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Abstract

Objective: This study aims to identify metabolites with altered levels of expres-

sion in patients with early and progressive stages of Alzheimer’s disease (AD).

Methods: All participants of the study underwent genetic screening and were

diagnosed using both neuropsychological assessment and amyloid imaging

before metabolome analysis. According to these assessments, the patients were

classified as normal (n = 15), with mild cognitive impairment (n = 10), and

with AD (n = 15). Results: Using a targeted metabolomic approach, we found

that plasma levels of C3, C5, and C5-DC acylcarnitines, arginine, phenylalanine,

creatinine, symmetric dimethylarginine (SDMA) and phosphatidylcholine ae

C38:2 were significantly altered in patients with early and progressive stages of

AD. We created a predictive model based on the decision tree that included

three main parameters: age, arginine and C5 plasma concentrations. The model

distinguished AD patients from other participants with 60% sensitivity and

86.7% specificity. For healthy controls, the sensitivity was 85.7% and specificity

was 61.5%. Multivariate ROC analysis to develop a decision tree showed that

our model reached moderate diagnostic power in differentiating between older

adults who are cognitively normal (AUC = 0.77) and those with AD

(AUC = 0.72). Interpretation: The plasma levels of arginine and valeryl car-

nitine, together with subject age, are promising as biomarkers for the diagnosis

of AD in older adults.

Introduction

Alzheimer’s disease (AD) is a growing public health prob-

lem worldwide. AD progresses slowly, taking decades

before clinical symptoms manifest.1–5 The prodromal

stage of AD provides a window of opportunity for treat-

ment to delay the onset of the disease and slow the pro-

gress of neurodegeneration.6,7 Thus, diagnostic methods

for the disease during the prodromal stage are important.

Several methods are based on the detection of amyloid-b
(Ab) and neurofibrillary tangles,8 which begin to form

decades before any symptoms of dementia appear.9 These

first signs of AD have been detected using amyloid-b
positron-emission tomography (PET) imaging. Amyloid

imaging using radiotracers such as Pittsburgh compound

B and 18F-Florbetapir is a promising tool for diagnosing

AD during the prodromal stage.3 The measurement of

Ab42 and tau protein levels in cerebrospinal fluid (CSF)

provides another means of identifying AD at early

stage.10,11 However, these methods are invasive, time-con-

suming, and expensive. Thus, the identification of blood-

based biomarkers capable of indicating early pathology

preceding symptoms is crucial for AD.

Several molecules have been investigated recently as

plasma markers of AD, including folate 12 and a variety

of inflammation-related proteins.13 The ratios of plasma

amyloid-b precursor protein (APP)669–711/amyloid-b
(Ab)1–42 and Ab1–40/Ab1–42 are predictive of patient brain
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amyloid-b status and correlate with the levels of Ab1–42
in CSF.14 Several studies suggest that high blood choles-

terol concentration is a risk factor for AD.15,16 Studies of

a blood-based lipid biomarker panel show conflicting

results, with a set of ten targeted phosphatidylcholine,

lysophophatidylcholine, and acetylcarnitines showing 90%

accuracy in predicting AD,17 while the same methods

applied to a larger cohort failed to replicate these

findings.18

The lack of reproducibility of metabolome study results

is a major obstacle to obtaining reliable blood-based

biomarkers for AD. One contributor to such low repro-

ducibility is the incorrect initial diagnosis of subjects.4

AD is typically diagnosed by three stages of progression:

preclinical, characterized by brain pathology, including

amyloid aggregation and neuronal changes but without

significant clinical symptoms; mild cognitive impairment

(MCI), marked by memory and cognitive problems; and

Alzheimer’s dementia, the final stage of the disease associ-

ated with memory loss and other cognitive problems.7,19

However, the MCI diagnosis is only 50–70% accurate,

even when assessed by an experienced specialist. The

addition of amyloid imaging results to the clinical judg-

ment improves the accuracy rate of diagnosis to 80% or

higher.19,20 Another diagnostic indicator of AD is the

apolipoprotein E e4 allele, which is the strongest risk fac-

tor for sporadic AD.21

Our study aims to identify potential diagnostic

biomarkers of MCI and AD through the analysis of blood

plasma metabolites of subjects carefully diagnosed using

clinical judgment, amyloid imaging results, and

apolipoprotein E status. After identifying several metabo-

lites altered in MCI and AD patients, we develop a pre-

dictive model capable of distinguishing MCI and AD

patients from normal subjects.

