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ABSTRACT

Motivation: To date, gene set analysis approaches primarily focus on

identifying differentially expressed gene sets (pathways). Methods for

identifying differentially coexpressed pathways also exist but are

mostly based on aggregated pairwise correlations or other pairwise

measures of coexpression. Instead, we propose Gene Sets Net

Correlations Analysis (GSNCA), a multivariate differential coexpression

test that accounts for the complete correlation structure between

genes.

Results: In GSNCA, weight factors are assigned to genes in propor-

tion to the genes’ cross-correlations (intergene correlations). The prob-

lem of finding the weight vectors is formulated as an eigenvector

problem with a unique solution. GSNCA tests the null hypothesis

that for a gene set there is no difference in the weight vectors of the

genes between two conditions. In simulation studies and the analyses

of experimental data, we demonstrate that GSNCA captures changes

in the structure of genes’ cross-correlations rather than differences in

the averaged pairwise correlations. Thus, GSNCA infers differences in

coexpression networks, however, bypassing method-dependent

steps of network inference. As an additional result from GSNCA, we

define hub genes as genes with the largest weights and show that

these genes correspond frequently to major and specific pathway

regulators, as well as to genes that are most affected by the biological

difference between two conditions. In summary, GSNCA is a new

approach for the analysis of differentially coexpressed pathways that

also evaluates the importance of the genes in the pathways, thus

providing unique information that may result in the generation of

novel biological hypotheses.

Availability and implementation: Implementation of the GSNCA test

in R is available upon request from the authors.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Large-scale biological research, including genetic linkage/associ-
ation studies, copy number variation, microarray and RNA-Seq

expression experiments, typically compare two or more different

phenotypes to infer a unique genetic background, associated with

a particular phenotype. A decade ago, the methods for such

analyses were dominated by univariate two-sample statistical

tests, which frequently fell short from a statistical and a biolo-

gical perspective because of two reasons. First, small changes in

expression cannot be captured for a single gene using two-sample

tests (e.g. t-statistic) with the correction for multiple testing

(Mootha et al., 2003). Second, genes do not work in isolation

but interact with each other collectively; as a consequence, stat-

istical tests need to account for a multivariate nature of expres-

sion changes (Emmert-Streib and Glazko, 2011; Glazko and

Emmert-Streib, 2009). These shortcomings catalyzed the appear-

ance of conceptually new methodologies for the analysis of gen-

omic data. Instead of considering a single gene as an expression

unit, new methodologies started to operate with gene sets (cor-

responding, e.g. to biological pathways), considering a gene set

as the unit of expression. The first test of this kind was the gene

set enrichment analysis (Mootha et al., 2003). To date many

methodologies for testing the differential expression of gene

sets (molecular pathways, biological processes) have been sug-

gested and are collectively named gene set analysis (GSA)

approaches (Ackermann and Strimmer, 2009; Dinu et al.,

2009; Emmert-Streib and Glazko, 2011; Huang da et al., 2009).

GSA approaches can be either competitive or self-contained.

Competitive approaches compare a gene set against its comple-

ment that contains all genes except genes in the set, and self-

contained approaches compare whether a gene set is differen-

tially expressed between two phenotypes (Goeman and

Buhlmann, 2007; Tian et al., 2005). Unfortunately, some com-

petitive GSA approaches are influenced by the genomic coverage

and the filtering of the data and can increase their power by the

addition of unrelated data and even noise (Tripathi et al., 2013).

Owing to these problems, we focus in this article on self-

contained methods only. Self-contained approaches, depending

on the statistics used for the testing, test different null hypotheses

(Emmert-Streib and Glazko, 2011; Glazko and Emmert-Streib,

2009; Rahmatallah et al., 2012). The possibility to formulate

different statistical hypotheses enables the formulation and

exploration of different biological hypotheses. However, for

GSA approaches, testing hypotheses other than the equality of

the mean expression vectors remains underexplored. We recently

suggested to extend a univariate analysis of differential gene vari-

ability (Ho et al., 2008) to a multivariate case of gene sets

(Rahmatallah et al., 2012) with a multivariate non-parametric

‘radial’ Kolmogorov–Smirnov test, sensitive to alternatives that*To whom correspondence should be addressed.
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have similar mean vectors but are different in their scale

(Friedman and Rafsky, 1979). We found that for several

tumor types, the pathways, detected exclusively by the radial

Kolmogorov–Smirnov test, were mostly tumor-specific, whereas

the pathways with differences in the mean expression vectors

were detected simultaneously in different tumor types

(Rahmatallah et al., 2012). The main focus of this article is to

develop a novel multivariate differential coexpression analysis

approach for gene sets.

