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Simple Summary: The usefulness of genomic prediction (GP) has been widely proofed by breeding
analysis in livestock, plants and aquatic populations. It is well known that ‘marker density’ is a
critical factor that affects the accuracy of GP, however, how to properly measure ‘marker density’
in GP is yet to be determined. With population-level whole-genome sequence data or high-density
single nucleotide polymorphism (SNP) data available, this question seems to be answered more con-
vincingly. In this study, we investigated and discussed the impact of four ‘marker density’ measures
that reflect genetic or physical distances between SNPs on the accuracy of GP in a Germany Holstein
dairy cattle population. Our results showed that the degree of variation of physical distance between
adjacent SNPs had significant effects on the accuracy of GP, while the genetic distance between
SNPs had no relationship with the accuracy of GP. Therefore, for studies based on high-density SNP
data, the default strategy of pruning SNPs based on genetic distance is detrimental to heritability
estimation and genomic prediction. The results extended the communities knowledge of ‘marker
density’ and provided useful suggestions for the application and research on genome prediction.

Abstract: With the availability of high-density single-nucleotide polymorphism (SNP) data and the
development of genotype imputation methods, high-density panel-based genomic prediction (GP)
has become possible in livestock breeding. It is generally considered that the genomic estimated
breeding value (GEBV) accuracy increases with the marker density, while studies have shown that the
GEBV accuracy does not increase or even decrease when high-density panels were used. Therefore,
in addition to the SNP number, other measurements of ‘marker density’ seem to have impacts on the
GEBV accuracy, and exploring the relationship between the GEBV accuracy and the measurements
of ‘marker density’ based on high-density SNP or whole-genome sequence data is important for the
field of GP. In this study, we constructed different SNP panels with certain SNP numbers (e.g., 1 k) by
using the physical distance (PhyD), genetic distance (GenD) and random distance (RanD) between
SNPs respectively based on the high-density SNP data of a Germany Holstein dairy cattle population.
Therefore, there are three different panels at a certain SNP number level. These panels were used to
construct GP models to predict fat percentage, milk yield and somatic cell score. Meanwhile, the mean
(d) and variance (σ2

d) of the physical distance between SNPs and the mean (r2) and variance (σ2
r2 ) of

the genetic distance between SNPs in each panel were used as marker density-related measurements
and their influence on the GEBV accuracy was investigated. At the same SNP number level, the d of
all panels is basically the same, but the σ2

d, r2 and σ2
r2 are different. Therefore, we only investigated the

effects of σ2
d, r2 and σ2

r2 on the GEBV accuracy. The results showed that at a certain SNP number level,
the GEBV accuracy was negatively correlated with σ2

d, but not with r2 and σ2
r2 . Compared with GenD

and RanD, the σ2
d of panels constructed by PhyD is smaller. The low and moderate-density panels

(< 50 k) constructed by RanD or GenD have large σ2
d, which is not conducive to genomic prediction.

The GEBV accuracy of the low and moderate-density panels constructed by PhyD is 3.8~34.8%
higher than that of the low and moderate-density panels constructed by RanD and GenD. Panels
with 20–30 k SNPs constructed by PhyD can achieve the same or slightly higher GEBV accuracy
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than that of high-density SNP panels for all three traits. In summary, the smaller the variation
degree of physical distance between adjacent SNPs, the higher the GEBV accuracy. The low and
moderate-density panels construct by physical distance are beneficial to genomic prediction, while
pruning high-density SNP data based on genetic distance is detrimental to genomic prediction. The
results provide suggestions for the development of SNP panels and the research of genome prediction
based on whole-genome sequence data.

Keywords: genomic prediction; marker density; genetic distance; physical distance; Holstein dairy
cattle; high-density SNP data

1. Introduction

Implementing genomic selection can increase genetic gain, which has now been
demonstrated in livestock [1,2], plants [3,4] and aquatic [5,6]. Next-generation sequencing
efforts have uncovered the genome sequences of many species and revealed thousands
of single-nucleotide polymorphism (SNP) markers, making the genomic prediction (GP)
based on high-density SNP or whole-genome sequence (WGS) data possible [7,8]. High-
density SNP panels will be the future’s genotype data in genomic selection [2,8]. Therefore,
it is necessary to explore factors affecting the performance of GP based on high-density
SNP data. In the genetic analysis based on high-density panels, markers were usually
thinned by linkage disequilibrium (LD) threshold (genetic distance) [9,10], while moderate
or low-density panels are generally constructed by SNPs distributed evenly in the whole
genome [11,12]. However, the effect of marker selection methods (physical or genetic
distance) on the genomic prediction performance needs to be studied in detail.

