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Influenza is a serious global health threat that shows varying pathogenicity among different
virus strains. Understanding similarities and differences among activated functional
pathways in the host responses can help elucidate therapeutic targets responsible for
pathogenesis. To compare the types and timing of functional modules activated in host
cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic
MOdule (DYNAMO) method that addresses the need to compare functional module
utilization over time. This integrative approach overlays whole genome time series
expression data onto an immune-specific functional network, and extracts conserved
modules exhibiting either different temporal patterns or overall transcriptional activity. We
identified a common core response to influenza virus infection that is temporally shifted for
different viruses. We also identified differentially regulated functional modules that reveal
unique elements of responses to different virus strains. Our work highlights the usefulness
of combining time series gene expression data with a functional interaction map to capture
temporal dynamics of the same cellular pathways under different conditions. Our results
help elucidate conservation of the immune response both globally and at a granular level,
and provide mechanistic insight into the differences in the host response to infection by
influenza strains of varying pathogenicity.

Keywords: transcriptional profile, temporal dynamics, module discovery, conserved and differential modules,
Influenza H1N1, differential regulation, functional network, virus infection
INTRODUCTION

The possibility of influenza virus pandemics remains a potent public health threat. While most
annual influenza strains are associated with a relatively low global infection rate and mortality, more
widely infectious or lethal influenza virus strains arise periodically. The influenza pandemic of 1918
was responsible for more than 50 million deaths and, within one year, reduced the life expectancy in
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the United States by a dozen years (1). More recently, the swine-
origin influenza pandemic in 2009 infected 20-50 percent of the
population of some countries, although, fortunately, it had a
mortality rate comparable to that of seasonal influenza strains
(2). Thus, individual seasonal and pandemic influenza strains
vary in their infectivity and pathogenicity. Although the genetic
mechanisms underlying the emergence of new viruses are
relatively well understood, less is known about virus-host
interaction effects that may influence influenza transmission or
disease outcome. Implementing a computational approach to
identify commonalities and differences in the host biological
response to different influenza virus strains is important in
providing insight into common and distinct components of the
host response program that may contribute to pathogenicity.

Increasingly, emerging research suggests that temporal
dynamics may play an important role in the varying
pathogenicity that is observed among different influenza strains
(3). This premise motivates a systematic study of time series
expression datasets to gain a more complete understanding of
the differences in host response dynamics observed with each
virus. However, time series analyses present computational and
experimental challenges. Measurements must be obtained at the
appropriate time scales. Proper temporal alignment among
different datasets and possible time shifts in activity patterns
need to be addressed when interpreting such data. The standard
approach of identifying lists of differentially expressed genes
provides only limited insight into the biological mechanisms
underlying commonalities and differences among host responses
to multiple influenza strains (4–9).

Integration of gene expression data with complementary
information about physical or functional associations between
molecular entities has been proposed as a powerful approach to
improve the interpretation of global transcriptional changes.
These integrative approaches analyze gene expression
experiments in the context of an independently constructed
connectivity map, such as a protein-protein interaction (PPI)
network, to identify modules comprised of genes or proteins that
participate in common biological pathways or functions (10).
More recently, integrative methods have been developed to
identify ‘active’ modules [i.e., related groups of genes
exhibiting concordant transcriptional changes (10–13)],
modules conserved across species (14, 15) and ‘differential’
modules (16, 17). (For an overview, see also a review article by
T. Ideker and colleagues (18) and references therein).

Time course gene expression datasets capture important
features of the temporal trajectories of transcriptional changes.
While the majority of integrative gene expression and interaction
network analyses have not utilized the temporal dimension of the
data, there have been attempts to incorporate temporal
information into module discovery (19–24). For example, Gao
and Wang (22) used a phase-locking approach (25) to identify
yeast cell cycle genes that show temporal coordination and whose
interactions are supported by a PPI network. In another study,
Jin and colleagues (23) applied a time-warping dynamic
programming algorithm (26) to identify locally-similar
temporal expression patterns among groups of genes forming
Frontiers in Immunology | www.frontiersin.org 2
connected components of a PPI network. These methodological
advancements do not offer a solution to the problem we call
‘comparative module discovery’, i.e., the identification of
temporally-shifted, network-based patterns of expression
showing conservation (or divergence) between time course
datasets that are generated in the same experimental system by
different perturbations. Developing such an analysis method
would be valuable in elucidating commonalities and differences
in the biological responses to these perturbations. The
identification of such comparative modules is critical for
addressing the central question of our study - that of
understanding the similarities and differences in virus-host
interaction effects in response to related influenza virus infections.

In order to perform comparative module discovery, we
developed a novel integrative DYNAmic MOdule (DYNAMO)
method, and applied it to understand the common and unique
features of the host immune response to infection by related
strains of the influenza virus. Integrating datasets that capture
the temporal progression of the global gene expression response
post-infection with an interaction network, our method
discovers both conserved and differential comparative modules.
Conserved comparative module discovery identifies a set of
highly functionally connected genes that show a high degree of
similarity between their regulation and response patterns for
perturbations being compared. Our approach allows the
possibility that the module responses may be shifted in time
across different perturbations. Differential comparative module
discovery identifies genes that show differences in their pattern of
regulation across different perturbations. Differential module
discovery is a difficult problem because truly condition-specific
regulatory patterns must be distinguished from experimental and
biological variability (14, 18). Our method is able to identify
high-confidence differential subnetworks by exploiting the
temporal nature of the expression data and anchoring the
modules in functional network connectivity relationships. By
computing the optimal temporal alignment of each module’s
expression profile between two different conditions, we are able
to capture divergent activation patterns. Overall, our method
addresses the broad problem of combining functional
connectivity and genome-scale time series expression data to
extract vital temporal information and to enable a comparison of
gene programs and module activation across time.

