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Abstract

Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest
most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal
lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene
transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic
versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875
distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with
respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented
in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid
metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered
counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude
more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in
Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT
events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48
genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically
consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant
process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner.
Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for
the generation of fungal metabolic diversity.
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Introduction

As one of the primary decomposers of organic material in

nature, fungal species catabolize a wide diversity of substrates [1],

including cellulose and lignin, the two most abundant biopolymers

on earth [2]. Fungi are also superb chemical engineers, capable of

synthesizing a wide variety of metabolites, including amino acids,

small peptides, pigments and other natural products with potent

toxic activities, such as antibiotics and mycotoxins [3–6].

Fungal metabolites have historically been divided into primary,

that is metabolites essential for growth and reproduction, and

secondary, which include ecologically important metabolites not

essential to cellular life [7,8]. However, this distinction is arbitrary

when applied to metabolic pathways rather than their products

not only because the essentiality of a given pathway is species-

specific [9] but also because the pathways that generate primary

and secondary metabolites are not mutually exclusive [10,11].

Perhaps more informatively, pathways can be divided into those

shared by most organisms, which can be considered as belonging

to general metabolism, and those specialized pathways that have

evolved in response to the specific ecologies of certain lineages and,

as a result, are more narrowly taxonomically distributed.

An intriguing feature of specialized metabolic pathways in fungi

is that constituent genes are often physically linked on chromo-

somes forming what are known as gene clusters [12,13]. Fungal

metabolic gene clusters are distinct from the developmental gene

clusters typically found in animal genomes, such as the Hox gene

clusters; whereas animal gene clusters are composed of tandemly

duplicated genes [14,15], fungal metabolic gene clusters comprise

genes that are evolutionarily unrelated. Fungal metabolic gene

clusters participate in diverse activities including nitrogen [16,17],

carbohydrate [18], amino acid [19], and vitamin [12] metabolism

as well as in xenobiotic catabolism [11,20] and the biosynthesis of

secondary metabolites [e.g., 21–28].

Although this extraordinary metabolic diversity, whether in the

form of clustered or non-clustered pathways, is integral to the

entire spectrum of fungal ecological strategies (e.g., saprotrophic,

pathogenic and symbiotic), we still know little about the

evolutionary processes involved in its generation. Gene duplication

(GD), a major source of gene innovation, is often implicated in the
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evolution of fungal metabolism [e.g., 29–31], especially in the

context of whole genome duplication (WGD) [32–34] and gene

family expansion [35,36]. Notable examples include the GD of

enzymes involved in organic decay [30], starch catabolism [37],

degradation of host tissues [31,38,39] and toxin production [36].

Repeated rounds of GD, followed by divergence and differential

gene loss, have also been invoked to explain the evolution of the

gene clusters that generate the diverse alkaloids produced by plant

symbiotic fungi [4]. A second key source of metabolic gene

innovation in fungi is horizontal gene transfer (HGT) [40–44];

significant cases include the transfer of genes involved in

xenobiotic catabolism [45,46], toxin production [45,47], degra-

dation of plant cell walls [48,49], and wine fermentation [50].

More recently, HGT has been shown to be responsible for the

transfer of entire metabolic gene clusters between unrelated fungi

[11,51–58].

Although both GD and HGT have been extensively studied in

fungal genomes, how these two major sources of gene innovation

have interacted with clustered and non-clustered metabolic

pathways and sculpted their evolution is largely unknown. To

address this question, we analyzed 247,202 enzyme-encoding

genes from 208 diverse fungal genomes whose protein products

participate in hundreds of metabolic reactions. We found that both

GD and HGT were more pronounced in clustered genes than in

their non-clustered counterparts. On average, 90.0% of clustered

metabolic genes underwent GD and 4.8% underwent HGT,

whereas 88.1% and 2.9% of non-clustered metabolic genes

experienced GD and HGT, respectively. Remarkably, some

genera appear to have undergone a larger number of HGT

events than entire subphyla. While the effect of GD was largely

stable across metabolic categories, HGT varied extensively. These

results suggest that GD is the dominant and stable process

underlying fungal metabolic diversity, whereas HGT’s impact is

more pronounced in specific lineages and metabolic categories.

The disproportionate effect of GD and HGT on clustered genes

renders metabolic gene clusters into hotspots of metabolic

innovation and diversification in fungi.

