to tomato seeds has a 
positive effect on the protein (7.31 mg/g FW) (Fig.  6b), 
total carbohydrates (401.31 mg/g DW) (Fig.  6a) and 
TFAA levels (7.14 mg/g FW) (Fig.  6c). Our results were 
in coherence with Osman et  al. [20] that Spirulina sus-
pension can increase the creation of proteins and amino 
acids in roots and shoots of faba bean. Also, Haroun 
and Hussein [47] demonstrated an increase in nitrog-
enous chemical content and carbohydrates in shoots of 
L. termis treated with C. muscicola and Anabaena oryzae 

Fig. 5 Morphological growth characteristic of unprimed or bioprimed S. lycopersicum seedlings. The S. lycopersicum bioprimed samples were found 
to have profuse growth with increased shoot height and radicle length compared to unprimed seedlings

Table 2 Different plant growth promotion parameters analyzed on tomato after seed biopriming with C‑PC, T. viride, T. asperellum and 
B. bassiana after 12 days of growth

Values are the means ± SE (Standard Error). Means in each column followed by the same alphabet(s) are not significantly different at p < 0.05 (Duncan’s multiple range 
test). Control and  H2O primed represent unprimed or hydroprimed tomato seedlings. C-PC, T. viride, T. asperellum, B. bassiana represent tomato seedlings bioprimed 
individually with C-PC, T. viride, T. asperellum, B. bassiana biostimulants; respectively. FW Fresh weight, DW Dry weight

Treatments Shoot height
(cm)

Radicle length
(cm)

Seedling length (cm) Seedling FW (mg) Seedling DW (mg)

Control 4.67 ± 0.44d 1.63 ± 0.186a 6.30 ± 0.611c 19.97 ± 3.1d 1.33 ± 0.035c

H2O primed 5.17 ± 0.088c 1.90 ± 0.208a 7.07 ± 0.296b 28.9 ± 6.8c 1.43 ± 0.037c

C‑PC 7.50 ± 0.288b 2.00 ± 0.577a 9.50 ± 0.288a 36.1 ± 2.1b 1.73 ± 0.046b

T. asperellum 7.83 ± 0.441ab 2.17 ± 0.167a 10.00 ± 0.577a 48.8 ± 2.8a 1.60 ± 0.042b

T. viride 9.00 ± 0.577a 1.67 ± 0.333a 10.67 ± 0.666a 49.8 ± 5.9a 1.73 ± 0.046b

B. bassiana 8.17 ± 0.167ab 2.50 ± 0.288a 10.67 ± 0.441a 38.7 ± 3.4b 1.97 ± 0.052a
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extracts. Mógor et al. [56] found that applying S. platen‑
sis lyophilized biomass, high in L-amino acids, stimulated 
red beet carbon metabolism and sugar content. Yakhin 
et  al. [57] and Ana [58] documented that cyanobacteria 
release various kinds of biologically active substances like 
proteins, vitamins, carbohydrates, amino acids, polysac-
charides and phytohormones, which function as signal-
ling molecules to promote plant growth. Also, Nawrocka 
et  al. [22] and Mógor et  al. [56] found that the most 
essential amino acids, polyphenols, and vitamins such as 
tocopherol and ascorbic acid are abundant in C-PC from 
Spirulina extracts.

Effect of biopriming on secondary metabolites in tomato 
seedlings
Phenolic and flavonoid compounds are essential for 
plant functions due to their participation in defensive 
systems, plant tolerance to a variety of biotic and abi-
otic stresses, growth and development [59–61]. As well, 
shikimic acid is the precursor to a wide variety of sec-
ondary metabolites that play a key role in plant defense 
mechanisms [62]. We measured the total phenolic, fla-
vonoids and shikimic acid contents in tomato seedlings 
bioprimed with C-PC, T. viride, T. asperellum and B. 
bassiana. Our results (Fig.  7a-c) revealed a significant 
(p < 0.05) increase in their contents with priming. Also, 
in hydroprimed tomato seedlings (12.01 mg/g seedling 
FW), a significant (p < 0.05) effect on phenolic content 
was detected compared to unprimed ones (9.5 mg/g 