The first approach for testing the differential coexpression of

gene pairs, tested the equality of pairwise correlations to identify

gene pairs with correlated expression patterns in one phenotype

but not the other (Dawson and Kendziorski, 2012; Fukushima,

2013; Yu et al., 2011). Its extension to the general multivariate

case, involving gene sets with42 genes, depends on the biological

context. When there are no a priori defined gene sets available,

the simplest way of differential coexpression analysis, imple-

mented in the R package CoXpress, is to find clusters of coex-

pressed genes in one condition and check whether these clusters

show no correlation in another condition (Watson, 2006).

Another approach, e.g. implemented in the R package

DiffCoEx, constructs adjacency matrices of all genes under

different conditions, transforms adjacency matrices into a

matrix of adjacency differences and uses a topological overlap

measure to infer clusters of differentially coexpressed genes

(Tesson et al., 2010). When there are a priori defined gene sets

available, the differential coexpression of gene sets can be found

by using the gene sets coexpression analysis (GSCA) (Choi and

Kendziorski, 2009). In this approach, the Euclidian distance be-

tween two correlation vectors (constructed from diagonal matri-

ces of pairwise correlations for different conditions) is calculated

and the significance of the difference is estimated using permu-

tation test. The differentially coexpressed gene sets (dCoxS)

method is similar to GSCA in its overall strategy. First, the

gene’s pairwise coexpressions are characterized separately for

two conditions, and second, the similarities of these characteris-

tics are estimated (Cho et al., 2009). The dCoxS uses relative

entropy matrices in place of correlation matrices, as used

by GSCA, and the correlation coefficient between the upper-

diagonal elements of these matrices as a measure of their simi-

larity. The new property of dCoxS is that the coexpression of two

different pathways can also be estimated (Cho et al., 2009). There

are also other approaches for the differential coexpression ana-

lysis of gene sets (Emmert-Streib, 2007; Freudenberg et al., 2010;

Yu and Bai, 2011); the common aspect of all these approaches is

that they account for changes in aggregate measures of pairwise

correlations only.
In this article, we present a novel approach that assesses multi-

variate changes in the gene coexpression network between two

conditions. Importantly, we do not infer ‘gene coexpression net-

works’ explicitly, but, instead, we estimate net correlation

changes by introducing for each gene a weight factor that char-

acterizes its cross-correlations in the coexpression networks.

Weight vectors in both conditions are found as eigenvectors of

correlation matrices with zero diagonal elements. The Gene Sets

Net Correlations Analysis (GSNCA) tests the hypothesis that

for a gene set there is no difference in the gene weight vectors

between two conditions.

Furthermore, we suggest a new graphical visualization to pre-
sent the full coexpression network that highlights the most highly

correlated genes, using the union of the first and second min-

imum spanning trees (MST2). We show that genes in the center

of MST2 have large weights, and we demonstrate that hub

genes—genes with the largest weight in the pathways—

correspond in real data frequently to pathway regulators. In pre-

vious studies, MST was mainly used for cluster analysis in gene
expression studies. For instance, Xu et al. (2001) suggested gene

expression data clustering based on MST, which rigorously con-

verts a multidimensional clustering problem to a tree partitioning

problem. Prom-On et al. (2011) presented a method to improve

the biological relevance in the inference of functional modules

from the gene expression data by enhancing the structure of a

weighted gene coexpression network using MST. However, to
our knowledge, no attempt has been made so far to present

the full coexpression network that highlights the most highly

correlated genes via MST2 structure.
We choose to compare GSNCA with the GSCA (Choi

and Kendziorski, 2009), as the idea behind GSCA—comparing

pairwise measures of the genes coexpression between two

conditions—is frequently used in other approaches (e.g.

dCoxS). The conceptual differences between our approach and

GSCA are illustrated in simulations as well as in the application

to two gene expression data sets.

2 METHODS

In the following, we are considering two biological conditions with dif-

ferent outcomes, with n1 samples of expression measurements of p genes

(that form a gene set) for the first, and n2 samples of measurement of the

same p genes for the second conditions. Let Rl with elements rij denote a

p� p gene correlation matrix (l¼ 1, 2) for a given condition. Let

Nl denote a completely connected coexpression network (l¼ 1, 2), with

p nodes (genes) and p(p-1)/2 edges, where the weight of an edge between

any two nodes i and j is given by 1- jrijj (correlation distance).

The organization of this section is as follows: the GSNCA and the

GSCA, we use for comparison, are explained in Section 2.1. The MST

approach for the visualization of a backbone of coexpression network is

given in Section 2.2, and the simulation setup is outlined in Section 2.3.

Section 2.4 presents the biological datasets we use to demonstrate the

performance of GSNCA and GSCA. All computations in this work

were implemented using the R (version 2.15.3) computing language.