Results

Clustered genes in fungi vary extensively across lineages
and metabolic categories

Analysis of 208 fungal genomes identified 247,202 Enzyme

Commission (EC)-annotated metabolic genes (ECgenes for short),

which encoded proteins catalyzing 875 distinct enzymatic

reactions in 130 metabolic pathways (Figure 1; Table S1; Table

S2). The percentage of the fungal proteome dedicated to

metabolism was 15.4% in Saccharomycotina, 12.6% in Pezizo-

mycotina and 8.9% in Agaricomycetes (Table S3; Figure S1).

Examination of fungal metabolism for the presence of metabolic

gene clusters revealed that 3.0% (7,409) of ECgenes belonged to

3,408 distinct gene clusters, with the average genome containing

16.7 metabolic gene clusters and 36.3 clustered ECgenes (Table

S3). The percentage of clustered ECgenes was highly variable

across the major lineages, being more than two-fold greater in the

two Ascomycota lineages, namely Pezizomycotina (3.6% of

ECgenes) and Saccharomycotina (3.7%), than in Agaricomycetes

(1.6%) (Figure 1, Table S3). For example, the plant pathogen

Fusarium solani species complex species 11 (a.k.a., Nectria
haematococca, Sordariomycetes) had 152 clustered ECgenes

(representing 6.2% of its ECgenes), the most of any genome

analyzed, the yeast Torulaspora delbrueckii (Saccharomycotina)

had 59 clustered ECgenes (7.3%), whereas the ectomycorrhizal

fungus Laccaria bicolor (Agaricomycetes) had only 14 clustered

ECgenes (1.1%).

To test whether clustering was variable across fungal metabo-

lism, we used the Kyoto Encyclopedia of Genes and Genomes

(KEGG) metabolism hierarchy [10] to assign all ECgenes to 12

overlapping, higher-order metabolic categories (CARBOHYDRATE,

ENERGY, LIPID, NUCLEOTIDE, AMINO ACID, GLYCAN, COFACTOR/VITA-

MIN, TERPENOID/POLYKETIDE, OTHER SECONDARY METABOLITE, XENO-

BIOTICS, BIOSYNTHESIS OF SECONDARY METABOLITES, and MICROBIAL

METABOLISM IN DIVERSE ENVIRONMENTS). We found that the

proportion of clustered ECgenes varied significantly across

metabolic categories (Figure 2, Table S4). For example, clustered

ECgenes from all lineages were significantly overrepresented in the

KEGG categories CARBOHYDRATE and TERPENOID/POLYKETIDE and

underrepresented in the GLYCAN category. In addition, the

proportion of clustered ECgenes in a given category often varied

significantly between lineages. For example, clustered ECgenes in

the NUCLEOTIDE and XENOBIOTIC categories were only significantly

overrepresented in Saccharomycotina and Agaricomycetes; clus-

tered ECgenes in the same categories were underrepresented in

Pezizomycotina (Figure 2). Similarly, clustered ECgenes in the

AMINO ACID and LIPID categories were underrepresented in

Saccharomycotina, whereas clustered ECgenes in these same

categories were overrepresented in Pezizomycotina and Agarico-

mycetes (Figure 2).