seedling FW) (Fig. 7b). Moreover, the highest shikimic 
acid and flavonoids contents were detected in seedlings 
primed with B. bassiana. These results may highlight 
the promoting effect of fungal endophytes on increas-
ing these secondary metabolites contents in tomato 
seedlings. In agreement with our results, the aforemen-
tioned studies reported an increase in the accumulation 
of total flavonoids and total phenolic compounds fol-
lowing endophyte colonization in maize seedlings and 
tomato plants [52, 63]. Singh et  al. [64] also reported 
an upsurge in shikimic acid content in chickpea leaves 
treated with triple microbe consortium. There are 
many plausible explanations for the higher production 
of secondary metabolites (alkaloids, terpenoids, flavo-
noids, and phenols). Perhaps maybe it is due to their 
direct production by the endophyte or the endophyte 
assists indirectly by influencing their production on the 
host plant [63]. Moreover, Zaprometov and Nikolaeva 
[65] and Kovaleva et  al. [66] demonstrated the role of 
polyphenols in regulating plant growth and develop-
ment, since they affect the biosynthesis of indol-3-ace-
tic acid which plays a key role in both root and shoot 
development. They also play an important role in the 
metabolism of plant cells, affecting different physi-
ological processes such as cell division and expansion, 
membrane permeability, nutrient uptake, enzymatic 
activity and respiration [67]. However, Moloinyane 
and Nchu [68] documented that B. bassiana did not 
have any significant effect on total polyphenol, alkaloid, 

Fig. 6 Contents of primary metabolites (total carbohydrates, protein and total free amino acids) in tomato seedlings bioprimed with C‑PC, T. viride, 
T. asperellum and B. bassiana after 12 days of growth. (T1) unprimed S. lycopersicum seedlings (T2) hydroprimed S. lycopersicum seedlings (T3) S. 
lycopersicum bioprimed with C‑PC (T4) S. lycopersicum bioprimed with T. asperellum (T5) S. lycopersicum bioprimed with T. viride (T6) S. lycopersicum 
bioprimed with B. bassiana. FW: Fresh weight; DW: Dry weight. *Values are means ± SE (Standard Error). Bars labeled with the different alphabet(s) 
are significantly different (Duncan’s Multiple Range Test, p < 0.05)
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and flavonoids in Grapevine plants. In another study, 
the total phenolic content of 15-day-old cotton seed-
lings was reported to be higher than that of 5-day-old 
seedlings after Cladorrhinum foecundissimum colo-
nization [69]. Also, an augmentation in their contents 
in tomato seedlings primed with C-PC extract was 
detected, Goiris et al. [70] linked phenolic compounds 
found in microalgae and cyanobacteria to antioxidant 
properties, and they play a significant role in growth, 
reproduction, and stress tolerance. Therefore, C-PC, 
T. viride, T. asperellum and B. bassiana not only pro-
moted plant growth but also stimulated the accumula-
tion of shikimic acid, phenolic and flavonoid contents 
in bioprimed seedlings.

Effects of seed biopriming on hydrolytic enzymes
During germination, the high molecular weight reserves 
in the storage organs of the seed are converted into trans-
portable forms and are transported to metabolizing and 
growing tissues where they are utilized for energy-pro-
ducing and synthetic events [71]. The major types of these 
storage reserves in seeds are starch and proteins, where 
their conversion to transportable forms was accompa-
nied by activation of hydrolytic enzymes such as amyl-
ases and proteases. Regarding to Table  3, the Pearson’s 
correlation showed strong positive correlations between 
growth indices and hydrolytic enzymes; shoot height 
exhibited a significant positive correlation with amylase 

(r = 0.815**) and protease (r = 0.799**). Our results 
(Fig. 8a and b) revealed an augmentation in the amylase 
and protease enzyme activities in tomato seedlings upon 
biopriming with T. asperellum, T. viride, B. bassiana and 
C-PC extract. The highest amylase activity (Fig. 8a) was 
recorded by B. bassiana (0.081 Change in OD/min) fol-
lowed by seedlings bioprimed with T. viride (0.076) and 
C-PC extract (0.075 Change in OD/min) compared with 
hydropriming or control ones (0.047 Change in OD/min). 
This was in line with Robl et al. [72] that endophytic fungi 
such as T. atroviride, Alternaria sp., Annulohypoxylon 
stigyum and Talaromyces wortmannii are excellent pro-
ducers of hydrolytic enzymes. These enzymatic activities 
are essential for providing energy and carbon skeletons to 
the growing embryo through the respiratory breakdown 
of utilizable substrates until the seedling becomes photo-
synthetically self-sufficient.