2.1 Gene sets net correlations analysis

To quantitatively characterize the importance of gene i in a correlation

network, we introduce a weight (wi) and set wi to be proportional to a

gene’s cross-correlation with all the other genes. Then, the objective is to

find a weight vector w, which achieves equality between a gene weight and

the sum of its weighted cross-correlations for all genes simultaneously.

Thus, genes with high cross-correlations will have high weights that may

indicate their regulatory importance. This problem can be formulated as

a system of linear equations

wi ¼
X
j 6¼i

wjrij, 1 � i � p ð1Þ

or equivalently in matrix form

R� Ið Þw ¼ w ð2Þ

This is an eigenvector problem that has a unique solution when the

eigenvalue l R�Ið Þ ¼ 1, w40. Because the matrix R� Ið Þ is not guaranteed
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to have eigenvalue l R�Ið Þ ¼ 1, we introduce a multiplicative factor, �,

which ensures a proper scaling for eigenvalues and solves the following

problem

� R� Ið Þw ¼ w ð3Þ

Because the matrix R is non-negative, irreducible, symmetric and has

unity diagonal elements, its eigenvalues are real and from the Perron–

Frobenius theorem for non-negative matrices (Meyer, 2001); it follows

that R has a largest eigenvalue l1 ¼ l�41, with a multiplicity of 1 and

the other (p-1) eigenvalues all satisfy lj
�� ��5l� for j 6¼ 1. This eigenvalue

corresponds to a unique positive eigenvector v* such that Rv� ¼ l�v�.

PROPOSITION. For a non-negative irreducible correlation matrix R, solving

� R� Ið Þw ¼ w as an eigenvector problem for w40 has the unique solu-

tion w¼ v*, where v* is the positive eigenvector corresponding to the

largest real eigenvalue of R (l*). This solution is achievable if the follow-

ing condition is met

� ¼
1

l� � 1
, l� 6¼ 1 ð4Þ

PROOF OF PROPOSITION. We solve � R� Ið Þw ¼ w for w40 as an eigen-

vector problem where the unique solution is the eigenvector of matrix

� R� Ið Þ corresponding to l�ðR�IÞ ¼ 1. Setting � ¼ 1=l�R�Ið Þ where l�R�Ið Þ

is the largest eigenvalue of the matrix R� Ið Þ guarantees that the largest

eigenvalue of matrix � R� Ið Þ will be 1, and consequently the correspond-

ing eigenvector is the unique solution. Because the matrices R and

� R� Ið Þ have the same eigenvectors, the unique solution is w¼ v*,

where v* is the positive eigenvector corresponding to the largest eigen-

value of R. Because the eigenvalues of the matrix R� Ið Þ are exactly 1 less

than the eigenvalues of matrix R, � ¼ 1=l�R�Ið Þ ¼ 1= l� � 1ð Þ, whereas l�

is the largest eigenvalue of R.

As a test statistic, wGSNCA, we use the L1 norm between the scaled

weight vectors w(1) and w(2) (each vector is multiplied by its norm to

scale the weight factor values around one) between two conditions,

wGSNCA ¼
Xp
i¼1

w
ð1Þ
i � w

ð2Þ
i

���
��� ð5Þ

We use this test statistic to test the hypothesis H0: wGSNCA¼ 0 against the

alternativeH1: wGSNCA 6¼ 0. The P-values for the test statistic are obtained

by comparing the observed value of the test statistic to its null distribu-

tion, which is estimated using a permutation approach. We call this test

GSNCA. The GSNCA test is illustrated in Figure 1. We found that the

introduced weights are somewhat similar to the eigenvector centralities,

defined for binary (adjacency) matrices.

The performance of GSNCA is compared with the performance of

GSCA (Choi and Kendziorski, 2009). Briefly, GSCA works as follows.

For all p(p-1)/2 gene pairs, GSCA calculates correlations in the two bio-

logical conditions. The Euclidean distance, adjusted for the size of a gene

set is used as a test statistic,

DGSCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pðp� 1Þ=2

Xpðp�1Þ=2

k¼1

�ð1Þk � �
ð2Þ
k

� �2
vuut ð6Þ

Here, k indexes the gene pairs within the gene set, and �ðiÞk denotes the

correlation of gene pair k in condition i. We would like to note that in this

context, the Euclidian distance is similar to the graph edit distance, fre-

quently used by methods aiming to detect the differential correlation

between pathways (Emmert-Streib, 2007). GSCA tests the hypothesis

H0: DGSCA¼ 0 against the alternative H1: DGSCA 6¼ 0.

2.2 Minimum spanning trees

For a graph G(V,E) where V is the set of vertices and E is the set of edges,

the first MST is defined as the acyclic subset T1�E that connects

all vertices in V and whose total length
P

i, j2T1
dðvi, vjÞ is minimal.