Materials and Methods

Diagnostic criteria and grouping

The cohort inclusion criteria are as follows: (1) a Hachin-

ski Ischemic Score <4 and a Geriatric Depression Scale

score < 6; (2) at least 6 grades of education; (3) age 55–
90 years. All individuals were identified as normal con-

trols (NC; n = 15), mild cognitive impairment (MCI;

n = 10), or Alzheimer’s disease (AD; n = 15) using clini-

cal data, family information, and neuropsychological tests

to ascertain meeting further inclusion criteria, as

described below.

The Mini-Mental State Exam (MMSE) is a widely used

test for the elderly with aging, MCI and AD in clinical

practice; it includes tests of orientation, attention, mem-

ory or recall, registration, calculation, language and ability

to follow simple commands. WMS is used to assess mem-

ory deficits, particularly in differentiating between MCI

and normal aging.22–24 The ADAS-cog was used as a diag-

nostic tool to further evaluate mild and moderate AD

which was not performed on subjects in NC and MCI

groups.25

The NC subjects were recruited from a pool of patient

spouses, hospital volunteers, and individuals from the

surrounding community. The NC group inclusion criteria

are as follows: no significant impairment in cognitive

function or daily living activities; a MMSE score of 24–
30; a clinical dementia rating (CDR) of 0; a delayed recall

of story A in the Logical Memory (LM) subtest of the

Chinese version of the Wechsler Memory Scale Logical

Memory III (WMS-III) ≥9 for those with education

≥16 years and ≥5 for those with education 6–15 years;

negative for the Apo Ɛ4 allele.

The MCI group inclusion criteria are as follows: MMSE

score of 24–30; nondemented; CDR 0.5, with a manda-

tory requirement of the memory box score ≥ 0.5; delayed

recall of story A from the LM subtest of the Chinese ver-

sion WMS-III ≤8 for those with education ≥16 years and

≤4 with education 6–15 years; carry at least one copy of

the Apo Ɛ4 allele.

The AD inclusion criteria are as follows: meet the crite-

ria of the Diagnostic and Statistical Manual of Mental

Disorders, 4th edition and National Institute of Neurolog-

ical and Communicative Disorders and Stroke/Alzhei-

mer’s Disease and Related Disorders Association

(NINCDS-ADRDA); carry at least one copy of the Apo

Ɛ4 allele. Disease severity was graded according to the

Clinical Dementia Rating (1, mild; 2, moderate) and

MMSE to determine cognitive function. The protocol was

approved by the institutional review board of Chang

Gung Memorial Hospital (103-3230B, 103-6317C and

104-1812C). The details of each evaluation are further

described in the Data S1.

Genetic analysis of ApoE allele

Genomic DNA was extracted from EDTA blood samples

and used for genotyping. The genetic polymorphism of

the candidate genes was determined using polymerase

chain reaction and verified by restriction fragment length

polymorphism analysis.

Analysis of metabolites

The AbsoluteIDQ180 kit (Biocrates Life Science, Inns-

bruck, Austria) was used to determine metabolite concen-

trations in the serum of all subjects. The kit is based on a

combination of LC-MS/MS assay and direct flow injection

assay, identifying and quantifying 185 endogenous
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metabolites in five different compound classes: 40 acylcar-

nitines, 21 amino acids, 19 biogenic amines, 1 sugar, 15

sphingomyelins, and 90 glycerophospholipids. The assay

was performed using a Waters Acquity UPLC System with

Xevo TQ-S Mass Spectrometry (Department of Labora-

tory medicine at Chang Gung Memorial Hospital)

according to the manufacturer’s instruction. Briefly, the

serum samples were thawed, vortexed and centrifuged at

13,000g. A total of 10 lL of the sample supernatant was

loaded on a filter paper and dried under nitrogen flow.

An amount of 20 lL of 5% phenyl-isothiocyanate was

added for derivatization. After 20-min incubation, the fil-

ter spots were dried under nitrogen flow for 45 min. The

metabolites were then extracted by the addition of 300 lL
of methanol containing 5 mmol/L ammonium acetate

and collected into 96-well plates. The extracts were suit-

able for mass spectrometry analysis. The data were ana-

lyzed by principal components to find variables that

correlated across the samples. Data were analyzed using a

web-based server MetaboAnalyst (www.metaboanalyst.ca)

for metabolomic data analysis.26,27

Statistical analysis

Continuous variables were presented as the mean � stan-

dard deviation, and the differences between groups were

analyzed using the Kruskal–Wallis test. Dunn’s post hoc

analysis was performed to determine differences between

the three CDR groups (0, 0.5, or ≥1) for multiple testing.