Moreover, Caldwell et  al. [73] reported the ability of 
root endophytic fungi, Philaophora finlandia and P. for‑
tinii to produce hydrolytic enzymes, which were able 
to break down the major polymeric forms of C, N and 
P found in plants. Similar results were proved by Mar-
lida et  al. [74] and Maria et  al. [75]. In this connection, 
Gholam et al. [76] proved that the enhancement of seed 
germination by plant growth-promoting fungal inocu-
lants was due to the synthesis of seed germination hor-
mones like gibberellins which triggered the activity 

Fig. 7 Contents of secondary metabolites (phenolics, flavonoids and shikimic acid) in tomato seedlings bioprimed with C‑PC, T. viride, T. asperellum 
and B. bassiana after 12 days of growth. (T1) unprimed S. lycopersicum seedlings (T2) hydroprimed S. lycopersicum seedlings (T3) S. lycopersicum 
bioprimed with C‑PC (T4) S. lycopersicum bioprimed with T. asperellum (T5) S. lycopersicum bioprimed with T. viride (T6) S. lycopersicum bioprimed 
with B. bassiana. FW: Fresh weight; DW: Dry weight; GAE: Gallic acid equivalent; QE: Quercetin equivalent. *Values are means ± SE (Standard Error). 
Bars labeled with the different alphabet(s) are significantly different (Duncan’s Multiple Range Test, p < 0.05)
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of specific enzymes, such as alpha-amylase. Further-
more, Mabood et  al. [77] recommended that hydrolytic 
enzymes are of major interest due to their ability to 
degrade and lyse pathogen cell wall, and thus they are 
employed in biocontrol of fungal phytopathogens as Felse 
and Panda [78] reported in the control of Sclerotium rolf‑
sii and F. oxysporum through the cell wall degradation by 
hydrolytic enzymes on beans.

Additionally, the enhancing effect of C-PC extract 
(Fig.  8) in germinated seedlings of tomato agreed 
with Osman et  al. [79] who recorded an increase in 
amylases and proteases enzyme activities in germi-
nated seedlings of pea treated with the cyanobacterial 
extract. Amylases increased the availability of starch 
assimilation by the hydrolysis of it into glucose [80]. 
The other groups of enzymes are proteases which play 
an important role during germination, in the mobili-
zation of stored protein in seed as free amino acids, 
which are utilized in building necessary protein and 
enzymes required for the growing embryo [81].

Conclusion
Seed biopriming is one of the innovative and ecofriendly 
priming methods, as it is useful not only for enhancing 
seed germination and seedling vigor, but also for the man-
agement of biotic and abiotic stresses. Our recent study 
tries to fill the gap by examining the comparative effects of 

these different biostimulants such as T. viride, T. asperel‑
lum and B. bassiana and C-PC extract on seed germina-
tion, seedling growth and biochemical traits of Solanum 
lycopersicum L. According to our results, the most effec-
tive biostimulants were those bioprimed with T. viride 
and B. bassiana as compared to other biostimulants (T. 
asperellum and C-PC). Thus, biopriming of seeds with the 
desired fungal endophytes can be used commercially as an 
alternative to biofertilizers successfully. Future strategies 
should apply biopriming with different biostimulants to 
other plant seeds yet not experimented which will give a 
better picture of the potential of this technology.

Methods
Preparation of priming materials
Fungal inoculums preparation
The cultures of T. viride, T. asperellum, B. bassiana were 
brought from Mycology Lab, Faculty of Science, Zaga-
zig University. The fungal inoculums were prepared from 
7-day old culture. In brief, the Petri dish containing the 
culture was suspended with sterile distilled water. The 
spores were gently removed using a glass spreader, and 
then the heterogeneous suspension was filtered using the 
muslin cloth for removing the mycelial mat. The filtered 
suspension was diluted with sterile distilled water and 
adjusted to  106–107 spores/ mL as quantified through the 
hemocytometer.