The second MST is defined as the MST of the reduced graph G(V,

E-T1). The union of the first and second MST (denoted by MST2), con-

structed from using correlation distances, gives the minimal set of essen-

tial links (interactions) among genes, which we interpret as a network of

functional interactions. Each vertex in the MST2 has a minimum degree

of 2 if all the p(p-1)/2 pairwise correlations between genes are considered.

A gene that is highly correlated with all the other genes tends to occupy a

central position and has a relatively high degree in the MST2 because the

shortest paths connecting the vertices of the first and second MSTs tend

to pass through this gene. In contrast, a gene with low intergene correl-

ations most likely occupies a non-central position in the MST2 and has a

degree of 2. The weight factors, inferred from GSNCA, correlate to some

extent with genes centralities in the MST2: genes with large weights are

placed near the center of the MST2, and genes with small weights are

placed on the periphery (see Section 3.2 for examples). Adopting network

terminology, a gene with the largest weight is a hub gene, coexpressed

with all the other genes in a pathway. In Section 3, we illustrate a coex-

pression analysis of gene sets with MST2 and discuss the interpretation of

hub genes. The MST2 for selected pathways of biological datasets are

provided in Supplementary Materials S1 and S2.

2.3 Simulation setup

To evaluate the performance of GSNCA and GSCA in a fully controlled

setting, we designed simulation experiments that mimic real expression

data as close as possible. In a real biological setting, not all genes in a gene

set are coexpressed, and intergene correlations vary in strength.

Therefore, we introduced two parameters: �, the percentage of genes,

truly coexpressed in a gene set (detection call), and r, the strength of

intergene correlation. It is important to understand how exactly these

parameters influence the power of different tests.

Fig. 1. Schematic diagram of GSNCA. Shown are expression samples

from a single set of p genes in two biological conditions
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We simulated two samples of equal size, N/2 (N¼ 40) from

p-dimensional normal distributions N(0,�1) and N(0,�2), representing

two biological conditions with different outcome. We test the null hypoth-

esisH0: wGSNCA¼ 0, where wGSNCA is found from Equation (5). Two cases

were considered: the number of genes in a gene set (pathway) is relatively

small (p¼ 20) and relatively large (p¼ 100 and p¼ 200). To ensure that �1

and �2 are positive definite, two different scenarios were studied.

First, �1 was set to Ip�p and �2 was selected such that its elements are

�ij ¼
r
0
1

i 6¼ j, 8i, j � �p
i 6¼ j,8i, j4�p

i ¼ j:

8<
:

For the � parameter, the proportion of genes truly coexpressed in a gene

set, we consider �2 {0.25, 0.5, 0.75, 1}, and for the parameter r, control-

ling the strength of the intergene correlations we consider r2 {0.1, 0.2, . . . ,

0.9}. Figure 2a and b illustrate this setup for p¼ 20 and �¼ 0.25 where

both correlation matrices under the alternative hypothesis are shown.

Dark and light colors represent high and low correlations, respectively.

This design presents a gene set with low intergene correlations in condi-

tion 1 (Fig. 2a) and one group of highly coexpressed genes in condition 2

(Fig. 2b). The purpose of the design is to demonstrate a fundamental

difference between GSCA and GSNCA. The power of GSCA is expected

to increase as r, as well as the size of the highly coexpressed group of

genes in condition 2 increase. Instead, the power of GSNCA is expected

to increase as the difference in intergene correlations between two condi-

tions increases. If all genes (�¼ 1) are highly coexpressed for condition 2,

the coexpression matrices in the two conditions are R2 � Ið Þ ¼ r R1 � Ið Þ.

The eigenvectors for both matrices are the same and GSNCA does not

detect changes regardless of the value of r. The maximum change in the

coexpression structure between condition 1 and 2 using this design occurs

when half of the genes (�¼ 0.5) are highly coexpressed in condition 2.

That is, GSNCA should have the highest power when � ¼ 0.5.

Second, for both �1 and �2 we form diagonal blocks of equal size �p,

where � is the ratio of block size to gene set size (p). Then, for each block

separately the first scenario is reproduced. Hence, each block will have ��p

genes with intergene correlation specified by r, whereas all the other genes

in the block have zero correlations. The locations of the ��p coexpressed

genes inside each block are assigned differently for �1 and �2 under al-

ternative hypothesis. Although for �1 these genes occupy the upper-left

corner of the block, for �2 they occupy the lower-right corner. Figure 2c

and d illustrates this setup for p¼ 20, �¼ 0.25 and �¼ 0.6 where both

correlation matrices under the alternative hypothesis are shown. Dark and

light colors represent high and low correlations, respectively. Depending

on �, the two alternate coexpressed gene groups in �1 and �2 may have a

few common genes (when �40.5) or may be exclusive (when � � 0.5).