Compared with low-density (<10 k SNPs) and moderate-density (10–100 k SNPs)
panels, high-density panels (>100 k SNPs) can improve the accuracy of GP [8,13]. However
high-density SNP genotyping of all selected candidates in each generation may not be
cost-effective. Habier et al. [11] proposed to genotype key individuals or ancestors with
a high-density panel and candidates or dams with an evenly spaced, low-density panel.
The low-density panels are then imputed to high-density panels. The accuracy of genomic
prediction is greatly improved by pooling animals with real and imputed high-density
SNP data [14]. This strategy is currently the primary method for genomic prediction
using high-density SNP data. With the development of imputation methods applicable to
different species and population structures [15–17], and the availability of resources that
allow imputing SNP arrays to high-density data or WGS, such as the 1000 Bull Genome
Project [7], low-density panels can be accurately imputed to high-density panels. At the
same time, by considering the influence of SNP number, physical distance and genetic
distance between SNPs on the imputation accuracy, some cost-effective low-density panels
have been designed [18,19]. In general, the accuracy of imputed genotypes is about
90% [20,21], and the genomic estimated breeding value (GEBV) accuracies are very similar
for imputed and real high-density panels [1,22]. Therefore, the imputed high-density
panels provide more possibilities for genomic prediction research, such as the application
in the dairy cattle population [23].

Recently, several studies have found that compared with moderate-density panels,
GEBV accuracy based on real or imputed high-density panels has decreased [24,25]. The
decrease may result from genotype imputation errors [26], the limited population size [27],
or the noise involved in high-density data [28,29]. The decrease in accuracy could also
indicate that, for some traits, the high-density panel is not necessarily optimal in GP. To
make the information of the high-density SNP data more effective, it is necessary to clarify
the relationship between measurements of ‘marker density’ and the GEBV accuracy. Some
studies have found that the increase in GEBV accuracy is very limited after a certain
number of SNPs are reached [5,8,30]. Therefore, in addition to the SNP number, some
measurements of ‘marker density’, such as the physical distance and genetic distance
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between adjacent SNPs, may also affect the performance of GP. Although the effect of these
measurements of marker density on genotype imputation accuracy has been validated [31],
the effect on GEBV accuracy remains unclear.

It is known that GEBV accuracy is closely related to marker density, however, it is yet
to be determined the key measurements of ‘marker density’. Therefore, we conducted this
study with the aims of (1) evaluating the impact of ‘marker density’ measured by physical
or genetic distance on the performance of genomic prediction in a dairy cattle population,
and (2) exploring the effect of mean and variance of marker distances on the accuracy of GP.
Our result extended knowledge of measurements of ‘marker density’ on the performance
of GP.

2. Materials and Methods
2.1. Dataset

The German dairy cattle population including 2000 bulls from Vereinigte Information-
ssysteme Tierhaltung Wirtschaftlicher Verein was used in this study [32], and all individuals
were genotyped with the Illumina Bovine SNP50 Beadchip [33]. The 50 k SNP data were
imputed to 770 k via Beagle software [16] with the high-density SNP data obtained from the
1000 Bull Genome Project [7] as reference. SNPs with either minor allele frequency < 0.005,
or genotype call rate < 0.9, or p-value < 0.01 from the Hardy–Weinberg equilibrium test
were removed, after filtering, 335,753 SNPs were retained for further analyses (Table S1).
The distribution of the physical distance and genetic distance between adjacent SNPs are
shown in Figure S1. Highly reliable traditional estimated breeding values (EBVs) of three
traits, milk fat percentage (FP), milk yield (MY), and somatic cell score (SCS), were available
for all bulls. The three traits may represent different types of genetic architectures that are
composed of (1) one or few major genes and many loci of small effect (FP), (2) some loci of
moderate effect and many loci of small effect (MY), and (3) many loci of small effect (SCS).
EBVs of the three traits were used as phenotypes in the GP model.

2.2. Measurements of Marker Distance

In this study, three methods, namely physical distance (PhyD), genetic distance (GenD)
and random distance (RanD), were used to measure the marker distance. The PhyD method
selects markers by limiting the number of base pairs (bp) between adjacent SNPs. The GenD
method filters the SNPs by limiting the maximum r2 (the multiple correlation coefficient
for an SNP being regressed on all other SNPs simultaneously) between SNPs. The RanD
method was implemented using PLINK software. The detailed implementation of the
methods is shown in the Appendix A.