GD and HGT are differentially distributed across fungal
lineages

To evaluate the impact of GD and HGT on fungal metabolism,

we inferred GD and HGT events by reconciling the gene tree of

each ECgene to the fungal species phylogeny [59–61]. Specifically,

we assigned costs to GD, HGT, gene loss, and incomplete lineage

sorting (ILS) and determined the most parsimonious combination

of these four events to explain the ECgene tree topology given the

consensus species phylogeny. Therefore, HGT events were

inferred only when an ECgene tree topology was contradictory

to the species phylogeny and could not be more parsimoniously

Author Summary

Fungi are important primary decomposers of organic
material as well as amazing chemical engineers, synthe-
sizing a wide variety of natural products, some with potent
toxic activities, including antibiotics and mycotoxins. In
fungal genomes, the genes involved in these metabolic
pathways can be physically linked on chromosomes,
forming gene clusters. This extraordinary metabolic diver-
sity is integral to the variety of ecological strategies that
fungi employ, but we still know little about the evolution-
ary processes involved in its generation. To address this
question, we analyzed 247,202 enzyme-encoding genes
participating in hundreds of metabolic reactions from 208
diverse fungal genomes to examine how two major
sources of gene innovation, namely gene duplication
and horizontal gene transfer, have contributed to the
evolution of clustered and non-clustered metabolic path-
ways. We discovered that gene duplication is the
dominant and consistent driver of metabolic innovation
across fungal lineages and metabolic categories; in
contrast, horizontal gene transfer appears highly variable
both across organisms and functions. The effects of both
gene duplication and horizontal gene transfer were more
pronounced in clustered genes than in their non-clustered
counterparts suggesting that metabolic gene clusters are
hotspots for the generation of fungal metabolic diversity.
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Figure 1. Variation in gene clustering, GD, and HGT across the fungal phylogeny. From top to bottom, the four box-and-whisker plots
correspond to number of ECgenes per genome, percentage of clustered ECgenes per genome, percentage of horizontally transferred ECgenes per
genome, and percentage of duplicated ECgenes per genome. The bottom and top of each box first and third quartiles (the 25th and 75th
percentiles), respectively. The lower whisker extends from the box bottom to the lowest value within 1.5 * IQR (Inter-Quartile Range, defined as the
distance between the first and third quartiles) of the first quartile. The upper whisker extends from the box top to the highest value that is within 1.5 *
IQR of the third quartile. Data beyond the end of the whiskers are outliers and plotted as points. Numbers in parentheses after the lineages’ names
indicate numbers of genomes in each lineage; the numbers of genomes used from each lineage are also reflected by the widths of their branch
triangles on the fungal species phylogeny shown at the bottom of the figure.
doi:10.1371/journal.pgen.1004816.g001
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reconciled using a combination of differential GD and gene loss.

We evaluated multiple HGT costs and ultimately implemented a

cost four times greater than the GD cost because it was the lowest

HGT cost that recovered three published cases of HGT without

any additional (e.g., potentially spurious) cases of HGT in the

corresponding ECs (Table S5).

On average, 88.7% of ECgenes per genome were inferred to

have undergone one or more GD events (Table S3). This

Figure 2. Over/underrepresentation of KEGG metabolic categories across three major fungal lineages. From top to bottom, the box-
and-whisker plots correspond to number ECgenes per genome, number of clustered ECgenes per genome, number of transferred ECgenes per
genome, and number of duplicated genes per genome. Agaricomycetes boxes are colored blue, Saccharomycotina boxes are colored red, and
Pezizomycotina boxes green. Box-and-whisker convention is as described in Figure 1. Up arrows under boxes indicate overrepresentation, and down
arrows indicate underrepresentation of the corresponding metabolic category in the corresponding lineage. Significance of differential
representation was estimated using a two-tailed Fisher’s exact test using a Benjamini & Hochberg adjusted P value#0.05 to account for multiple
testing (Table S4).
doi:10.1371/journal.pgen.1004816.g002
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percentage was lower in early diverging lineages; this was the case

for both taxa with typical gene densities (e.g., Chytridiomycetes) as

well as for the extremely reduced microsporidians, which displayed

the lowest percentages of duplicated metabolic genes (49.0% and

49.5% of ECgenes in E. cuniculi and E. intestinalis, respectively).

While the low percentages of GD in microsporidians are likely

explained by genome streamlining, the low percentages observed

in other early diverging lineages are harder to explain, although

we note that their current sparse representation in the set of

sequenced fungal genomes increases the uncertainty associated

with estimating GD and HGT. In contrast, 93.7% of ECgenes

underwent GD in the Agaricomycetes (Figure 1), with the button

mushroom, Agaricus bisporus, having 97.0% of its ECgenes

affected by GD (704 to 722 ECgenes depending on the strain). GD

percentage was also high in the Saccharomycotina (91.4%;

Figure 1), including in species belonging to the Saccharomyces
sensu stricto group, where the average increased to 95.3%, most

likely as a consequence of an ancient whole genome duplication

[33,62].

Our analysis also identified that on average 2.8% of ECgenes

per genome had undergone one or more HGT events (Table S3),

which could be traced back to 823 unique HGT events. The

Pezizomycotina showed the highest percentage of HGT of all the

major lineages, with an average 4.1% of ECgenes transferred per

genome, and Saccharomycotina the lowest, with an average 1.8%

of ECgenes transferred (Table S3; Figure 1). Remarkably, some

Pezizomycotina genera showed nearly as many or more HGT

events than the entire Saccharomycotina subphylum (Figure 3;

Figure S2). For example, we identified 111 HGT events since the

last common ancestor of the 15 Aspergillus species, the largest for

any genus included in our analysis, but only 60 HGT events since

the last common ancestor of the 48 Saccharomycotina genomes.