Fig. 8 Hydrolytic enzymes activities (amylase and protease) in tomato seedlings bioprimed with C‑PC, T. viride, T. asperellum and B. bassiana after 
12 days of growth. (T1) unprimed S. lycopersicum seedlings (T2) hydroprimed S. lycopersicum seedlings (T3) S. lycopersicum bioprimed with C‑PC (T4) 
S. lycopersicum bioprimed with T. asperellum (T5) S. lycopersicum bioprimed with T. viride (T6) S. lycopersicum bioprimed with B. bassiana. *Values are 
means ± SE (Standard Error). Bars labeled with the different alphabet(s) are significantly different (Duncan’s Multiple Range Test, p < 0.05)
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C‑PC crude extract preparation

Growth and maintenance of culture S. platensis was 
obtained kindly from Prof. Dr. Yassin El-Ayouty (Phy-
cology Lab, Faculty of Science, Zagazig University). The 
culture was maintained in Z-Medium [82] at 28 ± 2 °C 
under a light intensity of 52–55 μEm−2s− 1and light/
dark cycles of 16:8 h. At mid-logarithmic phase, algal 
cells were harvested by centrifugation at 10000 rpm 
(4 °C) for 15 min using Multi-tube under cooling cen-
trifuge (Vision SCIENTIFIC CO., LTD., South Korea), 
washed three times with sterile distilled water, and 
air-dried.

Extraction and estimation of C‑PC About 10 g of 
dried algal cells were suspended in 50 mL of Calcium 
Chloride (10  gL− 1). Samples were subjected to freeze-
thawing (incubated at − 20 °C until solid, followed by 
thawing for 24 h at 4 °C in the dark). Phycocyanin was 
extracted by repeated freezing (− 20 °C) and thawing at 
room temperature until the blue color becomes visible. 
Cell debris was removed by centrifugation at 5000 rpm 
for 10 min using Eppendorf under cooling centrifuge 
(MIKRO 200R Hettich zentrifugen, Germany) and the 
extract thus obtained was termed as a crude extract. 
The amount of C-PC was measured as described by 
Bennett and Bogard [83] and purity was determined 
by using the formulae: Purity =  A620/A280. C-PC con-
centrations (μgPC  L− 1) were determined according to 
Lawrenz et al. [84].

Purification of C‑PC Dialysis

The obtained crude C-PC was dialyzed against the 
extraction buffer using dialyses membrane (Dialysis 
membrane-70, MWCO; 12–14 kD) procured from Hi-
Media. Dialysis was performed twice against a 1000 mL 
extraction buffer, first at room temperature and again 
dialyzed against 1000 mL of extraction buffer at 4 °C 
overnight. The resultant extract was recovered from the 
dialysis membrane and filtered through a 0.45 μm filter.

Ion exchange chromatography

Phycocyanin further purified by ion-exchange chro-
matography using a DEAE-Sepharose, from Enzymol-
ogy and Fungal Biotechnology Lab (EFBL, Faculty of 
Science, Zagazig University). A column (2 × 30 cm) 
had been pre-equilibrated with 20 mM sodium acetate 
buffer containing 50 mM NaCl. After washing with 
60 mL of the same buffer, the dialyzed filtered sam-
ple was placed on the column; the column was eluted 
with the same buffer. The elutes were collected in 5 mL 

fractions. Fractions were collected at a 0.5 mL/min flow 
rate [85]. Then, the purity of all fractions was checked 
by equation. The absorption spectrum was also deter-
mined by scanning the highly purified sample in the 
range of 200–800 nm by using UV / VIS Spectropho-
tometer (T80, PG Instruments Ltd. (UK)).

Fourier‑Transform InfraRed spectroscopy (FT‑IR) spec‑
tral analysis The functional  group’s profile of the 
purified phycocyanin from S. platensis was done by 
FT-IR (Bruker, Germany) spectral analysis. The KBr 
pellet was prepared by mixing 1 mg of the sample with 
100 mg of anhydrous potassium bromide. The spectra 
were recorded from 500 to 4000  cm− 1 and 30 scans 
at a resolution of 4 cm were averaged and referenced 
against air.

Nuclear Magnetic Resonance spectroscopy (1H NMR) 
spectral analysis The structural feature of the purified 
phycocyanin from S. platensis was evaluated by 1H NMR 
spectra (Bruker, Germany) by following the method of 
Schanda and Brutscher [86]. Approximately 30 mg of 
sample was dissolved in 0.5 mL of  D2O (99.9%) in a NMR 
tube (5 mm diameter). The 1H NMR spectra were taken 
at 27 °C and the chemical shift was expressed in parts per 
million (ppm).