In the random method, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 2.1%, 3%, 4.5%, 6%, 9%, 15%,
22.5%, 30%, 60% of the 335,753 SNPs were randomly sampled, and panels with 1, 2, 3, 4,
5, 7, 10, 15, 20, 30, 50, 75, 100, and 200 k SNPs were constructed. We term the marker sets
containing 1–10 k SNPs as the low-density panels, containing 15–75 k SNPs as moderate-
density panels and containing 100–300 k SNPs as the high-density panels. For the PhyD
method, we plotted the relation curve between the number of the selected SNPs and
the threshold of the distance (bp) between adjacent SNPs in Figure 1A. The threshold of
distance limits the minimum physical distance between adjacent SNPs. The GenD method
was implemented in the PLINK software [34], and the SNP pruning process is: (a) calculate
r2 between each pair of SNPs in the window, (b) remove one of a pair of SNPs if the
r2 is greater than the threshold, (c) shift the window a step length forward and repeat
the procedure. The window size and step were set as 50 and 5 kb respectively, and the
relation curve between the number of selected SNPs and the threshold of genetic distance
(r2) is present in Figure 1B. In the PhyD and GenD methods, appropriate thresholds of
physical distance and genetic distance were selected to construct panels with SNP number
consistent with the random method (Table S2). For the GenD method, only 75 k SNPs were
selected even the r2 is close to 1. As a result, the GenD method does not produce panels
containing 100 or 200 k SNPs. According to the above three methods, a total of 40 panels
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were generated, which can be regarded as SNP chips with different SNP numbers and
conduct according to different marker selection methods.
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2.3. Genomic BLUP Model

All genomic predictions in this study were based on the genomic BLUP (GBLUP)
model, the model includes a single random genetic effect and was expressed as:

y = µ+ Zg + e (1)

where y is the vector of EBVs, µ is a vector of overall mean, g is a vector of individual
genetic values captured by all SNPs in the panel, Z is the design matrix of genetic values,
and e is a vector of residuals. The random genetic and residual values are assumed to be
independent normally distributed values described as: g ∼ N(0, Gσ2

g) and e ∼ N(0, Iσ2
e),

σ2
g and σ2

e are the additive genetic variance and residual variance. In this study, all variance
components were estimated using the average information restricted maximum likelihood
(AI-REML) algorithm in BLUPF90 software [35].

The additive G matrix was constructed using all SNPs in the panel [36]:

G =
WW′

2
K
∑

k=1
pk(1–pk)

(2)

where W = M–2P is the centered genotype matrix, M is the genotype matrix with elements
of 0, 1 and 2, P is a matrix of 1× pk in the kth column, and pk is the frequency of a given

allele of the kth SNP. The solution of ĝ is equal to (Z′R−1Z + G−1)
−1

Z′R−1(y–µ̂), where
R = Iσ2

e is the covariance matrix of the residuals. Each of the 40 panels produced in the
Marker selection methods section was used to construct the G matrix separately.
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2.4. Model Assessment

The predictive performance of the GBLUP model was evaluated using the 10-fold
cross-validation (CV) method. A 10-fold CV process is as follows: (1) Randomly split all
bulls into 10 folds. (2) Build the GP model on nine folds of the bulls (training set), and
the remaining fold (validation set) is used to test the accuracy of the prediction model.
(3) Repeat (2) until each of the 10-folds has served as the validation set. (4) The Pearson’s
correlation coefficient of EBV and GEBV for individuals in the 10 validation sets obtained
above is called the CV accuracy and will serve as the prediction accuracy of the GBLUP
model. This 10-fold CV process was repeated 10 times for each scenario. Therefore, the
10 × 10 fold CV was used to evaluate GEBV accuracy in our study. The variance component
estimates calculated by the above CV process were also used for subsequent analysis.

2.5. Measurements of Marker Density

To make it easier to compare the panels produced by different marker selection
methods, four statistics were calculated for each SNP panel, i.e., the mean (d) and variance
(σ2

d) of the physical distance between adjacent SNPs and the mean (r2) and variance (σ2
r2)

of the r2 (genetic distance) between adjacent SNPs. These four statistics were used as the
measurements of marker density. For each of the 40 panels, the four statistics need to be
calculated separately. In this study, the length of the chromosomes used to construct the
various panels was fixed. At the same SNP number level, the d of all panels is basically the
same, but σ2

d, r2 and σ2
r2 are different. Therefore, we only investigated the effects of σ2

d, r2

and σ2
r2 on the GEBV accuracy.