Figure 2c and d shows four common genes between highly coexpressed

gene groups. All intergene correlations outside the blocks are set to zero or

a small value. This design presents a gene set with low intergene correl-

ations except for selected groups of highly coexpressed genes. The mem-

bership of the genes in these groups is changing between the two

conditions with the possibility of having a few common members between

the two conditions (when �40.5). Because the intergene correlation and

the structure of the coexpression matrix R vary between the two condi-

tions, both GSCA and GSNCA should detect changes.

2.4 Biological data

We illustrate the GSNCA approach using the NCI-60 cell lines (p53) and

acute lymphoblastic leukemia (ALL) datasets. The p53 dataset comprises

50 samples of NCI-60 cell lines differentiated based on the status of the

TP53 gene: 17 cell lines carrying normal (wild type,WT) TP53 gene and 33

cell lines carrying mutated TP53 (MUT) (Olivier et al., 2002; Subramanian

et al., 2005). For this dataset, probe level intensities were quantile normal-

ized and transformed to the log scale. The ALL dataset consists of micro-

arrays from 128 different individuals with acute lymphoblastic leukemia

(ALL). There are 95 sampleswithB-cell ALL (Chiaretti et al., 2004) and 33

with T-cell ALL (Chiaretti et al., 2005). Tumors carrying the BCR/ABL

mutation (37 samples) were compared to those with no cytogenetic

abnormalities (42 samples). To normalize samples, the robust multiarray

analysis procedure (Irizarry et al., 2003) was used.

The microarray platforms for the p53 and ALL datasets are, respect-

ively, hgu133plus2 and hgu95av2 with Affymetrix gene identifiers. Genes

without mapping to Entrez and Symbol identifiers were discarded. Probes

with duplicate identities were assessed and the probe with the largest

absolute value of t-statistic between two conditions was selected as a

gene match. Gene sets were taken from the C2 pathways set of the mo-

lecular signature database (MSigDB) (Liberzon et al., 2011; Subramanian

et al., 2005; Wu and Smyth, 2012) where a total of 3272 pathways are

present. Pathways with 515 or 4500 genes were discarded and the

resulted dataset comprised 8806 genes and 2360 pathways to analyze.

3 RESULTS

3.1 Simulation study

3.1.1 Type I error rate Table 1 presents the estimates of the

attained significant levels for the GSCA and GSNCA tests (1000

independent simulations were used). As can be seen, the esti-

mates of Type I error rate when �1¼�2¼ I under different par-

ameter settings for both tests are similar and rather conservative.

3.1.2 The power of tests to detect changes in correlation
structure Figure 3 presents power estimates under the first
simulation scenario (Section 2.3) for different parameter settings.

For each parameter setting, 1000 independent simulations were

used and the average (mean) power is shown.
First, consider the case when 25% of genes in a gene set are

coexpressed (�¼ 0.25). This is highly plausible for real expression

data, as not many genes in a gene set are highly coexpressed

(Montaner et al., 2009; Tripathi and Emmert-Streib, 2012). The

GSNCA shows higher power than GSCA for all settings (p¼ 20,

100, 200). Second, consider the case when 50% of genes in a gene

set are coexpressed (�¼ 0.5). Both tests show similar power when

the size of gene set is relatively small (p¼ 20). However, when the

size of gene set is relatively large (p¼ 100 and p¼ 200) the

GSNCA outperforms the GSCA. Third, consider the case

when 75% of genes in a gene set are coexpressed (�¼ 0.75).

GSCA outperforms GSNCA when the size of gene set is rela-

tively small (p¼ 20). However, their performance becomes similar

when the number of genes increases (p¼ 100, p¼ 200). Fourth,

consider the case when 100% of genes in a gene set are coex-

pressed (� ¼ 1). This case illustrates a clear-cut difference in

performance between GSNCA and GSCA. GSNCA has the

highest power when �¼ 0.5 (see Section 2.3 for detail).

Fig. 2. (a and b) The correlation matrices for the first simulation setup in

two conditions with p¼ 20 and �¼ 0.25. (c and d) The correlation matri-

ces for the second simulation setup in two conditions with p¼ 20,

�¼ 0.25 and �¼ 0.6. Dark and light colors represent high and low

correlation values
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Figure 4 presents power estimates under the second simulation

scenario (see Section 2.3) for different parameter settings. For all

simulations, we set �¼ 0.25 and used �¼ {0.6, 0.4, 0.5} for

p¼ {20, 100, 200}, respectively. These simulation parameters

result in 3, 10 and 25 truly coexpressed genes for p¼ 20, 100

and 200, respectively. The results show that GSCA outperforms

GSNCA when the size of the gene set is relatively small (p¼ 20).