Priming, treatments and experimental conditions
Seeds of tomato (Solanum lycopersicum L.; Tomato 
HYBRID Seven F.1) were gained from the local mar-
ket of Minia Al-Qamh, El-Sharkia Governorate. For 
seed biopriming with a spore suspension of T. viride, 
T. asperellum, B. bassiana and C-PC (S. platensis 
extract), the healthy seeds of tomato were surfaces 
sterilized with 2% (v/v) sodium hypochlorite (NaOCl) 
solution for 3 min followed by repeated washing with 
distilled water and further dried under laminar air-
flow on autoclaved blotting paper [87]. The surface 
sterilized and dried seeds were treated by soaking in 
the spore suspensions of T. viride, T. asperellum, B. 
bassiana and the extract of C-PC. The control seeds 
were left un-primed (control) or primed only with 
sterilized distilled water (hydroprimed). Therefore, the 
treatments involved were T1: Non primed seeds (Con-
trol), T2: Hydropriming, T3: Biopriming with C-PC, 
T4: Biopriming with T. viride, T5: Biopriming with T. 
asperellum, T6: Biopriming with B. bassiana. Further, 
all the seeds were placed in the moist chamber at 98% 
relative humidity and 25–28 °C and maintained for 24 h 
[13], after that, they were air dried. Each treatment 
was replicated 4 times, so, a total of 24 Petri dishes 
(6*4) were used, each containing 10 seeds. Primed 
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and unprimed tomato seeds were germinated in 9-cm 
diameter Petri dishes. The dishes were covered with a 
layer of absorbent cotton and blotter papers and were 
incubated at 25 ± 1 °C with supplemental day/night 
lighting of 16/8 h. After 12 days of growth, seedlings 
were collected from each treatment for measuring ger-
mination parameters and the rest seedlings were fro-
zen in liquid nitrogen then immediately grinded in the 
suitable solvent for each biochemical parameter.

Bioassay on comparative effects of biopriming with fungal 
inoculums and C‑PC extract on the germination indices 
and seedling growth
Seeds were considered germinated on radicle visibility 
(the radicle length was longer than 2.0 mm). After 12 days 
of growth, seedlings were collected from each treatment 
for measuring different germination indices and germi-
nation parameters to indicate the influence of different 
biostimulants. Germination percentage (%) [88], germi-
nation index (GI) [89], seedling length vigor index (SLVI) 
[90] and seedling weight vigor index (SWVI) [91] are 
examples of the germination indices.

After that, seedlings were harvested, and readings were 
taken regarding seedling growth according to ISTA pro-
tocols [92]. Shoot height and radical length was meas-
ured in 5 normal seedlings randomly obtained. The 
seedling fresh weight (FW) and dry weight (DW) were 
recorded after oven drying at 60 °C for 48 h.

Bioassay on comparative effects of biopriming with fungal 
inoculums and C‑PC extract on tomato seedlings primary 
metabolites contents
The total protein content
The fresh seedlings of known weight (1 g) were ground in 
a mortar and pestle using 50 mM phosphate buffer (pH 7). 
The resultant homogeneous solution was centrifuged 
at 8000 rpm for 15 min at 4 °C. Supernatant constituting 
the crude extract of amylase and protease was collected 
and aliquots were used for protein content and hydro-
lytic enzymes activity estimation. The protein content of 
tomato seedlings from each treatment was calculated [93] 
with some modifications. The mixture was again subjected 

Germination% = Total number of germinated seeds∕Total seeds sown X 100

GI = Total number of germinated seeds∕Total number of days

SLVI = [seedling length (cm)× seed germination (%)]

SWVI = [seedling DW (mg)× seed germination (%)].

to shaking for 10 mins after adding alkaline copper sulfate 
reagent and Folin’s reagent. The whole mixture was placed 
in an incubator for 30 min. The absorbance of each sample 
was recorded at 700 nm against blank. The concentration 
of total soluble proteins was determined with the reference 
curve of bovine serum albumin as a standard.

The total carbohydrates
A known tomato seedlings dry weight of all treatments 
were separately hydrolyzed in boiling water for 3 h with 
10 mL 2.5 N HCl and then cooled. It was further neu-
tralized with sodium carbonate and then centrifuged at 
5000 rpm for 15 min and the supernatant (0.1 mL) was 
used for total carbohydrates estimation by phenol sul-
phuric acid method [94]. The 2.5 mL of  H2SO4 was added 
to the reaction mixtures and subjected to vigorous stir-
ring followed by recording the absorbance at 490 nm. 
The amount of carbohydrates (mg/g DW) was calculated 
using the glucose standard curve.