Notwithstanding the fact that genome coverage and age are not

the same across fungal genera, several other Pezizomycotina

genera showed an abundance of HGT events including Cochlio-
bolus (53 HGTs; 8 genomes), Fusarium (52 HGTs; 4 genomes),

and Trichoderma (50 HGTs; 6 genomes). Within the Agaricomy-

cetes, the highest concentration of HGT events was observed in

the two Agaricus bisporus genomes (23 HGTs).

GD and HGT rates are significantly higher for clustered
genes in the Pezizomycotina

Examination of the degree to which GD and HGT have

differentially impacted clustered and non-clustered metabolic

genes revealed significant differences (Figure 4; Table S6). On

average, 90.0% of clustered ECgenes and 88.1% of non-clustered

ECgenes underwent GD (P = 4.5861024). Similarly, 4.8% of

clustered ECgenes underwent HGT compared to 2.9% of non-

clustered ECgenes (P = 4.02610212). Examination of the impact

of GD and HGT in the three major lineages shows that only in the

Pezizomycotina was the percentage of GD and HGT significantly

higher for clustered ECgenes than for non-clustered ECgenes

(GD: 93.3% for clustered ECgenes versus 89.5% for non-

clustered, P = 1.74610211; HGT: 6.6% for clustered ECgenes

Figure 3. The episodic occurrence of HGT across the fungal
species phylogeny. Numbers in parentheses indicate the number of
HGT events and the number of genomes downstream of the collapsed
nodes, respectively. Some clades have been collapsed for clarity; see
Figure S2 for a depiction of the entire species phylogeny. The thickness
and color of each branch corresponds to number of ECgenes
transferred to each branch, adjusted by the number of genomes in
the case of collapsed clades.
doi:10.1371/journal.pgen.1004816.g003
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versus 4.0% for non-clustered, P = 2.77610210), suggesting that

the trend is largely driven by Pezizomycotina. In fact, in both

Saccharomycotina and Agaricomycetes GD was more common in

non-clustered ECgenes than in clustered ECgenes (P = 0.02 and

P = 0.01, respectively; Figure 4). HGT was more common in

Saccharomycotina non-clustered ECgenes than in clustered ones,

whereas in Agaricomycetes a higher incidence of HGT events was

observed in clustered ECgenes, although neither of these

associations was statistically significant (P = 0.54 and P = 0.16,

respectively; Table S6).

GD is consistent across fungal metabolism; HGT acts in a
category- and lineage-specific manner

To test whether GD and HGT prevalence varied across fungal

metabolism, we examined the rates of the two processes in each of

the 12 KEGG metabolic categories across our three major

lineages. We found that the effect of GD was generally consistent

across metabolic categories, with 9/12 categories showing the

same pattern of under/overrepresentation of duplicated ECgenes

across the three lineages (Figure 2, Table S4). Specifically, the

categories CARBOHYDRATE, GLYCAN, and BIOSYNTHESIS OF SECOND-

ARY METABOLITES were overrepresented, the categories LIPID,

NUCLEOTIDE, COFACTOR/VITAMIN, OTHER SECONDARY METABOLITES,

and XENOBIOTICS were underrepresented, whereas ENERGY was not

differentially represented in duplicated and non-duplicated

ECgenes in all three lineages.

Unlike GD, HGT differentially affected metabolic categories in

a lineage-specific fashion, with 10/12 categories differing in the

pattern of under/overrepresentation of duplicated ECgenes across

lineages (Figure 2, Table S4). For example, ECgenes in BIOSYN-

THESIS OF SECONDARY METABOLITES were overrepresented for HGT

events in Pezizomycotina and Saccharomycotina, but not in

Agaricomycetes. In contrast, ECgenes were overrepresented for

HGT in LIPID and TERPENOID/POLYKETIDE in Agaricomycetes but

underrepresented in the Pezizomycotina. Only 2 categories, AMINO

ACID and MICROBIAL METABOLISM IN DIVERSE ENVIRONMENTS, were

overrepresented in transferred ECgenes across all three lineages.