When p is 100, an opposite trend is observed, andwhen p is further

increased to 200, GSNCA outperforms GSCA. It is also worth

noting that when the two alternate coexpressed gene groups in �1

and �2 are exclusive, the detection power of GSNCA increases as

all genes in both of these groups will show high net coexpression

change between two conditions. Common genes between these

groups will have the same net coexpression between the two

conditions.

To summarize the simulation results, GSNCA outperforms

GSCA when the size of gene set is relatively large and when

changes in coexpression non-uniformly affect pathway members.

GSCA performs the best when all genes in a pathway are differ-

entially coexpressed.

3.2 P53 dataset

To study the tests performance, we categorized pathways into

three groups: detected exclusively by GSNCA, exclusively by

GSCA and by both. The number of pathways detected exclu-

sively by GSNCA, GSCA and both were, respectively, 130, 55

and 15. A complete list of these pathways is provided in

Supplementary Table S1.

Pathways found by GSCA and GSNCA approaches fall into

four major categories: (i) tumorigenesis, (ii) monogenic changes

in tumors, (iii) signaling pathways and (iv) changes in metabol-

ism. In turn, every category can be additionally subdivided into

two more specific categories: (i) tumor signatures and compara-

tive analysis of tumor signatures, (ii) fusions and single gene

targeting, (iii) response to anticancer treatment and general

system response and (iv) cellular and nucleic acid metabolisms

(Supplementary Table S2). GSCA approach finds more path-

ways, related to metabolism, whereas GSNCA preferentially de-

tects signaling pathways—response to anticancer treatment and

general system response. The biological context of differences

between pathways, found exclusively by GSNCA and GSCA

reflects the difference in null hypotheses, tested by these

approaches. GSCA tests the hypothesis that the averaged differ-

ence among all pairwise correlations is equal to zero, whereas

GSNCA tests that the difference between two weight vectors,

corresponding to genes net correlations, is equal to zero.
Cancer agents act on molecular targets related to p53 that are

frequently hub genes (see later in the text). Mutation in p53

causes changes in targets interactions with the rest of the path-

way and consequently changes in their weights, whereas overall

average correlation for a pathway may remain the same. Several

aspects of cellular metabolism are also affected by changes in p53

status: p53 has been shown to regulate TP53-induced glycolysis,

synthesis of cytochrome c oxidase and damage-regulated autop-

hagy (Jones and Thompson, 2009; Vousden and Ryan, 2009).

Thus, most metabolic networks should be affected by mutated

p53 indirectly, through reduced nutrient or energy levels, corres-

ponding to changes in average correlations between two

conditions.

Fig. 3. The power curves of GSNCA and GSCA for the first simulation

setup when the alternative hypothesis is true (N¼ 40)

Fig. 4. The power curves of GSNCA and GSCA for the second simula-

tion setup when the alternative hypothesis is true (N¼ 40)

Table 1. Type I error rate for GSNCA and GSCA; �¼ 0.05

GSNCA GSCA p¼ 20 p¼ 60 p¼ 100

n1¼ n2¼ 10 0.054 0.051 0.050

0.046 0.048 0.046

n1¼ n2¼ 20 0.050 0.051 0.050

0.047 0.048 0.048

n1¼ n2¼ 30 0.049 0.051 0.047

0.048 0.051 0.049

364

Y.Rahmatallah et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt687/-/DC1
,
1
o
2
3
4
1
;
2
;
3
;
4
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt687/-/DC1
ile
 - 
ile
below
ile
,


To illustrate the difference between GSCA and GSNCA

approaches quantitatively, for each set of pathways, detected

exclusively by GSNCA, exclusively by GSCA and by both, we

found (i) the average difference in weight factors between two

phenotypes, WT and MUT (average wGSNCA) and (ii) the differ-

ence in average correlations between two phenotypes (Fig. 5).

Pathways detected exclusively by GSNCA or by both tests

show higher differences in weight factors than pathways detected

exclusively by GSCA, whereas pathways detected exclusively by

GSCA show higher difference in average correlations (Fig. 5).

This observation is in agreement with our qualitative analysis of

biological differences between pathways, exclusively detected by

different approaches.

3.2.1 Hub genes GSNCA identifies hub genes—genes with the

largest weights in each pathway. Hub genes provide useful bio-

logical information beyond the test result that a pathway is dif-

ferentially coexpressed between two conditions. In what follows,

we discuss several examples of hubs functional roles in pathways

identified using GSNCA approach. MST2 of all significant path-

ways for p53 data and hub genes with corresponding weights are

provided in Supplementary Material S1).