3. Results
3.1. Measurements of Marker Density for Different Panels

A total of 40 panels were generated by PhyD, GenD and RanD methods. The dis-
tributions of the physical distance and genetic distance between adjacent SNPs for each
panel are shown in Figure 2. The physical distance between adjacent SNPs was replaced
by logarithm base 10 because the distance is of different orders of magnitude at different
SNP number levels. Compared with the other two methods, the panel constructed by
PhyD has the smallest σ2

d. For the panels constructed by the GenD or RanD method, the
σ2

d was large, this is most obvious in the panels with few SNPs constructed by the GenD
method (Figure 2A). The r2 and σ2

r2 increase with the number of SNPs in the panels, the
RanD method increases faster, followed by the PhyD method, and the GenD method is the
slowest (Figure 2B).

3.2. Accuracies of Genomic Prediction

The genomic prediction performance of panels constructed by different methods is
shown in Figure 3. Compared with GenD and RanD, the low-density panels constructed
by PhyD method have advantages in genomic prediction for all three traits (Figure 3).
The GEBV accuracy of moderate and low-density panels constructed by PhyD method
was 3.8~34.8% higher than that of moderate and low-density panels constructed by RanD
or GenD method. The panel with the highest SNP number did not achieve the best
performance of genomic prediction for all traits. For SCS controlled by many loci of small
effect, the panel with 30 k SNPs constructed by GenD method corresponds to the highest
GEBV accuracy, which is 0.8% higher than that of the highest density SNP panel, but there
is no obvious difference in GEBV accuracy between the 30 k panel constructed by PhyD
(Figure 3A). For MY and FP affected by loci of moderate or large effect [37], the GEBV
accuracy based on panels constructed by PhyD method with about 20 k SNPs was the
highest, which was 1.5% and 8% higher than that of the highest density panel respectively
(Figure 3B,C). The GEBV accuracy of moderate density panels (20–30 k SNPs) constructed
by PhyD was the same as or slightly higher than that of high-density SNP panels.
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accuracy of panels with different SNP numbers constructed by PhyD, GenD or RanD for somatic cell score (SCS), milk yield
(MY) and milk fat percentage (FP) are shown in (A–C) respectively.

3.3. Variance Component Estimates

The genetic variance estimates based on different panels correspond to the GEBV
accuracy, that is, the higher the estimate of genetic variance, the higher the GEBV accuracy.
In other words, the more accurate the GP model, the more genetic variance it can capture,
and the lower the estimate of residual variance (Figure 4). Therefore, the estimates of the
residual variance based on different panels are contrary to the trend of GEBV accuracy. The
genetic variance estimates based on low-density panels constructed by PhyD method are
5~51.6% higher than that of low-density panels constructed by RanD or GenD method.
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facilitate representation, all variance component estimates were scaled with phenotypic variances, i.e., the genetic variance
estimates and residual variance estimates were divided by the phenotypic variances, respectively. The smoothed conditional
means of variance component estimates of panels with different SNP numbers constructed by PhyD, GenD or RanD for
SCS, MY and FP are shown in (A–C) respectively.

3.4. Relationships between Measurements of Marker Density and GEBV Accuracy

Panels at the same SNP number level constructed by different methods have different
performances in genomic prediction, and this difference is most obvious in the low and
moderate-density panels. Therefore, we investigated the relationship between marker
density-related measurements and GEBV accuracy in low and moderate-density panels.
Table 1 lists the marker density-related measures and GEBV accuracy for low and moderate-
density panels constructed by PhyD, GenD or RanD. Compared with GenD and RanD,
the panels constructed by PhyD have the minimum σ2

d and generally have higher GEBV
accuracy than the panels constructed by GenD and RanD at each SNP number level. Panels
constructed by GenD had much smaller r2 or σ2

r2 at each SNP number level than those
constructed by RanD, but had no obvious advantage or disadvantage in terms of GEBV
accuracy compared to those constructed by RanD. With the increase of the SNP number in
the panels, the r2 and σ2

r2 of panels constructed by PhyD changed greatly compared with
those constructed by GenD or RanD, but the GEBV accuracy of the panel constructed by
PhyD was generally superior to that of the panels constructed by GenD and RanD.