We apply DYNAMO to the problem of studying host-
pathogen interactions for multiple H1N1 influenza virus
strains. Our study builds upon the availability of identically
sampled time series data for H1N1 seasonal and pandemic
influenza virus of a human immune cell that lends itself to a
systems-wide comparison of the dynamics underlying the
modulation of the host response by each virus (27). DYNAMO
extracts functionally conserved modules that show a difference in
their temporal dynamics or pattern of transcriptional changes
between each pair of infection time course datasets. We
demonstrate that the groups of modules identified are
statistically significant and that the algorithmic element of
optimization for the best temporal alignment is crucial for
their identification. Our analysis provides insight into the
July 2021 | Volume 12 | Article 691758
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biological mechanisms underlying the module response patterns
elicited by these influenza virus strains. Full results of our
analyses as well as tools to interrogate user-generated datasets
are accessible via a user-friendly interface at (http://dynamo.
mssm.edu/).
MATERIALS AND METHODS

Subnetworks With Shifted
Temporal Dynamics
DYNAMO searches for groups of genes in two time-series
expression experiments that exhibit similar gene-by-gene
expression patterns while allowing a temporal shift. DYNAMO
is an integrative method that overlays expression data on a
functional interaction network and leverages the methodology
of the neXus algorithm (14) to reinforce functional coherence
within each discovered module.

Overview of the neXus Algorithm
The neXus algorithm (14) was developed to search for conserved
subnetworks between a pair of expression datasets across species
or within a single species. In its single species version, the method
attempts to form dense gene subnetworks within a chosen
functional interaction network while maintaining sufficient
similarity in the expression levels of the subnetwork genes.
Briefly, neXus initiates a depth-first search from a seed gene as
it aims to build a subnetwork in the underlying functional
network. For each gene that it considers for addition to the
growing subnetwork, two conditions have to be met. First, it
evaluates that the connectivity requirement is met by
maintaining a minimum desired clustering coefficient of the
genes in the putative subnetwork. Second, the expression
similarity condition is evaluated by computing the average
expression activity score of the subnetwork genes. The
subnetwork grows until there are either no genes to be
considered or it has reached a maximal size. The process is
repeated for every initial seed gene, and final subnetworks with
large overlaps can be merged.

Incorporating a Time Shift
Consider the expression vectors of gene g in two aligned time
course expression datasets. DYNAMO evaluates optimal
similarity between the two vectors while allowing one vector to
be shifted relative to the other by some time shift, Dt. To assess
similarity in expression at any such Dt, we calculate time-lagged
Pearson correlation coefficient of the two vectors. Let T be the set
of discrete time points at which gene expression was sampled for
each virus infection and T' be the corresponding set of time
points shifted by Dt. Denoting the expression vectors as XT (g) for
the stationary time course and YT' (g) for the time-shifted course,
we compute time-lagged correlation coefficient, (TLC) rgDt for
gene g between the two responses as

rgDt =
cov(XT (g),YT 0(g))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(XT (g),XT (g))cov(YT 0(g))
p
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where cov is the standard covariance. We use linear interpolation
to calculate the values in the stationary time course that
correspond to the new time points. Just like the standard
correlation, a time-lagged correlation close to 1 means that the
expression of gene g is perfectly correlated between the two
responses once the time-shift is taken into account. We
determined (data not shown) that transforming the correlation
distributions via the Fisher Z-transform

Z =
1
2
ln
1 + r
1 − r

= arctanh(r)

resulted in better findings, and used these Fisher-transformed
scores within the algorithm when assessing expression coherence
of growing subnetworks at various time lags.

Algorithm to Find Temporally-Shifted Subnetworks
We begin with a list of seed genes, and their expression vectors
from a pair of aligned time course experiments. We use fold-
change values over a control condition, though other
quantitative vectors such as differential expression p-values can
be used as well. The matrix of standardized z-scores is computed
for all genes at every considered time lag. Putative subnetworks
are grown greedily from every seed in turn. First, candidate genes
are identified via a depth-first search from the seed gene, as in the
original neXus algorithm (14). To assess subnetwork coherence
at a particular time lag Dt, we calculate the subnetwork’s score as
the average of the Fisher-transformed z-scores of its constituent
genes at that time lag. To select a gene for addition to the growing
subnetwork, DYNAMO then optimizes over all considered time
lags and corresponding putative subnetwork scores, provided
that the minimum desired connectivity requirement in the
underlying functional network is met. The connectivity
condition, measured as the average weighted clustering
coefficient of the subnetwork, enforces functional coherence of
the growing module. The network score maximization
component enables the algorithm to identify the best time-lag
(if one exists) that brings the group of genes in the two responses
into temporal alignment. Note that the optimal time lag for a
growing network can change with addition of new genes, but, in
our experience, does not vary widely. We use the average of the
per-gene maximal fold-changes during the time course in each
response as a third cutoff to be met in order to filter out false high
subnetwork scores that may be due to a good alignment of flat
time courses of genes that do not show significant differential
expression. Finally, we merge the discovered subnetworks if there
is considerable (0.6) overlap among their constituent genes and
their identified time lags are the same.