Discussion

Determining the relative role of GD and HGT with clustered

and non-clustered metabolic pathways is important for under-

standing the evolution of the fungal metabolic repertoire.

Examination of the synteny and evolutionary history of 247,202

ECgenes from 875 metabolic reactions across fungal diversity

showed that GD is the dominant source of metabolic gene

Figure 4. The association between gene innovation and gene clustering across three major fungal lineages. Percentage of non-
clustered (blue bars) and clustered ECgenes (red bars) inferred to have undergone GD (top) and HGT (bottom). Asterisks (*) indicate statistically
significant differences determined using a Benjamini & Hochberg adjusted P value#0.05 in a two-tailed Fisher’s exact test (Table S6).
doi:10.1371/journal.pgen.1004816.g004
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innovation in fungi, whereas HGT is variable across metabolic

categories and fungal lineages. Both GD and HGT are more

pronounced in clustered genes than in their non-clustered

counterparts, suggesting that metabolic gene clusters can act as

hotspots for the generation of fungal metabolic innovation.

GD and HGT are sources of genetic novelty
On average 88.7% of fungal ECgenes retain the signature of

one or more GD events in their ancestry compared to only 2.8%

for HGT (Table S3). Even though these percentages are not

directly comparable because reconciliation of ECgene histories

with the species phylogeny requires that costs are assigned for

every inferred GD or HGT event [60], our finding that nearly

nine out of every ten metabolic genes have undergone GD suggests

that this is the dominant source of gene innovation underlying

fungal metabolism. These results are consistent with the hypothesis

that specialized metabolic pathways evolve via GD from general

metabolic precursors. Support for this hypothesis has come from

phylogenetic analysis of single gene families [63,64] such as the

polykeytide synthases, which share a common evolutionary origin

with the fatty acid synthases of general metabolism [65]. Further

diversification of genes involved in specialized pathways may occur

through additional duplication, functional divergence and differ-

ential loss in response to variable ecological pressures as has been

proposed for polyketide, nonribosomal peptide and alkaloid

biosynthesis genes [4,66–68].

Our analysis showed that certain lineages in the Pezizomycotina

and Agaricomycetes have increased HGT rates. Interestingly,

bacteria-to-fungi HGT events are also elevated within Pezizomy-

cotina, particularly in Fusarium and Aspergillus genomes [43].

HGT of entire chromosomes has been reported in Fusarium
[69,70], a genus in our analysis, which in addition to Aspergillus,
Cochliobolus and Magnaporthe, appears not only receptive to

HGT but also includes highly virulent plant and animal

pathogens, ecological lifestyles associated with many known cases

of HGT [11,45,47,51,69–71]. Similarly, mycoparasitism in the

genus Trichoderma may also provide ecological opportunities for

fungal-to-fungal HGT.

GD alone or in combination with HGT affected nearly every

reaction in fungal metabolism (727, 95.7% of ECs that passed the

phylogenomic analysis; Figure 5). The effect of both GD and

HGT varied between metabolic categories, suggesting that some

pathways may tolerate the introduction of new genes better than

others. One possible explanation for this variation is that the

metabolic networks associated with the different functional

categories have different degrees of connectivity. Genes whose

products make up large protein complexes or that have many

interacting partners exhibit less variation in copy number [35],

perhaps because unbalanced increases in gene dosage can lead to

malformed protein complexes and a buildup of toxic intermediates

in metabolic pathways [72–74], and might be less likely to undergo

GD [75,76] as well as HGT [77]. In addition to gene dosage

effects, deleterious interactions between native and horizontally

acquired proteins that function as parts of multi-protein complex-

es, and as a consequence have distinct co-evolutionary histories,

are likely also important barriers to HGT [77,78].

Another possible explanation is that the source of the variation

of GD and HGT lies in the differing functions encoded by these

metabolic categories. Gene innovation is often correlated with

molecular function, with informational genes such as those

involved in DNA replication, transcription and translation

duplicated and transferred less often than metabolic genes

[35,76,78]. Within metabolism, one might expect that widely

distributed pathways involved in universal metabolic functions,

such as oxidative phosphorylation and the citric acid cycle, are

more likely to be functionally constrained and, as a consequence,

less likely to tolerate GD or HGT of their constituent genes. In

contrast, GD and HGT might be more advantageous for

specialized metabolic pathways that are under strong selection in

fluctuating environments [11].