Total free amino acids (TFAA)
A known seedlings fresh weight of tomato were extracted 
in 5 mL of 80% ethanol and centrifuged at 6000 rpm for 
30 min to measure their TFAA contents by Yemm et al. 
[95]. The test extract was taken and TFAA was estimated 
using ninhydrin reagents containing 1% ninhydrin in 
0.5 M citrate buffer, pH 5.5, glycerol (87%) and 0.5 M cit-
rate buffer pH 5.5 in the ratio of 5:12:2. After vigorous 
shaking contents were heated in a boiling water bath 
for 10 mins and after cooling, absorbance was meas-
ured at 570 nm with ethanol serving as blank in place of 
test extract. Absorbance readings were converted to mg 
amino acid  g− 1 fresh weight of seedling using a glycine 
standard curve.

Bioassay on comparative effects of biopriming with fungal 
inoculums and C‑PC extract on tomato seedlings 
secondary metabolites contents
The total phenolic content
The total phenolic content of the tomato seedlings was 
assessed from the seedling extract [96] after 95% etha-
nol extraction. According to the protocol, around 200 μL 
of the prepared extract was poured into a test tube with 
1.4 mL of distilled water and 0.1 mL of 50% Folin-Ciocal-
teu phenol reagent. The sample was left for 3 mins and 
then sodium carbonate (0.4%) was added. The resultant 
mixture was kept for 2 h and then subjected to a gentle 
vortex. The absorbance was recorded at 650 nm. The gal-
lic acid was used as a standard against which the total 
phenolic content was measured and expressed as mg/g 
FW of gallic acid equivalent (GAE).
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The polyphenols (flavonoid and shikimic acid) content
The total flavonoid content of the tomato seedlings 
from different treatments was measured by following 
the  AlCl3 colorimetric assay described by Zou et al. [97] 
using quercetin standard curve and was expressed as μg/g 
FW of quercetin equivalent (QE). Seedlings were taken 
and cut into very small pieces; 95% ethanol was added 
to make a fine paste. This mixture turned into a suspen-
sion and was subjected to centrifugation for 10 mins. 
The supernatant (200 μL) was collected and poured into 
a volumetric flask and around 5 mL of distilled water was 
added followed by the addition of 0.7 mL of 5%  NaNO3 
and 0.6 mL of 10%  AlCl3. The resultant solution was put to 
rest for 5 mins. The solution was again left for 1 min after 
adding 3 mL of 1 M NaOH and 2.5 mL of distilled water 
and mixed thoroughly. The absorbance was recorded at 
510 nm using a spectrophotometer versus a blank.

A known seedling fresh weight of tomato seedlings 
was ground in 2 mL 0.25 M HCl and then centrifuged for 
30 min for determination of shikimic acid concentration 
according to Zelaya et  al. [98] using the shikimic acid 
standard curve. The supernatant (50 μL) reacted with 
0.5 mL of a 1% periodic acid and incubated at room tem-
perature for 3 h. After incubation, 0.5 mL 1 M NaOH and 
0.3 mL 0.1 M glycine were added. The absorbance was 
measured at 380 nm.

Determination of hydrolytic enzymes (Amylase 
and protease)
The supernatant obtained from homogenizing 1 g fresh 
seedlings with 50 mM phosphate buffer (pH 7) was used 
to estimate the hydrolytic enzymes activity. The amount 
of starch hydrolyzed by the action of amylases was meas-
ured according to Johnson [99]. Protease activity was 
measured in an azocasein assay [100]. Specific enzyme 
activity was expressed as change in optical density  min− 1.

Statistical analysis, correlation analysis and figure 
preparation
The experimental design used in this study was carried out 
in a completely randomized design of 6 seedlings per treat-
ment and each treatment was repeated in four sets. The 
obtained experimental data were processed by the math-
ematical and statistical methods using the SPSS software 
(version 15) statistical package. Descriptive statistics were 
used to process the obtained data which were expressed as 
mean ± Standard Error (SE). Comparison of mean values 
of all primed and non-primed samples were done using a 
One Way ANOVA test and Duncan’s test at p < 0.05. Pear-
son’s correlation coefficients (r) were carried out to under-
stand the relationship between growth indices and different 

biochemical parameters using SPSS. Figures were assem-
bled using OriginPro 8.5 for data analysis and graphing 
software.
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