To further investigate the relationship between marker density-related measurements
and GEBV accuracy, we tested the correlation between each measurement and GEBV
accuracy. First, the three values of each marker density-related measure at each SNP
number level were standardized as follows:

zi =
xi −mean(x)

sd(x)
. (3)

where xi is the ith variable of x (refers to any of the marker density-related measurements),
mean(x) is the mean value of x, sd(x) is the standard deviation of x, zi is standardized xi.
The three GEBV accuracies for each trait at each SNP number level were also standardized
by Equation (3). The measurements and GEBV accuracies were standardized in each SNP
number level respectively. Then the correlation analysis was carried out by combining
the information of all SNP number levels in Table 1. Each standardized measurement
value (standardized values in any column σ2

d, r2 and σ2
r2 in Table 1) corresponds to three

standardized GEBV accuracies (corresponding GEBV accuracies in columns FP, MY and
SCS in Table 1). Therefore, a total of 99 pairs of measurement values and GEBV accuracies
were used to detect the relationship between each marker density-related measure and
GEBV accuracy. The correlation coefficient between the marker density-related measure-
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ments and the GEBV accuracy was calculated by Pearson’s correlation. The t-value of the
correlation coefficient was used as the test statistic for the significance test. In this study,
the correlation analysis was used to detect the relationship between marker density-related
measures and GEBV accuracy under a certain SNP number (but combining information
from different SNP number levels), rather than detect the influence of marker density-
related measures on GEBV accuracy as the SNP number changes, so we first standardized
the measurements and the GEBV accuracies in each SNP number level. Another purpose
of our standardization (using standard deviation) is to make the information at each SNP
number level contribute equally to the results of the correlation analysis.

Table 1. The measurements of marker density and GEBV accuracy for low and moderate-density panels constructed by
PhyD, GenD or RanD. Each GEBV accuracy in the table was calculated by a 10 × 10 cross-validation.

SNP
Number
Levels

Methods

Measurements of Marker Density GEBV Accuracy

σ2
d

(1010) r2 σ2
r2 FP MY SCS

1 k
PhyD 0.245 0.047 0.005 0.704 0.645 0.482
GenD 867.650 0.027 0.011 0.594 0.599 0.394
RanD 639.753 0.097 0.038 0.523 0.589 0.459

2 k
PhyD 0.216 0.061 0.012 0.710 0.667 0.531
GenD 226.149 0.030 0.014 0.603 0.630 0.458
RanD 158.043 0.125 0.053 0.611 0.647 0.527

3 k
PhyD 0.240 0.082 0.021 0.761 0.703 0.563
GenD 97.622 0.029 0.014 0.630 0.645 0.491
RanD 72.558 0.164 0.075 0.605 0.659 0.553

4 k
PhyD 0.268 0.088 0.023 0.732 0.704 0.610
GenD 52.830 0.030 0.015 0.663 0.666 0.523
RanD 43.857 0.193 0.091 0.617 0.662 0.576

5 k
PhyD 0.242 0.108 0.034 0.753 0.706 0.621
GenD 32.881 0.030 0.015 0.656 0.677 0.539
RanD 28.646 0.219 0.103 0.608 0.668 0.590

7 k
PhyD 0.218 0.138 0.049 0.775 0.720 0.624
GenD 16.006 0.029 0.014 0.652 0.694 0.569
RanD 15.380 0.253 0.117 0.709 0.703 0.601

10 k
PhyD 0.212 0.191 0.077 0.759 0.724 0.628
GenD 6.754 0.029 0.013 0.626 0.692 0.604
RanD 8.399 0.306 0.138 0.686 0.700 0.612

15 k
PhyD 0.170 0.275 0.114 0.771 0.725 0.640
GenD 2.976 0.031 0.010 0.641 0.697 0.638
RanD 4.266 0.373 0.157 0.686 0.703 0.623

20 k
PhyD 0.157 0.323 0.131 0.763 0.727 0.643
GenD 1.798 0.050 0.009 0.627 0.695 0.650
RanD 2.627 0.420 0.167 0.718 0.712 0.628

30 k
PhyD 0.128 0.398 0.152 0.765 0.726 0.648
GenD 0.974 0.110 0.024 0.679 0.710 0.652
RanD 1.314 0.479 0.174 0.668 0.697 0.640

50 k
PhyD 0.098 0.476 0.167 0.761 0.726 0.650
GenD 0.485 0.238 0.075 0.698 0.712 0.652
RanD 0.551 0.553 0.176 0.715 0.710 0.643

Correlation test results showed that there was a significant negative correlation be-
tween σ2

d and GEBV accuracy, and the correlation coefficient between them was −0.83
(p < 0.001) (Figure 5A). Compared with GenD and RanD, panels constructed by PhyD have
a very small σ2

d (Table 1), and the standardized σ2
d are mainly clustered at −1 (Figure 5A).
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Panels constructed by GenD and RanD have larger σ2
d (Table 1), with standardized σ2

d
clustering around 0.5 (Figure 5A). In Figure 5B,C, the standardized r2 and σ2

r2 near −1

were generated by GenD, and the standardized r2 and σ2
r2 near 1 were generated by RanD.