Major regulator. LU_TUMOR_VASCULATURE_UP (Fig. 6)

pathway comprises genes overexpressed in ovarian cancer endo-

thelium (Lu et al., 2007). In the original study, TNFAIP6 (tumor

necrosis factor, �-induced protein 6) identified in our analysis as

hub gene (Fig. 6a) was 29.1-fold overexpressed in tumor endothe-

lium, and was suggested to be specific for ovarian cancer vascu-

lature (Lu et al., 2007). It indicates that TNFAIP6 can be an

important regulator of ovarian cancer, and its property of being

a hub enhances the original observation. When p53 is mutated

(Fig. 6b) hub gene is VCAN, containing p53 binding site. Its ex-

pression is highly correlated with p53 dosage (Yoon et al., 2002).

Thus, both hub genes provide adequate information about the

underlying biological processes. Interestingly, in this example

TNFAIP6 has the highest degree and betweenness centralities,

whereas VCAN does not (data not shown).

Another interesting example is YAO_HOXA10_TARGETS_

VIA_PROGESTERONE_DN pathway (Yao et al., 2003). The

authors show that Hoxa-10 mediates proliferation of uterine

stromal cells in response to progesterone, and the pathway con-

sists of Hoxa-10 downregulated targets. GSNCA identifies

Hoxa-10 as hub gene for those targets, in agreement with experi-

mental evidence (Yao et al., 2003).
Specific regulator. Trabectedin (ET-743) induces a delay in S

phase and an arrest in G2/M phase in human cancer cells (Gajate

et al., 2002). GAJATE_RESPONSE_TO_TRABECTEDIN_

DN pathway (Fig. 7) presents genes, downregulated in response

to ET-743. For p53 wild type data, hub gene is STAG1 (stromal

antigen 1, Fig. 7a) that encodes a component of cohesin, a multi-

subunit protein complex that provides sister chromatid cohesion

and has a specific function in cell division. When p53 is mutated

(Fig 7b), hub gene is CDK14 (cell division protein kinase 14) that

controls overall cell cycle progression and cell proliferation. In

this example, hub genes in both conditions also have highest

degree and betweenness centralities (data not shown). R package

igraph (version 0.6.5) was used for network visualization.
The p53 target. p53 is a major tumor suppressor protein, and

44.4% of all pathways, found by GSNCA are related to tumori-

genesis (Supplementary Table S2). It is logical to assume that p53

and its targets (611 genes, www.genecards.org) should be en-

riched in these pathways. The p53 targets frequently occupy

hub positions in the case of p53 WT (hypergeometric test

P¼ 1.611� 10�5).
This demonstrates that the property of being hub correlates

with supposed biological function. It should be noted that hub

Fig. 5. (a) The difference in average correlations and (b) the average

difference in weight factors between the two phenotypes detected by dif-

ferent approaches for p53 dataset

Fig. 6. MST2s of LU_TUMOR_VASCULATURE_UP coexpression

network. (a) MST2 for p53 WT, the hub gene is TNFAIP6 and (b)

MST2 for p53 MUT, the hub gene is VCAN

Fig. 7. MST2s of GAJATE_RESPONSE_TO_TRABECTEDIN_DN

coexpression network. (a) MST2 for p53 WT, the hub gene is STAG1

and (b) MST2 for p53 MUT, the hub gene is CDK14
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genes in pathways detected exclusively by GSCA showed no

significant enrichment (P¼ 0.095) in p53 targets.
Overall, the analysis of hub genes provides biologically rele-

vant information about their role in the underlying processes: it

highlights genes, major and specific pathways regulators and also

genes that are affected by global difference between two condi-

tions, in this case by mutation in p53 gene. Thus, hub genes can

help identify new biomarkers of tumor progression, metastasis

and other markers of major phenotypic changes.

3.3 ALL dataset

For the ALL dataset, the number of pathways detected exclu-

sively by GSNCA, GSCA and both were, respectively, 59, 162

and 27. Pathways detected exclusively by GSNCA or by both

tests again show higher differences in the weight factors than

the pathways detected exclusively by GSCA; differences in the

average correlations among the three groups of pathways are less

pronounced than in the case of p53 data (Fig. 8). A complete list

of these pathways with their corresponding GSNCA and GSCA

P-values is provided in Supplementary Table S3. MST2 of all

significant pathways for ALL data and hub genes with corres-

ponding weights are provided in Supplementary Material S2.
Next, we selected BCR/ABL-related genes (350 genes, www.

genecards.org) and examined the KEGG_CHRONIC_

MYELOID_LEUKEMIA pathway, known to be specifically

associated with the BCR/ABL mutation. This pathway has 28

BCR/ABL-related genes (out of 70 genes), resulting in signifi-

cant enrichment (hypergeometric test P¼ 3.585� 10�21,

Supplementary Table S3). KEGG_CHRONIC_MYELOID_

LEUKEMIA was detected exclusively by GSNCA with high

significance (P¼ 0.005). Although GSCA detects pathways

with significant differences in correlations, it failed to detect

this pathway (P¼ 0.219).