33 EC reactions are associated with 332 ECgenes that are never

duplicated or transferred in our analysis; 31 of these 33 reactions

(93.9%) are also never clustered (Table S7a). For the majority of

these ECs, the reason for the apparent lack of GD or HGT is

because they are represented by only a few ECgenes in our

analysis; therefore, their ECgene trees consist of few taxa with

topologies in agreement with the consensus species phylogeny. For

other EC reactions in this set, strong selection pressure to maintain

a single, native gene copy could explain the lack of GD and HGT.

Only three genes annotated with EC reaction numbers and which

were never duplicated or transferred in our analysis were present

in the Saccharomyces cerevisiae genome (YNL219C [2.4.1.259],

YBR003W [2.5.1.83], and YPR184W [3.2.1.33]). When exam-

ined against the yeast phenotype and interaction data from the

Saccharomyces Genome Database (http://www.yeastgenome.org),

these three genes displayed a variety of phenotypes and all their

null mutants were viable (Table S7b). Interestingly, overexpression

of two of the ECgenes (YNL219C [2.4.1.259] and YBR003W

[2.5.1.83]) resulted in reduced rate of vegetative growth in S.
cerevisiae (Table S7b), suggesting that the acquisition of additional

gene copies through GD or HGT could be disadvantageous.

Furthermore, one S. cerevisiae ECgene, a glycosyltransferase

(YNL219C [2.4.1.259]) involved in the biosynthesis of asparagine-

linked glycans, has a very complex interaction network of 315

described physical and genetic interactions (Table S6a), which

could serve as an additional barrier to GD and HGT.

Gene clusters are hotspots for metabolic novelty
3.0% of fungal genes examined in our study lie within gene

clusters. This is likely a conservative estimate because ECgene

annotation is better for general rather than specialized metabo-

lism. Although our analysis includes many specialized pathways

(Table S2), such as biotin production (KEGG map00780), nitrate

assimilation (map00910) and terpenoid backbone biosynthesis

(map00900), and the fraction of enzymatic reactions encoded by

clustered ECgenes is extensive (441 reactions, 50.4% of ECs;

Figure 5), lineage-specific genes involved in specialized metabolic

pathways are less likely to be included. In addition, fungal

metabolic gene clusters are often identified through the presence of

one or more conserved synthesis genes (e.g., genes encoding

polyketide synthase or nonribosomal peptide synthase enzymes);

proper demarcation of associated genes encoding modifying

enzymes (e.g., oxidases and transferases) is challenging because

they often lack functional annotation and are lineage-specific,

leading to underestimates of gene cluster size.

Gene clustering in fungi is positively associated with both GD

and HGT, but this pattern appears to be driven by Pezizomyco-

tina ECgenes (Figure 4). Saccharomycotina ECgenes cluster more

often than the global fungal average but are less often affected by

HGT, whereas Agaricomycetes display the opposite trend; they

experience more HGT but less gene clustering (Figure S3). GD

affects nearly all ECgenes, and this large sample size undoubtedly

contributes to the statistical significance of its association with gene

clustering, even though the fold increase in the percentage of GD

events observed in clustered versus non-clustered ECgenes is only

1.02. In contrast, the effect of HGT on clustered genes is 1.66 fold

greater than its effect on non-clustered genes.
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The uniqueness and wide distribution of fungal metabolic gene

clusters has given rise to many models that attempt to explain their

formation and maintenance [53,79–83]. For example, the selfish

gene cluster model proposes that HGT allows gene clusters to

avoid being lost by facilitating colonization of new genomes

[84,85]. Although several instances of HGT of fungal gene clusters

have been discovered in recent years [11,51–58], clustered

pathways are also more likely to be lost than non-clustered ones

[53]. The small percentage of clustered genes affected by HGT in

our analysis (4.8%), albeit larger than the background percentage

of transferred un-clustered genes (2.9%), suggests that selfishness is

unlikely to be the predominant mechanism driving gene cluster

formation and maintenance in fungi. Nevertheless, the association

between metabolic gene clusters and GD/HGT suggests that gene

clustering can facilitate the duplication and transfer of entire

metabolic pathways. This is consistent with the view that the

barriers to gene innovation acting on gene clusters may be lower

than those acting on single genes because the latter undergo GD or

HGT in the absence of their functional partners.