Subnetworks With Differential
Expression Patterns
Identifying genes that behave differently between a pair of
responses is a difficult problem because many spurious
expression differences can arise for individual genes. We again
employ the insight of constraining expression differences by
requiring tight clustering of such genes in the underlying
functional network. The structure of the algorithm is similar to
July 2021 | Volume 12 | Article 691758
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that of the algorithm for finding conserved temporally-shifted
subnetworks. We enforce the network connectivity requirement
by maintaining a minimum desired clustering coefficient, and
optimize the choice of candidate genes for addition to the
growing subnetwork by selecting one that shows the highest
divergence in its expression pattern between the responses,
provided that the average expression score stays below a
selected score threshold. The subnetwork expression score that,
in the case of differential modules, needs to identify genes with
divergent expression patterns, is modified to reflect that
difference. We observe that the correlations and their
corresponding Fisher z-score distributions for most time lags
have positive means (Supplementary Figure 1), indicating that
most genes show similar expression trends in the infection
responses. Genes that exhibit different expression trends
between responses may show only slightly negative absolute
correlations. To better identify such genes, we use standardized
rather than raw Fisher z-scores. This way, DYNAMO searches
for genes that are within some number of standard deviations
below the mean of the Fisher z-score distributions. The average
fold-change requirement is also altered to enforce that only
subnetworks in one of the responses pass the cutoff. This
change allows the algorithm to capture both subnetworks that
show opposing activation patterns as well as those that show
activation in only one of the responses.

Assessing Subnetwork Significance
We employ a randomization analysis, and use it as a tool to
calibrate various DYNAMO parameters and assess biological
significance of the subnetworks discovered in the comparison of
the influenza infection responses. We create five randomized
expression profiles by randomly shuffling the expression vectors
with respect to gene labels. Our algorithm for subnetwork
discovery is applied to these profiles while the functional
network structure remains intact, enabling an estimation of the
temporally shifted (or divergent) expression pattern coherence
that arises from the clustering of genes by random chance. For a
given expression score threshold, the subnetworks discovered in
the randomized data at that threshold represent false positive
findings and enable an estimation of false discovery rate. We
calculate the associated subnetwork confidence value as

confidence = 1 −
number of  random subnetworks
number of  real subnetworks

and use it to assess the subnetworks’ statistical significance.
Overall, exploring the algorithm’s findings over various
parameter ranges for randomized and real data allows a
substantiation of our parameter choices and a quantification of
the biological significance of the results.

Experimental Data and Algorithm
Parameters
Microarray Data
Human monocyte-derived dendritic cells were infected with each
of the four strains of the H1N1 influenza virus (Tx, NC, Brevig
and Cal). For each infection, cells were collected at the following
Frontiers in Immunology | www.frontiersin.org 4
time points post infection: 120, 160, 200, 240, 300, 360, 420,
480 minutes. Naïve non-infected DCs underwent the same
experimental handling as infected DCs in virus-free allantoic
fluid to ensure that mechanical manipulations could not be
responsible for differences in experimental readouts. These
served as a negative control time course. All time points and
controls were performed in triplicates. The details of DC
maturation, virus preparation and infection as well as RNA
extraction for microarray experiments are described elsewhere
(27). The RNA samples were processed and hybridized to
HumanHT-12 v4 Expression BeadChip Kit (Illumina San
Diego, CA) by the Yale Center for Genome Analysis following
the manufacturer’s instructions, and raw expression data were
output by the Illumina GenomeStudio software. These data were
log-transformed, filtered for minimum intensity [log2
(expression) >6.6], determined based on visual inspection of
the distribution), averaged over the triplicates, and converted
to fold-change values over the time-matched allantoic fluid
control condition. Each viral time course was analyzed for
differential expression using LIMMA (BioConductor
implementation) after correction for multiple hypothesis
testing (q < 0.05) (28). Maximally expressed probes were
chosen for differentially expressed genes with multiple probes.
We took the union of genes that passed the differential
expression criterion at any time-point in each viral time course
as our candidate seed set. Raw data are available in GEO, Series
GSE55276.

Flow Cytometry
Human monocyte-derived DCs were infected with either NC, Tx
(both seasonal) or Cal (pandemic) H1N1 IAV. Samples were
fixed in 1.6% paraformaldehyde (Sigma) and subsequently
stained with fluorophore conjugated antibodies against CD86
and HLADR (both BD) at multiple time points post infection.
Cells were analyzed with a LSRII flow cytometer (BD) and data
was analyzed with Cytobank and R.

Functional Networks
We consider two human functional linkage networks, the general
network (29) that is trained on diverse curated functional
pathway data (30) and an immune-specific network (31)
trained on immune pathways only. Both networks integrate
many heterogeneous data from diverse sources including
physical and genetic interactions as well as microarray data to
create the functional associations between gene pairs. The edge
weight distributions, which reflect the confidence in the gene-
gene associations and are inferred via Bayesian integration, differ
between the two networks, with the median edge weights being
0.85 and 0.22 for the general functional network and the
immune-specific network, respectively. We retained one
million most highly weighted edges for each network. We
explored the algorithm’s performance and its dependence on
the clustering coefficient parameter for each network separately
(data not shown), and found that in each case there exists a range
of this parameter (different for each network because of the
differences in the underlying edge weight distributions) with
July 2021 | Volume 12 | Article 691758
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comparably good performance. We use these ranges, and set the
average clustering coefficient cutoffs to 0.8 and 0.5 for general
and immune-specific networks respectively.