From the analysis of both datasets, we conclude that changes

in net correlations, overlooked by tests measuring average

correlation changes, are important and point toward pathways
that are crucially involved in phenotypic changes between two
conditions.

4 DISCUSSION

In this article, we proposed a new multivariate statistical test,

GSNCA that detects significant changes in the coexpression
structure between two different biological conditions. This rep-

resents a major improvement over earlier approaches that com-
pare averaged pairwise correlations, or other pairwise measures
of coexpression, because our approach is able to detect changes

previous approaches would miss. This strength of GSNCA stems
from including all cross-correlations of a single gene. In this way,
GSNCA is accounting for the multivariate structure of the data.

The analyses of the p53 and the ALL datasets confirmed that
the principal difference between GSNCA and GSCA is in the
ability of the former test to detect pathways with changes in the

net correlation structure. For the p53 data set, GSNCA prefer-
entially detects signaling pathways—response to anticancer treat-
ment and general system response, whereas GSCA finds more

pathways related to metabolism. Anticancer treatments fre-
quently involve cancer agents that act on molecular targets
such as p53 and p53-related genes. In agreement, GSNCA pref-

erentially identifies pathways with p53-related hub genes (see
later in the text) in one phenotype, but not the other, reflecting

net correlation changes caused by differences in the p53 status. In
turn, GSCA preferentially identifies pathways with averaged cor-
relation changes, as we would expect for metabolic pathways

affected by p53 status through homeostatic regulation of
energy and amino acids metabolisms. Pathways detected exclu-
sively by GSNCA show higher differences in weight factors than

pathways detected exclusively by GSCA, whereas pathways
detected exclusively by GSCA show higher differences in the
average correlations (Fig. 5). For the ALL dataset the difference

between pathways, identified by GSCA and GSNCA is
explained similarly (Fig. 8).
GSNCA has an interesting property that we discuss in more

detail here. The accurate reconstruction of gene networks from
experimental data is considered a major goal of systems biology
(Stolovitzky et al., 2007). Depending on the biological context of

the problem, there are many approaches available (Emmert-
Streib et al., 2012), and the most commonly used methods are
based on correlation measures (Zhang and Horvath, 2005), in-

formation-theoretic approaches (Faith et al., 2007; Margolin
et al., 2006; Meyer et al., 2007) and probabilistic graphical

models (Friedman, 2004; Friedman et al., 2000). Our approach
does not infer coexpression networks but uses the structure of the
full coexpression network encoded in its correlation matrix to

approximately identify changes in coexpression networks be-
tween two conditions. Thus, GSNCA actually avoids the prob-
lem of network inference and gets directly to the question that

usually motivates the network inference—what are the differ-
ences in coexpression networks. Because the network inference
step can be computational intense and method-dependent, this

can be a useful property when the research question is the
difference between coexpression networks.
Furthermore, we introduced a new way to visualize coexpres-

sion networks with all correlations present, using the union of the

Fig. 8. (a) The difference in average correlations and (b) the average

difference in weight factors between the two phenotypes detected by dif-

ferent approaches for ALL dataset
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first and second MST2. MST2 is constructed using correlation

distance and by construction, genes in the center of the MST2

have large weights. The analysis of the p53 data suggests that

genes with large weights—hub genes—have interesting biological

properties. The hubs frequently correspond to pathway regula-

tors, and in many cases a functional difference between hub

genes in two conditions reflects the global change underlying

the different phenotypes. Actually it is expected, as hub genes

with large weights may have high degree and betweenness cen-

tralities that are considered to be frequent indicators of genes

importance (Gu et al., 2012). Interestingly, the degree and

betweenness centralities were the highest for hub genes for

both conditions in one example (Fig. 7) but correlated with

high weight of hub gene in just one condition in another example

(Fig. 6). In practice, it means that the suggested weights some-

times correlate with the centrality measures, but generally char-

acterize node importance differently. Thus, hub genes identified

by GSNCA can be interesting candidates for further biological

studies because, depending on the study, they may represent

regulators of tumor progression, drug targets or critical pathway

switches.

In sum, we presented a novel approach that characterizes dif-

ferences in coexpression networks, without requiring the network

inference step. In general, GSCNA should be a valuable addition

to GSA approaches because (i) it identifies differentially coex-

pressed pathways that are overlooked otherwise, (ii) eigenvectors

are computed efficiently and (iii) it provides information about

the importance of genes in pathways that may result in new

biological hypotheses.
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