Materials and Methods

Enzyme annotation
A custom enzyme classification pipeline assigned EC numbers

to protein-coding genes from the genomes of 208 fungi and 9

stramenopiles (five oomycetes and four algal relatives), which were

included in this analysis because of published reports of HGT

between oomycetes and fungi [44]. Each gene was queried against

a database of KEGG orthology (KO)-annotated proteins from 53

KEGG Organisms (Table S8) using UBLAST (http://drive5.com/

usearch) with an accel setting of 0.7 and minimum identity cutoff

of 0.3. A KO term was assigned to the query for UBLAST hits with

greater than 80% sequence identity and no more than 10%

difference in length. In cases where highly similar matches were

not recovered, KO terms were assigned to query sequences with

respect to the UBLAST hits showing the lowest e-values; all UBLAST

hits that followed the first e-value increase of 10250 or greater were

excluded. EC numbers were assigned according to KO term

(http://www.genome.jp/kegg-bin/get_htext?ko00001.keg).

Detection of fungal metabolic gene clusters
Fungal proteomes were screened for metabolic gene clusters as

described [81]. Briefly, two ECgenes were considered clustered if

they were separated by no more than 6 intervening genes

according to published annotation and their EC numbers were

nearest neighbors in one or more KEGG pathways. Gene clusters

were inferred by joining overlapping metabolic gene pair ranges

that were separated by no more than 6 intervening genes; the

cutoff of 6 intervening genes was determined empirically with

reference to previous analyses of both primary [52,53] and

secondary [54] metabolism clusters.

Figure 5. The fungal metabolic network of interactions between gene clustering and two major sources of gene innovation (GD and
HGT). Nodes of the metabolic network correspond to KEGG compounds. Thick edges of the metabolic network correspond to EC numbers from
clustered ECgenes in one or more fungal species, whereas thin edges to EC numbers whose genes show no history of gene clustering. Colored edges
correspond to EC numbers whose ECgenes have undergone HGT and GD (red), GD (blue), or show no history of GD or HGT (black). Note that none of
the EC numbers in our dataset were affected by HGT alone. Pathway map created using iPATH2.0 [95].
doi:10.1371/journal.pgen.1004816.g005
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Phylogenetic reconstruction and gene tree-species
phylogeny reconciliation

We constructed a draft fungal species phylogeny using protein

sequences of the widely used DNA-directed RNA polymerase II

subunit RPB2 marker, which were aligned with MAFFT using the E-

INS-i strategy [86]. The resulting alignment was trimmed with

TRIMAL using the automated1 strategy [87], and the topology was

inferred using maximum likelihood (ML) as implemented in

RAXML version 7.2.8 [88] using a PROTGAMMALGF substitu-

tion model and rapid bootstrapping (100 replications). Branches

with bootstrap support less than 50 were collapsed using the

Consense module in the PHYLIP program [89]. The final

bifurcating and consensus (multifurcating) species phylogenies

(File S1) were constructed by making targeted corrections to the

RPB2 topology based on published literature (Table S9).

ECgene trees were constructed using a custom phylogenomic

pipeline (Figure S4). Guide trees were first constructed for each

ECgene family with MAFFT using the scores of pairwise global

alignments [86] and rooted with the NOTUNG rooting optimization

algorithm using event parsimony. This distance-based guide tree and

the consensus species phylogeny were used to delineate groups of

homologs by aiming to maximize taxonomic diversity while minimiz-

ing the number of paralogs in each gene tree. The ECgene sequences

from each one of these groups of homologs were then extracted in

FASTA format for phylogenomic analysis. FASTA files of ECgenes

with less than 4 or more than 1000 sequences were excluded.

Sequences were aligned in MAFFT using the auto strategy selection [86].

Alignments were trimmed in TRIMAL using the automated1 trimming

strategy [87], and trimmed alignments shorter than 150 amino acid

residues were discarded. Phylogenetic trees were constructed using

FASTTREE [90] with a WAG+CAT amino acid model of substitution,

1000 resamples, four rounds of minimum-evolution subtree-prune-

regraft moves (-spr 4), and the more exhaustive ML nearest-neighbor

interchange option enabled (-mlacc 2 –slownni).

