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Abstract: Reviewing the metabolomics literature is becoming increasingly difficult because of the
rapid expansion of relevant journal literature. Text-mining technologies are therefore needed to
facilitate more efficient literature reviews. Here we contribute a standardised corpus of full-text
publications from metabolomics studies and describe the development of two metabolite named
entity recognition (NER) methods. These methods are based on Bidirectional Long Short-Term
Memory (BiLSTM) networks and each incorporate different transfer learning techniques (for tokeni-
sation and word embedding). Our first model (MetaboListem) follows prior methodology using
GloVe word embeddings. Our second model exploits BERT and BioBERT for embedding and is
named TABoLiSTM (Transformer-Affixed BiLSTM). The methods are trained on a novel corpus
annotated using rule-based methods, and evaluated on manually annotated metabolomics articles.
MetaboListem (F1-score 0.890, precision 0.892, recall 0.888) and TABoLiSTM (BioBERT version: F1-
score 0.909, precision 0.926, recall 0.893) have achieved state-of-the-art performance on metabolite
NER. A training corpus with full-text sentences from >1000 full-text Open Access metabolomics
publications with 105,335 annotated metabolites was created, as well as a manually annotated test
corpus (19,138 annotations). This work demonstrates that deep learning algorithms are capable
of identifying metabolite names accurately and efficiently in text. The proposed corpus and NER
algorithms can be used for metabolomics text-mining tasks such as information retrieval, document
classification and literature-based discovery and are available from the omicsNLP GitHub repository.

Keywords: deep learning; named entity recognition; natural language processing

1. Introduction

Since the late 1990s, metabolomics has contributed to better the understanding of
the roles that small molecules play in health and disease [1]. The on-going developments
of high-throughput data acquisition ensures that the technology is accessible to more
researchers [2], evident by the increasing number of studies year-on-year for studies in
any organism as well as those only done in humans (Appendix A). With the growth of the
number of publications comes the difficulty of literature review, and performing a literature
review of all papers relating to a specific phenotype has become an almost impossibly
difficult task for researchers [3]. To facilitate more efficient review processes, computational
literature mining tools are needed.

Natural language processing (NLP) is a branch of computer science that aims to un-
derstand natural human language computationally; in the biomedical field, NLP often
refers to the technologies that allow computational tools to interpret scientific texts written
by humans. In recent years, NLP has been successfully applied in many biomedical text
mining tasks, including information retrieval, document classification and literature-based
discovery [4–7]. By identifying biologically important entities in articles and computation-
ally inferring the connection between them, NLP facilitates understanding of biological
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relationships from textual information. Such efficient and automatic knowledge mining
systems can provide a comprehensive viewpoint to researchers by analysing a vast amount
of articles.

Some advances in metabolomics have been made for using computer algorithms
to read scientific text [8–11], however these suffer from a few drawbacks such as using
rule-based annotation methods and dictionary matching and corpora and code/models
being unavailable. While these methods can indeed correctly capture a vast amount of
metabolite names, they are dependent on the library of compound names used—and no
library is exhaustive. The latest version of the Human Metabolome Database (HMDB) [12]
reports over 18,557 metabolites have been detected and quantified in the human body, and
91,822 more are expected or predicted. Moreover, these numbers are still increasing, from
2180 (HMDB 1.0 in 2007) to 114,100 (HMDB 4.0 in 2017) in a decade [13] and predicted to
be an order of magnitude higher [1]. Hence there is a need for generalisable approaches for
automated metabolite recognition.

Within NLP, Named Entity Recognition (NER) is a field concerned with automatically
detecting specific entities from texts. To facilitate biomedical text-mining, and NER in
particular, BioCreative (Critical Assessment of Information Extraction in Biology) [14] have
proposed multiple tasks/challenges and provided corpora for chemical entity recognition,
such as the CHEMDNER (chemical compound and drug name recognition, BioCreative
V4) [15] and CEMP (Chemical Entity Mention in Patents, part of BioCreative V5) [16] chal-
lenges. The use of machine learning techniques such as Conditional Random Fields (CRF)
has shown promising results with F1-scores > 0.87 of tmChem [17] in the V4 challenge,
however the CRF methods were surpassed by a Bidirectional Long Short-Term Memory
(BiLSTM) recurrent neural networks CollaboNet [18] (F1-score of 0.88) and LSTMVoter [19]
(F1-score of 0.90), and an attention-based BiLSTM [20] (Att-ChemdNER, F1-score of 0.91).
For the V5 challenge, and the CEMP task, LSTMVoter achieved an F1-score of 0.89 and
another deep learning (DL) system using BiLSTMs called ChemListem [21] achieved an
F1-score of 0.90.