Algorithm Parameters
We chose the values of 1.5 for subnetwork score (see discussion
in Supplementary Material), 0.5 for minimum clustering
coefficient of the immune-specific network and 0.9 for
subnetwork confidence, and considered subnetworks that pass
all these cutoffs. The subnetworks were grown to maximal size of
25 nodes. Additional internal neXus parameters were left at
their defaults.
RESULTS

Overview of Algorithm Developed for
Comparative Module Discovery
We developed DYNAMO to find conserved and differential
subnetworks that exist between time course datasets that
measure gene expression responses to different perturbations
in the same experimental system. As a motivation for our study
was an observation made while investigating a time course
microarray dataset of the responses to four strains of the
influenza virus in human monocyte-derived dendritic cells
(DCs) (27). We noted a time shift in the expression dynamics
for many important immune response genes (Figure 1). This
served as an impetus for addressing the aspect of temporal
dynamics in our methodology development. The DC infection
study comprised of four A/H1N1 influenza viruses that differ in
their infectivity and clinical severity, including two pandemic
strains, the influenza of 1918 (Brevig) and the recent 2009 strain
Frontiers in Immunology | www.frontiersin.org 5
(Cal), as well as two seasonal strains, the New Caledonia strain of
1999 (NC) and Texas 1991 (Tx). Global expression was sampled
with high frequency during the first eight hours post-infection.
Thus, our investigation relied on a well-controlled dataset
representing time course responses in a single cell type to
antigenically similar influenza strains varying in pathogenicity
and transmission efficiency.

We built upon the approach of neXus (14), an algorithm that
overlays gene expression data on functional interaction networks
(29, 33) to identify functionally coherent groups of genes that
have similarity in their expression patterns across species. We
describe our approach briefly here, and a more extensive
discussion of the algorithm is found in the Materials and
Methods section. Each DYNAMO module is grown from a
seed gene by adding nearby genes in the interaction network in
a way that maximizes the average gene expression activity score
of the module, while maintaining a minimum desired clustering
coefficient. DYNAMO’s expression activity score (subnetwork
score) addresses the challenge of comparing time course datasets
and studying response programs that may be temporally shifted
with respect to one another. DYNAMO samples time-shifts in
the gene expression dynamics, computing the time-lagged
Pearson correlation coefficient, and conducts a greedy search
for coherent active subnetworks, such that each module member
gene in one dataset exhibits a maximally similar expression
pattern (possibly with a temporal shift) to the same gene in the
other dataset. For each module, the optimal time shift, applied to
all genes, is identified. Subnetworks with high overlap in gene
membership that exhibit the same time lag are merged.
DYNAMO identifies the set of highly coherent, statistically
significant modules by determining the false discovery rate
(FDR) via analysis of randomly shuffled expression data. The
same methodological approach is applied to the problem of
differential comparative module discovery. DYNAMO identifies
maximally differentially regulated genes in two datasets that
represent a highly functionally related module in the
underlying functional interaction network.

In the following sections, we used DYNAMO to identify and
compare modules in time course responses to the different
influenza viruses. We first performed an in-depth analysis of
the Brevig/Cal response comparison, validating our method and
offering insight into the biology of their shared and unique
response processes. We then compared temporal dynamics and
functional pathway activity, computed as GO term enrichment
of discovered modules, for all the strains. Detailed analyses of
each comparison, including conserved and differential
comparative modules, functional pathway activity and
performance characteristics are available at (http://dynamo.
mssm.edu/).

Evaluating the DYNAMO Algorithm
We evaluated two important aspects of the DYNAMO
algorithm. First, we considered the effect of the choice of the
functional network used by DYNAMO to identify functional
connectivity. Next, we assessed the effects of allowing a temporal
shift of the gene expression dynamics on module discovery. In
evaluating the algorithm’s performance, we considered the
FIGURE 1 | Alignment of the gene expression time courses for MX1, an
important immune response gene (32), following Cal and Brevig Influenza
H1N1 infections. The solid red and blue lines represent the actual MX1
expression in Cal and Brevig responses, respectively. The dashed red line
represents the Cal time course shifted to the left by 60 minutes. The log(fold
change) gene expression measurements are normalized relative to the results
obtained from uninfected control cells.
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number of conserved modules that were discovered by the
algorithm, and we estimated the false positive rates for the
discovered modules via a randomization analysis (see details in
the Materials and Methods).

Functional Network Selection
Functional networks are constructed from heterogeneous data
sources and represent diverse associations between genes or
proteins (29, 34). Bayesian integration of multiple data types,
including protein-protein and genetic interactions, gene
expression, protein localization, phenotype, and sequence data,
was used to infer functional connections between molecular
entities. Given their more comprehensive coverage of a broad
variety of gene relationships, functional networks allow for more
sensitive discovery of conserved active modules and have been
shown as advantageous for this task over protein-protein
interaction networks (14).