Statistically significant markers were identified by com-

paring the plasma concentrations between CDR groups.

The subjects were randomly divided into the training

group and validation group at a ratio of 1:1. Decision tree

analysis was performed using the C5.0 algorithm of R

program, a nonparametric technique. After selecting the

candidate predictors in the training group, the prediction

accuracy was evaluated in the validation group. Sensitivity

and specificity were calculated between the NC, MCI, and

AD groups. Multivariate receiver operating characteristic

(ROC) curve analysis with leave-one-out-cross validation

was used to evaluate the diagnostic power of the selected

markers at baseline and decision tree. All statistical tests

were two-sided (P < 0.05). Statistical analyses were per-

formed using SAS 9.4 (Windows NT version, SAS Insti-

tute, Inc., Cary, NC, USA).

Results

Demographic and metabolome
characteristics

The study cohort included 40 participants: 15 normal

controls, 10 subjects in the MCI group, and 15 in the AD

group. The PET scan was abnormal (>1) for the MCI and

AD subjects and normal (=1) for normal controls. The

mean age of the AD group was significantly higher than

that of the NC group (Table S1). Analysis of the dataset

of 180 metabolites revealed significant differences in the

distribution of C3, C5, C5-DC/C6-OH, arginine, pheny-

lalanine, creatinine, SDMA, and PC ae C38:2 between the

groups (Table S1). Significant differences were observed

in the distribution of C3 and C5 between the MCI and

AD groups; arginine, phenylalanine, and SDMA between

the MCI and NC groups; and creatinine distribution

between all groups.

Validation of the selected characteristics

The age and significantly different metabolome character-

istics were further analyzed using multivariate ROC

(Fig. 1). The results show good discrimination power for

these characteristics between groups (AUC = 0.59–0.76).
We also conducted enforced ROC analysis with two addi-

tional biomarker ratios (Cit/Arg and Kyn/Trp) and found

that the addition of these extra variables decreased the

discrimination power (Fig. 1).

Creating a decision tree and verification of
prediction accuracy

We used decision tree analysis to find the best candidate

predictors of AD and MCI. A 1:1 random assignment was

performed before creating the decision tree. The distribu-

tion of the selected characteristics shows that the random

assignment is similar between the training and validation

groups (Table S2). The only exception is C3 concentra-

tion, which was excluded from further analysis.

Application of the C5.0 decision tree algorithm yielded

good discrimination of Alzheimer disease in the training

group (accuracy, 85%). We found that arginine concentra-

tion, age, and C5 concentration were the best discrimina-

tive variables for Alzheimer’s disease classification (Fig. 2).

The root node was arginine concentration. Participants

with arginine concentration under 104.8 lmol/L were

divided into two groups according to age. The group

under the age of 74 mainly consisted of normal controls,

while the group over 74 years mainly consisted of AD

patients. The second node for the branch of arginine over

104.8 lmol/L was C5 concentration. All participants with

C5 concentration under 0.1 lmol/L were AD patients and

those with C5 over 0.1 lmol/L were either MCI or AD.

After selecting the candidate predictors in the training

group, we applied the predictive model to the validation

group to build a confusion matrix (Table 1). The sensitiv-

ity, specificity, and accuracy of the model were calculated

(Table 2). We found that the accuracy was 60%. The
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group prediction of the model showed the best result for

the NC group, with 85.7% of the group classified cor-

rectly. In the AD group, 60% of the patients were classi-

fied correctly, with the remaining 40% in the NC group.

The poorest result was observed for the MCI group, as

only 37.5% of patients were classified correctly; the

remaining 62.5% were distributed nearly evenly between

the NC and AD groups.

To further evaluate the model, we performed multivari-

ate ROC analysis for the decision tree (Fig. 3). We found

that the model was best suited for discriminating AD

patients (AUC = 0.75). Comparison of the latter ROC

results with those obtained for the collective biomarkers

showed that using the selected markers (arginine, age,

and C5) for creating the decision tree increased the ability

of the model to discriminate AD patients from other sub-

jects (compare Fig. 3 to Fig. 1). Overall, the results of

ROC analysis suggest that the decision tree developed,

while having only moderate diagnostic power, has poten-

tial with further investigations to differentiate cognitively

normal older people from those with AD.