Gene tree-species phylogeny reconciliation was performed in

NOTUNG using its duplication, transfer, loss and ILS aware

parsimony-based algorithm [59–61,91]. Ambiguity in the fungal

species phylogeny and low branch support in ECgene trees were

handled through a multi-step approach. First, ECgene tree

branches with less than 0.90 SH-like local support were collapsed

using TREECOLLAPSERCL v4 (http://emmahodcroft.com/TreeCollapse

CL.html). This collapsed ECgene tree was rooted and its polytomies

resolved against the bifurcating species phylogeny. This resolved

ECgene tree was then reconciled to the multifurcating, consensus

species phylogeny using a duplication cost of 1.5, loss cost of 1 and ILS

cost of 0. Transfer costs of 2, 4, 6, 8, 10 and 12 as well as the option to

prune taxa not present in the gene tree from the species phylogeny

were evaluated. A transfer cost of 6 with the prune option enabled best

recovered published cases of HGT between fungi (Table S5). Percent

GD and HGT were expressed over the 152,835 fungal ECgenes that

passed this reconciliation pipeline. Because a single ancestral HGT

event could be recorded in multiple ECgene trees, we defined unique

HGT events as all cases where ECgenes assigned to the same EC

number were inferred to have undergone HGT to/from the same

recipient/donor nodes in the species phylogeny.

Statistical analyses
Fisher’s exact tests were performed using the R function

fisher.test with a two-sided alternative hypothesis [92]. P values

were adjusted for multiple comparisons using the R function

p.adjust with the Benjamini & Hochberg (BH) method [93].

Box-and-whisker plots were created using the R plotting system

ggplot2 [94].

Supporting Information

Figure S1 Variation in gene clustering, HGT, and GD across

fungal lineages, expanded version. From top to bottom, the four

box-and-whisker plots correspond to number of ECgenes per

genome, percentage of clustered ECgenes per genome, percentage

of horizontally transferred ECgenes per genome, and percentage

of duplicated ECgenes per genome. Box-and-whisker convention

is as described in Figure 1. Numbers in parentheses after the

lineages’ names indicate numbers of genomes in each lineage; the

numbers of genomes used from each lineage are also reflected by

the widths of their branch triangles on the fungal species

phylogeny shown at the bottom of the figure.

(PDF)

Figure S2 HGT across fungal species phylogeny, expanded

version. Numbers above branches indicate number of HGT events

predicted to have occurred onto each branch. The thickness and

color of each branch corresponds to number of ECgenes

transferred to each branch.

(PDF)

Figure S3 Incidence of gene clustering, GD and HGT mapped

onto the global metabolism networks of Pezizomycotina, Sacchar-

omycotina and Agaricomycetes. Nodes of the metabolic network

correspond to KEGG compounds. Thick edges of the metabolic

network correspond to EC numbers from clustered ECgenes in one

or more fungal species, whereas thin edges to EC numbers whose

genes show no history of gene clustering. Colored edges correspond

to EC numbers whose ECgenes have undergone HGT and GD

(red), GD only (blue), HGT only (green), or show no history of GD

or HGT (black). Pathway maps created using iPATH2.0 [95].

(PDF)

Figure S4 Phylogenomics pipeline. A schematic diagram showing

the functional components and data flow of the phylogenomics

pipeline and gene tree-species phylogeny reconciliation.

(PDF)

Table S1 List of genomes used.

(XLSX)

Table S2 List of KEGG categories and pathways used.

(XLSX)

Table S3 Average gene clustering, GD and HGT per genome.

(XLSX)

Table S4 Fisher’s exact tests for over/underrepresentation of

KEGG metabolic categories in ECgene subsets.

(XLSX)

Table S5 Number of inferred HGT events in different iterations

of the pipeline vs published literature.

(XLSX)

Table S6 Fisher’s exact tests for association between sources of

gene innovation (i.e., GD or HGT) and gene clustering.

(XLSX)

Table S7 Analysis of yeast phenotype and interaction data. a)

List of EC reactions associated with genes that are never

duplicated or transferred in the NOTUNG analysis with correspond-

ing gene name in S. cerevisiae and number of protein interactions

where available. b) Phenotype data from the Saccharomyces
Genome Database.

(XLSX)

Table S8 List of KEGG organisms used for ECgene annotation.

(XLSX)
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Table S9 Curation to species phylogeny with references.

(DOCX)

File S1 Species phylogeny in newick format. Tree 1: RAXML best

tree of RBP2. Tree 2: Consense majority rule phylogeny. Tree 3:

Curated consensus species phylogeny. Tree 4: Curated bifurcating

species phylogeny.

(DOCX)
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