We assessed DYNAMO’s performance using the general
human functional network (29) and an immune-specific
functional network that should, in principle, capture
associations that are more relevant for immune contexts (31).
We note that the immune-specific functional network is not a
subnetwork on the general human functional network. Rather,
each network is defined over the entire gene/protein space, with
edges connecting every pair of nodes. The edge weights, which
reflect the confidence in the gene-gene associations and are
inferred via Bayesian integration, differ, based on the entirety
of the experimental evidence for connecting them [PPI,
phenotypic assays, gene expression etc., see (29, 31)]. When
the context of the network is different, like in the case of the
immune-specific network, an immune relevant set of edges is up-
weighted and an irrelevant set of edges is down-weighted. The
edge weight distributions, therefore, can vastly differ between the
two networks. Correspondingly, the network related parameters
cannot be set at the same values for the two networks. Retaining
one million most confident edges for each network, we explored
the algorithm’s performance for each network separately, and set
the clustering coefficient parameters to values that maximized
performance for each network individually (see Materials and
Methods for details). We identified the conserved comparative
modules for the Brevig and Cal pair using the two functional
networks and varying the gene expression based activity score
parameter of the algorithm. To assess the statistical significance
of the modules discovered, we performed a randomization
analysis. Specifically, the expression time course vectors were
randomly shuffled five times with respect to the gene labels, and
the algorithm was applied to the shuffled expression profiles. Any
modules identified in these randomized expression data would
represent false positives and not biologically meaningful
conservation. As seen in Figure 2, utilizing the immune-
specific functional network was far superior to using the
general functional network. We observed that many more
coherent modules were discovered at every subnetwork score
cutoff. The different edge weight distribution of the immune-
specific network had a significant effect on the clustering
coefficients of putative modules. When the gene expression
data for an immune relevant response like IAV infection is
Frontiers in Immunology | www.frontiersin.org 6
overlaid on the immune-specific network, both components
synergistically contribute to module discovery, suggesting that
the functional connectivity that underlies the gene relationships
in influenza responses is better reflected in the immune-specific
functional network. In contrast, when the immune relevant gene
expression data is overlaid on a general network with weights
that are not optimized for immune processes, the module
discovery is impeded. Focusing on the randomization
experiments, our evaluations suggested a false discovery rate
of <5% for a broad range of subnetwork score cutoffs when using
the immune-specific functional network. Overall, comparing
DYNAMO’s results with the two different underlying
functional networks, we found that many more modules are
discovered at every FDR setting when the immune-specific
network is used, indicating a substantial improvement
in sensitivity.

We further assessed the importance of enforcing the
functional coherence of the modules and considered whether
our method can extract high-confidence subnetworks from
expression data alone. We used DYNAMO without enforcing
the clustering coefficient parameter, while adding putative
module member genes in the same order from a pool that is
functionally proximal to the seed gene. As shown previously by
Deshpande et al. (14) and corroborated in our analysis, fewer
modules were discovered without enforcing the clustering
FIGURE 2 | Assessment of the choice of the functional network (FN) and
importance of introducing a temporal shift in conserved comparative module
discovery. The number of conserved subnetworks for the Brevig and Cal pair
across a wide range of subnetwork expression scores (see Materials and
Methods) is compared among different approaches. To enforce functional
coherence, two different functional networks were used, a general (General
FN) and an immune-specific (Immune FN) functional network. Subnetwork
identification was performed employing either standard (no time lag) or
optimized time-lagged Pearson correlation (TLC). A randomization analysis,
averaged over five randomization instances, was performed for each
comparison to assess the false discovery rate (dashed lines). The red curves
are produced using TLC optimization and Immune FN, the blue curves use
TLC optimization and General FN, and the green curves use standard
Pearson correlation and Immune FN. All discovered modules are reported,
regardless of the confidence threshold. Note that the number of modules
discovered never rises above one for the green curves.
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coefficient parameter. Furthermore, they were of low significance
in view of the similar number of modules identified via a
randomization analysis. We concluded that using a functional
connectivity map and selecting a map that is most relevant for
the experimental study (an immune-specific functional network
in our case of subnetwork discovery in the responses to influenza
viral infection) are essential for identifying significant modules.
As such, we used the immune-specific functional network in all
further evaluations within this study.

Advantage of Allowing a Temporal Shift
We evaluated the advantage gained by the introduction of a time
shift in the identification of active subnetworks shared by the
Brevig and Cal responses. We considered possible time lags of
-80, -60, -40, -20, 0, 20, 40, 60 and 80 minutes, and shifted the Cal
time course with respect to the Brevig time course. We compared
DYNAMO’s results when optimizing module discovery over the
possible time-lags to those found with no time shift allowed (i.e.,
using standard Pearson correlation), while keeping all other
parameters the same. As shown in Figure 2 and noted above,
many conserved temporally shifted subnetworks were identified
over the range of considered network score cutoffs (red curve). In
contrast, almost no subnetworks were identified when a temporal
shift was disallowed (green curve). These observations indicate
the importance of the temporal shift element in enabling
discovery of conserved comparative functional modules.

Comparison to Existing Algorithms
DYNAMO’s objective in identifying conserved or divergent
temporally shifted modules that are common between two
responses is quite unique, and, to the best of our knowledge,
has not been addressed in the literature. Nonetheless, we
evaluated DYNAMO against two other methods that are most
similar and identify conserved subnetworks from gene
expression data, ModuleBlast (35) and TDARACNE (36).