Although the r2 and σ2
r2 of panels constructed by GenD and RanD are significantly different,

they do not affect the GEBV accuracy. In Figure 5B,C, the standardized r2 and σ2
r2 between

−0.5 and 0.5 were generated by PhyD. Compared with GenD and RanD, panels constructed
by PhyD have higher GEBV accuracy in In Figure 5B,C, which seems to be caused by other
factors, namely σ2

d, independent of r2 and σ2
r2 . For trait SCS, there seems to be a consistent

negative correlation between the GEBV accuracy and r2 (or σ2
r2) for panels at 15 to 50 k

(Table 1). We combined the information of 15 to 50 k SNP panels to test the correlation
between GEBV accuracy of SCS and the marker density-related measurements, the results
are shown in Figure S2. In moderate-density panels, σ2

d has a weak negative correlation
with GEBV accuracy of SCS (the correlation coefficient was −0.54, p = 0.073, Figure S2A); r2

and σ2
r2 were negatively correlated with GEBV accuracy of SCS (correlation coefficient were

close to −0.8, p < 0.01, Figure S2B,C). This may be related to the higher GEBV accuracy of
the moderate-density panels constructed by GenD in SCS (Figure 3A).
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generated by each correlation test were given in the plot. The correlation test results of variance of the physical distance
between adjacent SNPs, the mean and variance of the r2 (genetic distance) between adjacent SNPs with genomic prediction
accuracy are listed in (A–C) respectively.

The above results seem to indicate that the variance of physical distance between
adjacent SNPs in panels influences the GEBV accuracy, and we further verified this result.
We generated four different marker sets regardless of the physical distance and genetic
distance between the SNPs. The first marker set (Scenario 1) was constructed as follow:
(1) The SNPs were numbered 1 to 335,753 in the order in which they are placed on the
chromosome, and select the SNP numbered 1, (2) select the SNP numbered i + 67, and i
is the SNP number selected last time, (3) repeat (2) until throughout the entire genome.
For the construction of marker sets 2–4 (Scenario 2–4), just replace the 67 in step 2 with
integer sampling from normal distributions with a mean of 67 and variance of 20, 40 or 80
respectively. The d and σ2

d of scenario1–4 are listed in Table S3. It can be seen that the four
marker sets have the same d and different σ2

d. Therefore, these four scenarios were used to
study the relationship between GEBV accuracy and σ2

d. The performance of the marker
sets of scenarios 1–4 on genomic prediction was verified with the 10 × 10 fold CV. Figure 6
shows that the GEBV accuracy decreases with the increase of σ2

d.
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4. Discussion

Marker density is an important factor affecting the results of genomic prediction
and heritability estimation. In general, the low-density SNP chips for genome prediction
were constructed by SNPs evenly distributed across the entire genome [12]. High-density
SNP or genome-wide sequence data used for genome-wide association analysis (GWAS)
and heritability estimation are usually thinned by default using LD thresholds between
markers [9,10]. Previous studies seem to have ignored the effects of different measurements
of marker density, namely physical distance and genetic distance and their characteristics,
on the results of genome analysis. In this study, the influences of measurements of ‘marker
density’ were investigated systematically using high-density SNP data from a Holstein
cattle population. We found that the degree of variation of physical distance between
SNPs had significant effects on the accuracy of GP and the estimation of genetic variance.
However, the genetic distance between SNPs was not significantly correlated with the
accuracy of genomic prediction.