Adding a word embedding layer to NER DL models is well known to improve perfor-
mance [22], and ChemListem used context-free word embeddings/representation using
global vectors (GloVe) [23] for this purpose. However, in recent years big improvements
have been made in NLP by using contextual embedding with transformers such as BERT
(Bidirectional Encoder Representations from Transformers) [24]. BERT was trained on a
corpus containing 3.3 billion words mainly from the English Wikipedia and BooksCorpus.
Unlike the context-free embedding techniques, BERT’s contextual embedding makes the
vector representation of a word dependent on its context. Therefore, for biomedical text
mining the BioBERT model [25] was pretrained on PubMed abstracts and PubMed Central
(PMC) articles [26], and has been used to obtain F1-scores on the BioCreative V4 and V5
of 0.93 and 0.94, respectively, and F1-scores of 0.78–0.85 for recognising genes and pro-
teins [27]. However, fine-tuned BERT-based models do not always yield state-of-the-art
results as they greatly depend on the training data size [28].

There are three main issues with using these chemical NER methods for metabolite
NER. First, as mentioned, with these methods the context matters and therefore training
algorithms to recognise chemical entities in abstracts does not necessarily mean they work
as well for full-text articles. Second, while a metabolite is a chemical entity, a chemical
entity is not necessarily a metabolite, therefore these existing corpora and algorithms may
result in many false positives when using them in metabolomics. Last, each metabolite can
have multiple (sometimes ten or even a hundred) different synonyms—over 1.2 million
synonyms are reported in HMDB)—adding to the complexity of using a dictionary of
synonyms as new names can be used by different authors.

Our contribution is the development of a standardised, machine-readable metabolomics
corpus of full-text Open Access (OA) PMC articles by using the Auto-CORPus (Automated
and Consistent Outputs from Research Publications) package [29] for text standardisation
in conjunction with semi-automatic annotation of metabolites in full texts using a combi-
nation of dictionary searching (using HMDB to stay in line with prior work [10]), regular
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expression matching and rule-based approaches. We then use this corpus to train three
DL-based algorithms (with different word embedding layers) to perform metabolite NER
with the aim to obtain a generalisable model that can be used to speed up metabolomics
literature review. Our work addresses these issues by first creating a publicly available
corpus of full-text articles with annotated metabolites and, second, developing new DL al-
gorithms trained to focus specifically on recognising metabolites as well as not constraining
these algorithm to abstracts (like prior work), but on full-text paragraphs.

2. Results

Here we describe the characteristics of the automatically annotated metabolomics
corpus. This corpus was then used to train three NER algorithms and the manually anno-
tated test set used to evaluate the accuracy of the annotation pipeline, a prior algorithm for
chemical NER and the three NER algorithms. Last, we applied the best performing model
on all cancer metabolomics articles in the corpus to demonstrate how the algorithms can be
used for literature review.

2.1. Metabolomics Corpus

The metabolomics corpus generated by means of the annotation pipeline (see Section 4)
is of similar size to that of the BioCreative V5 dataset. We extracted 57,684 sentences that
contain metabolites from 1217 metabolomics articles, and in these have identified a total of
123,658 metabolites. For comparison, the BioCreative V5 dataset contains 21,000 abstracts
and 99,632 chemical entities. Tables 1 and 2 detail the metabolomics corpus and the number
of annotated unique entities for journals and traits, respectively, and illustrates that most
metabolomics articles report between 20 and 30 unique metabolites. While metabolomics
articles on cancer are the largest single group within the corpus, the average number of
metabolites reported in cancer articles is similar to that of other disease areas. The workflow
with the structure of the metabolomics corpus is shown for an abstract of a publication in
Figure 1.

Table 1. Summary of number (#) of unique metabolites mentioned per journal. Each metabolite is
only counted once per article.

Journal # of Metabolites # of Articles Average # of (Unique) Metabolites per Article

Analytical and Bioanalytical Chemistry 716 34 21.1
Analytical Chemistry 863 48 18.0

Journal of Chromatography A 220 9 24.4
Journal of Proteome Research 694 24 28.9

Metabolites 1279 50 25.6
Metabolomics 1267 43 29.5

PLOS One 5400 175 30.9
PNAS USA 429 14 30.6

Scientific Reports 4278 126 34.0

Table 2. Summary of the number (#) of unique metabolites annotated per trait. Each metabolite is
only counted once per article.

Trait # of Metabolites # of Articles Average # of (Unique) Metabolites per Article
cancer 12,662 492 25.7

gastrointestinal 876 37 23.7
liver disease 1959 121 16.2

metabolic syndrome 7081 286 24.8
neurodegenerative, psychiatric, and brain illnesses 2546 113 22.5

respiratory diseases 398 37 10.8
sepsis 552 22 25.1

smoking 1360 124 11.0
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Figure 1. Data processing and corpus generation. (A) The Auto-CORPus output (BioC JSON format)
for the abstract of PMC6116856. (B) Extracted sentences containing annotations in the abstract (part
of the metabolomics corpus, training set). (C) Rule-based annotations for the abstract sentences (part
of the metabolomics corpus, training set).