ModuleBlast was designed to compare module activation
patterns across species. It uses expression data and network
topology information to search for conserved and divergent sub-
networks. Analysis of the host immune response gene expression
data comparing Brevig and Cal infections using ModuleBlast
resulted in 38 modules. These modules were generally not
functionally enriched for immune-specific processes, according
to functional annotation within ModuleBlast. Analysis by
DYNAMO shows the importance of the network context in
which gene expression data is analyzed. Biological pathways that
are activated in an immune context are best identified using an
underlying network that emphasizes immune-specific
interactions. Since ModuleBlast employs a generic interaction
network, the relative paucity of conserved modules is not
surprising. Furthermore, while ModuleBlast makes use of
temporal information, it does not optimally align the
responses. This is a key difference that enables DYNAMO to
capture coherent activation patterns that are temporally shifted.

We also applied TDARACNE to our dataset. TDARACE was
designed to address a different problem - it is a subnetwork
inference method that is not comparative and operates on each
gene expression dataset individually. Therefore, it generally infers
Frontiers in Immunology | www.frontiersin.org 7
dissimilar sets of modules for the Brevig and Cal datasets, making a
direct comparison with DYNAMO meaningless.

Conserved Time-Shifted Host Response to
Brevig And Cal Influenza Strains
DYNAMO identified 207 high confidence functionally-coherent
subnetworks that are time-shifted between the two pandemic
strains, Brevig and Cal. To evaluate the subnetworks for
biological significance, we assessed functional enrichment in
the set of genes contained in each subnetwork. The enrichment
was computed for each subnetwork individually based on the
overlap of its constituent genes with the Gene Ontology (GO)
(37) biological process terms using enrichR (38). Every
subnetwork identified was enriched for at least one GO term
with p-value of 0.0001. Overall, 71 GO terms were associated
with the discovered subnetworks, of which vast majority were
immune related. Nearly all subnetworks were annotated with GO
terms describing cytokines, type I interferon signaling, and
response to virus (Figure 3). This enrichment is consonant
with extensive experimental evidence identifying cytokine and
interferon responses elicited by influenza infection (6, 8, 39, 40).
In particular, type I interferons provide a first line of defense
against the virus (39), functioning in both autocrine and
paracrine fashions to prevent its replication and spread to
neighboring cells, and are crucial in host defense against
influenza infection.

Absolute majority of the subnetworks (82%) identified
showed optimal similarity when aligned at the 80 minute time
lag, with the Cal response activated after the Brevig response.
Our findings confirmed the earlier observations (3) that the
highly pathogenic Brevig strain is characterized by rapid
activation of the host immune response and that this early
activation may account for the extreme severity of disease
caused by this strain (41). Furthermore, the considerable
similarity in the activated immune response program when
accounted for the shift in temporal dynamics indicated that the
timing of the host immune response may be at the basis of the
key differences observed between disease outcomes for these
two infections.

Conservation and Temporal Alignment of
the Global Host Response and Specific
Immune Processes
We next used DYNAMO to identify conserved temporally
shifted modules to compare all pairs of influenza strains.
Table 1 summarizes the results for each pair-wise comparison
and includes the dominant time lag, i.e., the time lag assigned to
the largest fraction of the discovered subnetworks. For example,
for the Brevig/Cal pair, the Brevig response is shifted 80 minutes
earlier in comparison to Cal for the majority of modules
identified. We found that the responses to the two seasonal
strains, Tx and NC, show the largest number of subnetworks,
and 69% of them show maximal similarity with no time shift.
The increased number of similarly regulated subnetworks in the
Tx/NC comparison resulted from a large down-regulation effect
not seen with the other viruses (27). Because the algorithm
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optimizes subnetwork conservation over time and different
components of the responses may contribute to conservation
for each strain pair, some dominant time lags appear
inconsistent. For example, the Tx/NC pair exhibits the
dominant time lag of zero, but these responses do not have the
same time lag relative to the Cal strain. However, a clear overall
temporal pattern emerges. The conserved modules show that the
Brevig infection elicits the earliest response, Tx and NC are
intermediate, and Cal is the latest.

An overall conservation of the immune response for all the
pairwise comparisons was evident in the functional enrichment
observed in the subnetworks. Using GO term enrichment by
enrichR (38), we found a set of 27 highly enriched (p < 0.0001)
immune-related GO terms that were common to all the
comparisons and collectively were assigned to the absolute
majority of the subnetworks. Representative GO terms are
shown in Figure 4. They describe host immune response to
Frontiers in Immunology | www.frontiersin.org 8
viral infection and capture cytokine and interferon-regulated
processes that are essential in defense against the influenza virus.
For each comparison individually, these processes exhibited a
temporal consistency, assigning to modules with a singular time
lag. These results imply that there is a conserved set of immune
processes that is activated in response to the four different
influenza strain infections. Within the response to one
infection, the relative timing of these immune processes
appears to be consistent. In comparisons of the responses,
these coherent immune processes are shifted in time on block
(Figure 4). This suggests the presence of a highly conserved core
of the host immune response.

Identification of Comparative
Differential Subnetworks
Comparative differential subnetworks are a group of highly
functionally related genes that show differences in their
TABLE 1 | Subnetworks conserved across pairs of influenza responses.