4.1. Relationship between Measurement of “Marker Density” and GP Performance

Previous studies have found that the marker selection methods have an impact on
the distribution of SNPs on the chromosome and, in turn, the performance of GP [19]. In
this study, the distance between adjacent SNPs was measured by physical or genetic map.
For panels with a certain SNP number, σ2

d is an important factor found in this study that
significantly affects the GEBV accuracy. σ2

d is the measure of physical distance variation
between adjacent SNPs. The σ2

d of the panels constructed by the PhyD method is far less
than that of the panels generated by RanD or GenD methods (Table 1). The genomic
prediction performance based on panels constructed by the PhyD method is almost always
better than that of the panels constructed by the other two methods (Figure 3). Correlation
test between GEBV accuracy and σ2

d shows that there is a negative correlation between them
(Figure 5A), and this relationship was verified in four arbitrary panels that with different
σ2

d (Table S3, Figure 6). Werner et al. [4] found that the GEBV accuracy based on the low-
density panels constructed by GWAS results was lower than that of the panels randomly
constructed in some traits. This may be due to uneven distribution of the GWAS peak on
the chromosome and resulting in larger σ2

d. Meanwhile, The low-density panels constructed
by minor allele frequency (MAF) filtering were worse than randomly constructed panels
in GP (Figure 2 in their paper) may also related to larger σ2

d [38]. The measurements of
genetic distance between adjacent SNPs are not related to the GEBV accuracy for low and
moderate-density panels (Figure 5B,C), although the genomic prediction is dependent on
the LD between SNP and quantitative trait locus [39,40]. Because the physical distance



Animals 2021, 11, 1992 11 of 15

between adjacent SNPs of panels generated by the GenD method varies greatly (Table 1), the
GenD method is not more favorable or worse than the random method when constructing
low-density panels (Figure 3). The previous study has also found that low-density panels
constructed by genetic distance have large gaps [31]. In the studies of GWAS and SNP-
heritability estimation based on high-density SNP data or whole-genome sequence data, r2

is usually used as a threshold to prune the SNPs before formal analysis [9,10]. However,
even a threshold of 0.98 would produce moderate-density panel (Table S2) with large σ2

d
(Table 1), resulting in a loss of genetic variance (Figure 4).

4.2. Development of Cost-Effective Panels

The genomic selection currently relies on collecting genome-wide genotype data
across a large number of individuals, which requires substantial economic investment. For
small and medium-sized enterprises in livestock and poultry breeding, a cost-effective
low-density panel is needed [5]. The GEBV accuracy increases rapidly with the number
of SNPs in the low-density panel, however, as the number of SNPs increases to moderate
or high density, the improvement of GEBV accuracy is very limited (Figure 3). Previous
studies have also reported consistent results [5,30]. Therefore, it seems to be feasible
and cost-effective to develop a low-density panel according to the above characteristics.
The low-density panel constructed by the PhyD method can minimize the variance of
the distance between adjacent markers and allow GEBV accuracy to be maintained as
much as possible with a limited SNP number. Meanwhile, the equidistant distribution of
SNPs is also conducive to genotype imputation [12]. Compared to moderate and high-
density panels (more than 20 k SNPs), the decrease in GEBV accuracy and genetic variance
estimates based on low-density panels (less than 10 k SNPs) constructed by the PhyD
method seems to be independent of trait genetic architecture (Figures 3 and 4), which has
also been reported in the previous studies [11,41]. Therefore, the PhyD method can be
used as an effective method to construct moderate and low-density panels. We found that
when the SNP number reached moderate density, the increase of GEBV accuracy is very
limited for all dairy cattle traits (Figure 3). The definition of low-density, moderate-density
and high-density panels may vary with species and the number of high-density markers
available, here we illustrate our recommendations based on the dairy cattle data. It may
be an effective strategy to develop the 10 k low-density panel by the PhyD method for
dairy cattle, which can maintain the GEBV accuracy. The cost savings of the 10 k panel
compared to the commonly used 50 k panels will facilitate the application of GP. In fact,
most panels used for GP were designed with markers evenly distributed across the entire
genome [11,12]. At the same time, it is a good strategy to add a small amount of trait-related
causative variations to the low-density panel [4].

4.3. Pruning Strategies of High-Density SNP Data in Genome prediction

Among all traits in this study, it is not the panel with the highest density that can
capture the most amount of genetic variance (Figure 4) and obtain the highest GEBV
accuracy (Figure 3). Previous studies using non-trait-specific low-density panels also have
consistent results [5,24]. This may be because the number of SNPs linked to QTL increased
with the increase of SNP number. The linked SNPs have different allele frequencies and
different degrees of linkage with QTLs, which may be adverse to genomic prediction [2].
This may be solved by constructing the LD adjusted relationship matrix used in the SNP-
heritability model [42], but this is beyond the scope of this study. The three dairy cattle
traits used in this study have different genetic architectures. The SCS is controlled by
many loci of small effect [43], and the panel with about 30 k SNPs selected by the GenD
method gets the best result in genomic prediction (Figure 3A). For panels with 20~50 k
SNPs, there is a negative relationship between GEBV accuracy and r2 or σ2