Discussion

To search for potential AD biomarkers, we used a tar-

geted metabolomic approach to assay dozens of blood

plasma metabolites simultaneously. We observed that

acylcarnitines, amino acids, biogenic amines, and phos-

phatidylcholine PC ae C38:2 differ between normal

controls and MCI and AD patients. Post hoc pairwise

comparison showed that C5 and C3 acylcarnitine concen-

trations are significantly lower in AD compared to MCI,

while arginine, phenylalanine, creatinine, and SDMA con-

centrations are elevated in MCI compared to normal con-

trols. Our predictive model based on age and plasma

concentrations of arginine and C5 distinguished AD

patients from other participants with 60% sensitivity and

86.7% specificity. For healthy controls, we observed a sen-

sitivity of 85.7% and specificity of 61.5%. Our results sug-

gest that plasma levels of arginine and valeryl carnitine,

along with subject age, can be used with acceptable diag-

nostic power to differentiate between cognitively normal

and AD adults.

Figure 1. Results of multivariate ROC analysis. ROC analysis plots for pairwise comparison based on CDR values using age and significant

metabolite levels. Results for the combination of age and individual metabolites are shown in the top row. The bottom row contains plots

obtained after adding Cit/Arg and Kyn/Trp ratio biomarkers. The curves show the best delimitation of AUC for each combination. Designation 0

versus non-0 refers to CDR and indicates the power of that particular marker combination to discriminate normal controls from other participants.

Similarly, 0 versus 0.5 refers to discrimination of normal controls from MCI patients (0.5 vs. 1, discrimination between MCI and AD; 1 vs. non-1,

discrimination between AD and non-AD participants).
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The age distribution differed significantly between the

groups is not surprising, as nearly every study reports an

association between increasing patient age and AD pro-

gression.28 However, age is not often used in combination

with metabolic parameters for creating predictive models.

In our study, combining subject age with significant

metabolome characteristics (C3, C5, C5-DC, arginine,

phenylalanine, creatinine, SDMA and PC ae C38:2) in

multivariate ROC analysis provided discriminated normal

controls (AUC = 0.77) and AD (AUC = 0.72) with good

accuracy but with poor accuracy for MCI (AUC = 0.59).

Creating a decision tree with three significant factors- age,

C5 and arginine concentrations slightly increased the pre-

dictive power for AD.

In previous studies, plasma and serum levels of a large

number of metabolites were evaluated for MCI and AD

patients and for healthy older adults who converted to

MCI/AD.29–31 The elevated levels of arginine in MCI and

AD subjects observed in our study are consistent with pre-

vious reports of high levels of l-arginine in stable MCI sub-

jects and in those who converted to AD. These patients

demonstrated significant alterations in l-arginine and poly-

amine metabolism.32 These metabolic pathways are closely

linked, as polyamine synthesis starts with the conversion of

arginine to ornithine by arginase.33 Several groups have

Figure 2. Decision tree model generated in the training group. C5.0 classification tree for the best candidate predictors of AD and MCI. Boxes at

the end of each classification path contain the number of participants satisfying the selected conditions in each of the diagnostic group. The

decision values are given as years of age and lmol/L for arginine and C5 blood plasma concentrations. MCI, mild cognitive impairment; AD,

Alzheimer’s disease

Table 1. Confusion matrix for validation group.

Predict

Golden standard

TotalNormal MCI AD

Normal 6 (30%) 3 (15%) 2 (10%) 11

MCI 1 (5%) 3 (15%) 0 (0%) 4

AD 0 (0%) 2 (10%) 3 (15%) 5

Total 7 8 5 20

Golden standard refers to validation group. Columns represent actual

normal, MCI, and AD participants. Rows represent classification based

on the decision tree model. Accuracy is 60%. MCI, mild cognitive

impairment; AD, Alzheimer’s disease.

Table 2. Prediction of metabolome classification for validation group.