Virus Comparison # Subnetworks Average Size Dominant Time lag % At Dominant Time Lag

Brevig/Cal 207 24 80 83
Tx/Cal 377 21 20 54
Tx/NC 2982 24 0 69
Brevig/Tx 382 22 20 60
NC/Cal 203 24 80 83
Brevig/NC 400 22 20 37
July 2021 |
For every comparison, the lagging influenza strain response is listed second (e.g., the Cal response is delayed compared to Brevig). The dominant time lag is measured in minutes, and the
last column indicates the percent of modules that are found at the dominant time lag.
FIGURE 3 | Functional enrichment analysis of conserved subnetworks appearing with the 80 minute time lag for the Cal/Brevig comparison. The immune-specific
nature of the modules was determined by using GO term enrichment for individual subnetworks with p-value cutoff 0.0001. The rows represent the GO terms and
the columns are the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance of the GO term enrichment and is based
on -log(p value). For clarity, GO terms that assign to fewer than seven subnetworks or that annotate more that 100 genes in GO are not shown.
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pattern of regulation in response to two perturbations being
compared. Because their identification is a less constrained
problem than conserved subnetwork discovery, the reliable
selection of comparative differential modules is challenging.
When identifying conserved subnetworks, the effects of noise
in the data are mitigated by the requirement that common
regulatory changes must be observed in different experiments.
Methods that rely on pairwise gene interactions (42, 43) to
reconstruct differential modules are limited by the fact that
differential modules, by definition, allow inconsistencies across
Frontiers in Immunology | www.frontiersin.org 9
experiments. DYNAMO addresses this limitation by exploiting
the functional modularity inherent in biological networks and
leveraging the temporal dimension of time course expression
data in its time-lag optimization search. These aspects of the
algorithm allow to better constrain the problem of differentially
activated gene identification and improve selection of high
confidence subnetworks.

We applied our method for differential module discovery to
all pairs of influenza strain responses. Shown in Supplementary
Figure 2 are the results of DYNAMO’s application to the Cal/NC
FIGURE 4 | Timing consistency of the nine conserved immune response processes in the pair-wise comparisons between Brevig and the other virus strain
responses. A group of representative GO terms was selected from the larger immune-related set of 27 processes found enriched among conserved modules for
these comparisons. The number of modules enriched in these GO terms is indicated on the Y axis in log2 scale. This suggests a conserved temporally coherent core
immune response. Here, the temporal shift of the modules is shown with respect to Brevig and indicates a delay of these processes in Cal, Tx and NC responses
with respect to the Brevig infection. Only GO terms with fewer than 100 annotated genes were considered. “Antigen processing and presentation of peptide antigen
via MHC class I” was also a conserved GO term, but was enriched in very few modules and is omitted from the figure.
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comparison. DYNAMO identified many differential comparative
modules at a wide range of subnetwork score values.
Importantly, the curves tracking subnetwork discovery for the
real and randomized data show substantial separation, with false
discovery rate of <10% for a broad range of subnetwork score
cutoffs. This finding implies that the differential subnetworks
discovered by DYNAMO had a low proportion of false positives
and likely represent biologically meaningful differences in the
responses to the Cal and NC influenza infections. As such,
DYNAMO is able to overcome some of the challenges in
differential subnetwork discovery and improve the reliability of
differential subnetwork identification.

Overall, we found many fewer differential modules as
compared to conserved identified among pairs of responses
(Supplementary Table 1). For example, we found only 20
differential subnetworks for the pair of responses Brevig/Cal
that shows 207 conserved subnetworks. Also, in contrast to the
results for the conserved subnetwork discovery, the differential
modules generally did not exhibit a dominant time lag. Although
DYNAMO benefits from its ability to optimize over a set of time
lags to capture divergent expression trends and thereby identifies
many more differential modules, these time lags do not exhibit a
singular consistency. These results suggest that differentially
active modules do not show the temporal coherence that was
observed with conserved subnetworks.

In the four comparisons of differential modules for a
pandemic and a seasonal strain, a considerable overlap in the
Frontiers in Immunology | www.frontiersin.org 10
GO terms assigned to these subnetworks was observed. We
found 31 processes enriched (p < 0.0001) among the
subnetworks and annotated by GO terms that are shared
across pairs. The GO enrichment analysis of differential
modules for the Cal/NC comparison is shown in Figure 5 and
for the Cal/Tx analysis in Supplementary Figure 3. Although the
cytokine mediated signaling pathway was implicated as enriched
by both conserved and differential modules (see also Figure 4),
the genes contributing to this annotation show little overlap. For
example, contributing to the annotation in the conserved
modules of the Brevig/Cal comparison are classical antiviral
program genes, including the MX, OAS, and IFIT family genes
(44–46). Enrichment of the cytokine signaling pathway in the
differential modules is driven by immunomodulatory genes, such
as IL6 (47). These results reveal that despite sharing GO
annotations, conserved and differential modules have
different compositions.