r2 (Figure S2B,C)
in SCS. Therefore, for traits mainly controlled by loci of small effect, considering the
genetic distance between SNPs to remain independent between markers may be more
advantageous than controlling the physical distance between SNPs. Ye et al. [24] obtained
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consistent results from the growth and carcass traits in a chicken population. Nevertheless,
the superiority of GenD over PhyD in GP is very limited (Figure 3A). For MY and FP, which
are affected by loci of moderate or large effect [37], the best genomic prediction results were
obtained by using the panels with about 20 k SNPs constructed by PhyD (Figure 3B,C).
Previous studies have also shown that the high-density SNP panel was not conducive
to the genomic prediction of simulated traits controlled by loci of large effect [25]. For
quantitative traits, even if there are loci of large or moderate effect, there may be also a
large number of loci of small effect [2]. Therefore, we suggest that the panel with moderate
density can be constructed in two steps. First, the PhyD method is used to construct a
low-density panel (10 k). Then, based on the low-density panel generated in the first
step, selecting the remaining SNPs using the GenD method. For all the traits used in this
study, the panels containing 20–30 k SNPs get the best results in GP. Therefore, we suggest
using a moderate-density SNP panel (20–30 k) in genomic prediction, and which is close to
the marker density commonly used [33]. It is difficult to further improve the accuracy of
genome prediction by simply increasing the SNP number on moderate-density panels, but
it seems more effective to add trait-related causative variations [4] or construct weighted
genome relationship matrices [44,45].

5. Conclusions

In this study, the influence of the measurements of ‘marker density’ on the perfor-
mance of genomic prediction was investigated based on the high-density SNP data of a
Holstein dairy cattle population. We found that the smaller the variation degree of physical
distance between adjacent SNPs, the more accurate the genomic prediction. There was
no significant correlation between the genetic distance between SNPs and the accuracy of
genome prediction. However, the variation of physical distance between SNPs selected
by genetic distance is large, which is not conducive to genome prediction. The moderate-
density panels (20–30 k) constructed by the PhyD method performed in this study are
recommended for genome prediction and SNP-heritability estimation. The relationship
between measurements of ‘marker density’ on GEBV accuracy discovered in this study
provides useful suggestions for future work based on high-density SNP or whole-genome
sequence data.
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(bp) and r2, respectively, Figure S2: The correlation tests between normalized marker density-related
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combining normalized marker density-related measurements and normalized GEBV accuracies on
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Appendix A

In this study, the physical distance (PhyD), genetic distance (GenD) and random dis-
tance (RanD) were used to select SNPs to construct panels with different marker densities.

The GenD method was implemented using the following command line of PLINK soft-
ware:

plink –bfile clean –chr-set 29 no-x no-y no-xy no-mt –indep 50 5 vif –out ldxx
Where clean is the PLINK binary files; –indep 50 5 means that the window size and

step were set as 50 kb and 5 kb, vif is the VIF threshold, which can be calculated as 1/
(
1–r2),

where r2 is the multiple correlation coefficient for an SNP being regressed on all other
SNPs simultaneously, by adjusting the VIF to adjust the linkage disequilibrium threshold
between markers; –out ldxx specifies the root of the output file as ldxx.

The RanD method was also implemented using the command line of PLINK software:
plink –bfile clean –chr-set 29 no-x no-y no-xy no-mt –thin 0.003 –make-bed –out ran-

dom1k
Where –thin 0.003 means to keep only a random 0.3% of SNPs, modify this parameter

to get panels with different number of SNPs.
The PhyD method was implemented using our R script:
bp < −bim[4] # extract position of each SNP
i < −1
m = NULL
n = 1
while (i < = TOTAL_NUM){ # limits the maximum number of SNPs
m = min (which (bp-bp[i] >= LIMIT_BP)) # limits the minimum physical distance #

between adjacent SNPs
n = c (n,m)
i = m}
n < −n[1:(length(n)−1)]
sel_bim < −bim[n,] bim[n,]
Where bim is the PLINK bim file. TOTAL_NUM refers to the total number of SNPs in

our high-density data. The above script selects SNPs by limiting the minimum physical
distance between adjacent SNPs to LIMIT_BP bp. By adjusting LIMIT_BP, we get panels
with different SNP numbers.
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