Normal versus

non-normal

MCI versus

non-MCI

AD versus

non-AD

Sensitivity 85.7% 37.5% 60%

Specificity 61.5% 91.7% 86.7%

The values are calculated using the confusion matrix obtained with

the decision tree model. MCI, mild cognitive impairment; AD, Alzhei-

mer’s disease.
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found altered levels of arginase expression in AD brains,

which, along with reduced ornithine decarboxylase and

polyamine levels, suggest a link between arginine metabo-

lism and AD.34,35 The activity and protein expression of

nitric oxide synthase and arginase, along with tissue con-

centrations of L-arginine and its downstream metabolites,

are shown to be altered with AD.36 In CVN-AD mice,

which produce low levels of immune-mediated nitric oxide

(comparable to that of humans), treatment with the argi-

nase and ornithine decarboxylase inhibitor difluoromethy-

lornithine (DFMO) reduced their AD-like symptoms.37

Likewise, another research group showed that people with

superior memory, regarded as the opposite of AD patients,

had lower levels of L-arginine.30 Together, these findings

suggest that altered arginine metabolism plays an essential

role in AD pathogenesis.

Figure 3. Results of multivariate ROC analysis for decision tree construction. The figure shows plots of ROC analysis for pairwise comparison of

the groups based on CDR value using the combination of three markers: age, arginine concentration, and C5 concentration. The curves show the

best delimitation of AUC for each comparison. The compared pairs are the same as those described in Figure 1.
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NO initiates brain lesion development during AD

pathogenesis.38 The production of NO is reflected by an

increase in the citrulline/arginine ratio, which increases

during the development of clinical dementia. Neopterin

concentrations were observed to correlate with the Cit/

Arg ratio only among demented subjects.39 Thus, we

included the Cit/Arg ratio in our analysis. While the pre-

vious findings indicate that the Cit/Arg ratio should be

elevated in patients, we observed no difference in this

ratio between groups in our study.

We report here that the serum concentrations of two

acylcarnitines (C3 and C5) were reduced in AD patients

and elevated in MCI patients. Previous studies have

reported low levels of some acylcarnitines in both AD

and MCI patients.30,40 These results may differ because of

the different methodological approaches and analytical

tools used in the metabolomic analyses. Preanalysis sam-

ple preparation and storage can also contribute to result

variations, as some metabolites may be unstable after one

or two freeze-thaw cycles.41 Another possible explanation

is differences in the cohort size and in demographic and

clinical characteristics of the subjects between these

studies.

Low levels of several acylcarnitines are reported in AD

patients.30 Acylcarnitines are important for the b-oxida-
tion of fatty acids in mitochondria, suggesting that their

deficiency may alter energy metabolism in the brain.42

Consistent with this hypothesis is the observation that

AD patients have significantly lower than normal car-

nitine shuttle activity.43 Disruption of the carnitine shut-

tle may be one cause of mitochondrial dysfunctions

associated with neurodegenerative diseases including

AD.44 In addition to fatty acid metabolism, acylcarniti-

nes are involved in other brain processes that may play

a role in AD pathology, including acetylcholine and

phospholipid synthesis, gene expression modulation,

cholinergic neurotransmission, elimination of oxidative

products, and protection from excitotoxicity.42,45 Acyl-

carnitines are reported to exert neuroprotective effects

and show promising results as potential therapeutic

agents.42,46,47

We should note that numerous acylcarnitines are com-

monly detected in metabolomic assays; thus, the acylcar-

nitines reported as present in low levels in other studies

actually may be different types of acylcarnitine. Surpris-

ingly, we observed no significantly low plasma level for

any acylcarnitine in MCI patients. In addition to method-

ological differences and heterogeneity of the samples,

these discrepant results may be explained by the complex-

ity of AD, with several subtypes characterized by different

mechanisms and pathology progression.48,49 However,

inconsistency of the results can also be explained by the

limitations of our study. First, the sample size, especially

the number of MCI patients, was small and should be

increased in the future studies. Second, the effects habits

such as smoking or alcohol consumption before and dur-

ing the study period should be evaluated. Third, we

focused only on normal controls and stable MCI and AD

patients; longitudinal follow-up study would allow for the

identification of metabolites that changed in concentra-

tion during the conversion from normal to MCI and

from MCI to AD. The present work is a pilot study and

should be built upon taking all these limitations into

account.

In conclusion, we want to emphasize the importance of

accurate diagnosis of subjects before using a metabolomic

approach. Although we have not identified biomarkers

specific for MCI, our results suggest that plasma levels of

arginine and valeryl carnitine along with the subjects’ age

can be used for creating a predictive model with moder-

ate accuracy for differentiating cognitively normal older

adults and those with AD.
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