Notably, the GO terms for antigen processing and apoptosis
were enriched among the differential modules. Supplementary
Figure 3 shows the genes implicated by the apoptosis-annotated
subnetworks found to be differential between the seasonal
and pandemic influenza infections. DYNAMO’s identification
of apoptosis, known to be induced by influenza viruses (27, 48),
as a differential process is consonant with other studies
that show differences in global patterns of RNA degradation
in response to seasonal and pandemic influenza infections
(27, 49).
FIGURE 5 | Functional enrichment analysis of differential subnetworks for the Cal/NC comparison using GO term enrichment with p-value cutoff 0.0001. The rows
represent the GO terms and the columns are the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance of the GO
term enrichment and is based on -log (p value). For clarity, the majority of GO terms that assign to fewer than seven subnetworks or that annotate more that 100
genes in GO are not shown.
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DC Antigen Presentation Differences
After Seasonal and Pandemic
Influenza Infection
The dendritic cell is a professional antigen presenting cell (50),
raising the possibility that the seasonal and pandemic viruses differ
in their modulation of this response. Dendritic cells, important
mediators of innate and adaptive immunity, act by presenting
antigens to T cells to initiate adaptive immune responses (50).
Antigen presentation occurs either via direct presentation of
digested viral peptides on the surface of infected cells or via
cross-presentation of exogenous antigens by uninfected cells.
Other studies (51) have found that influenza infection reduces
both the efficiency of influenza antigen presentation and the ability
of dendritic cells to cross-present antigens from other pathogens,
such as bacteria, that cause co-infection during the course of
influenza infection. In view of the centrality of antigen
presentation by dendritic cells in the immunological response to
influenza, the differences in antigen presentation between seasonal
and pandemic influenza viruses inferred by the DYNAMO
analysis might contribute to differences in the immunological
and clinical response to these viruses.

To validate the hypothesis of the DYNAMO algorithm, we
experimentally tested if infection with the two seasonal and one
pandemic IAV strain resulted in differences in antigen
presentation. Antigen presentation by professional APCs, such as
dendritic cells, occurs via three signals (52). In T cell-DC
interaction, Signal 1 is the interaction of an MHC-I or MHC-II
molecule loaded with a processed part of a pathogen, with the T
cell receptor of an antigen specific T cell. Signal 2 consists of a set of
co-stimulatory markers (e.g., CD86 on the DCs, which interacts
with CD28 on T cells). Signal 2 is essential for T cell activation as
presentation of a pathogen through Signal 1 alone leads to anergy
of the specific T cells. Signal 3 consists of secreted factors, which
influence the direction of the target T cells (e.g., Th1, Th2 or Th17).
Here we used flow cytometry to quantify the induction of Signal 1
(MHC-II) and Signal 2 (CD86) after infection with one pandemic
(Cal) and two seasonal (Tx andNC) H1N1 IAV strains. Consonant
with the prediction of the DYNAMO algorithm, infection with the
seasonal IAV strains resulted in lower expression of HLADR
(Signal 1) and CD86 (Signal 2) in comparison with infection
with the pandemic strain (Figure 6). (p < 0.05 for Cal/NC and
p < 0.005 for Cal/Tx, using Student’s t-test).

Overall, the application of DYNAMO to the seasonal and
pandemic H1N1 influenza infection datasets derived insight into
commonalities and differences in the regulation of functional
modules and potential mechanisms of immune response
modulation by the individual influenza virus strains.
DISCUSSION

In this study, we applied DYNAMO, a technique for discovery of
comparative modules with different temporal dynamics or
patterns of activation, to investigate host responses to infection
by four different influenza virus strains and gain insight into
the temporal and functional similarities and differences
Frontiers in Immunology | www.frontiersin.org 11
between them. We showed that the ability to search over
multiple temporal lags allowed us to discover conserved
temporally shifted mechanisms between different immune
responses. Overall, we found remarkable temporally coherent
conservation of a core group of immune processes that are crucial
to infection control, such as cytokine signaling and specifically
interferon signaling, in responses to all four viruses.

Our search for differential modules pointed to potential
mechanistic differences among the seasonal and pandemic
strains, discovering subnetworks that suggest a key role for
apoptosis, a finding consonant with previous experimental
work implicating apoptosis in the host response to influenza
(48). Moreover, presence of differential subnetworks functionally
annotated with antigen processing and presentation suggests an
interesting potential direction for future experimental work.

Methodologically, the development of DYNAMO represents
an important advance, which adds the element of temporal
dynamics to the broad systems biology problem of functional
subnetwork discovery (18). Our method builds upon the
successes in the development of sophisticated integrative
approaches that combine heterogeneous data to elucidate the
modular functional architecture of the cell. DYNAMO is the first
method to successfully exploit the temporal dimension of gene
expression data for comparative module discovery and analysis.

While our algorithm development and successful application
to the study of the immune response to multiple strains of the
influenza virus is encouraging, a number of promising directions
for further improvement of the method remain. The current
version is restricted to expression data that is identically sampled
and aligned. Since few datasets in the public domain share the
same experimental design, relaxing this restriction, possibly
FIGURE 6 | DC HLADR/CD86 surface expression following IAV infection.
Percent of dendritic cells showing both HLADR and CD86 surface marker
expression is plotted after infection with seasonal or pandemic IAV strains as
measured by flow cytometry. All experiments were done in triplicates. Values
shown are mean ± s. e. m. The levels of surface marker expression was
identical following mock and each virus infection at 1 h, and diverged at 8 h
(p < 0.05, Student’s t-test), with higher surface marker expression following
the pandemic Cal infection. Raw data are included as a Supplementary File.
July 2021 | Volume 12 | Article 691758

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nudelman et al. Host Module Temporal Activation Patterns
using the time-warping algorithm (26), would make our method
more broadly applicable. Furthermore, the approach is readily
extended to simultaneously compare more than two datasets.
Together, these improvements would enable the study of
conserved and differential components of the response to
infection by multiple pathogens, providing insight into the
functioning of the host immune system and common and
unique aspects of virus-host interactions. Full results of our
analyses as well as tools to facilitate comparative study of the
pattern and timing of module activation elicited by other
biological stimuli are available at (http://dynamo.mssm.edu/).
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