2.2. Model Performance

The metabolomics corpus was split into a training set (1034 articles, 49,007 sentences,
105,335 annotations) and a test set (183 articles). The test set was manually annotated
and consists of 8950 sentences with 19,138 annotations. We first evaluated the application
of the rule-based annotation pipeline on the independent test set articles. Our pipeline
yields an F1-score of 0.8893, with precision and recall of 0.8850 and 0.8937 respectively
(see Table 3). Next, we evaluated the performance of ChemListem [21], trained on the
BioCreative V5 dataset, on the metabolomics corpus test set where it achieves an F1-score
of 0.7669. Our first DL model uses the same architecture as ChemListem but was trained
on the metabolomics training corpus, therefore this model was named MetaboListem, and
it achieved an F1-score of 0.8900 (precision of 0.8923 and recall of 0.8877). Our second DL
model uses a different embedding layer (BERT or BioBERT) to MetaboListem, but was
trained on the same training dataset. The TABoLiSTM (Transformed-Affixed Bidirectional
LSTM) model with BERT embeddings achieved an F1-score of 0.9004, with precision and
recall rates of 0.9187 and 0.8829 respectively; the same model with BioBERT embeddings
results in a 0.85% improvement of the F1-score.

Table 3. Summary of model performance. Models are evaluated in terms of F1-score, precision and
recall rate, and F*-score using the metabolomics corpus test set (183 manually annotated full-text
articles). The best results for each metric is highlighted in bold.

Model Training Data Embedding F1-Score Precision Recall F*-Score Model Size

Annotation pipeline 0.8893 0.8850 0.8936 0.8006
ChemListem [21] CEMP BioCreative V.5 GloVe 0.7669 0.7301 0.8075 0.6219 26 MB

MetaboListem metabolomics corpus GloVe 0.8900 0.8923 0.8877 0.8018 26 MB
TABoLiSTM metabolomics corpus BERT 0.9004 0.9187 0.8829 0.8189 827 MB
TABoLiSTM metabolomics corpus BioBERT 0.9089 0.9255 0.8928 0.8329 827 MB

The workflow including the structure of the metabolomics corpus, the annotation and
result of the TABoLiSTM application on the abstract of a publication is shown in Figure 1.
We exemplify the differences in the output from the TABoLiSTM model and our annotation
pipeline using three snippets of text in Figure 2 that illustrate the typical examples of how
the DL model predictions differ from the rule-based annotations, including the abstract
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from Figure 1 shown in Figure 2A. These examples include spelling errors, metabolites not
included in the dictionary and metabolite abbreviations.

Figure 2. Examples of TABoLiSTM and rule-based annotation results visualised in annotated HTML
files. Entities marked in green are recognised by both TABoLiSTM and the rule-based annotation
pipeline, yellow entities are only recognised by TABoLiSTM, and red entities only by the rule-based
annotation. (A) Excerpted from PMC6116856. (B) Excerpted from PMC4969426 and exemplifies
typos. (C) Excerpted from PMC2978704.

Beyond prediction accuracy, another aspect to evaluate is the model sizes. Despite
the performance advantages, TABoLiSTM is much larger than both ChemListem and
MetaboListem; the sizes of the latter two models are around 26 MB, whereas the size of the
TABoLiSTM weight file exceeds 412 MB. Furthermore, pretrained BERT/BioBERT (cased
versions) are required to employ the TABoLiSTM model, which adds an extra 415 MB.

The performance of each of the 5 models was evaluated for separate sections (abstract,
materials/methods, results, results&discussion, discussion) in the test set (Figure 3). Across
all models, the best performance was achieved on separate results and discussion sections,
with lowest performance for material/methods and results&discussion sections.

2.3. Automated Literature Review of the Metabolomics Corpus

We applied TABoLiSTM on the abstract, results (including table data) and discussion
sections of each of the 8 traits (see Table 2) of the metabolomics corpus to summarise
the application of the algorithm in literature review. Figure 4 visualises the results for
the 492 cancer articles in the corpus, where only metabolites found in at least 3 different
articles are visualised. The size of the text of each metabolites is proportional to the
number of articles that reported the metabolite and the position is based on how frequent
metabolites are found together. In total, 664 metabolites are recognised in at least three of the
492 articles on cancer (compared to 12,662 unique metabolite names across all 492 articles).
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The five most frequent metabolites amongst these are glucose, glutamine, lactate, alanine
and glutamate, which are mentioned in 22–29% of articles (see Table 4).

Figure 3. Model performance per publication section. The model performance (precision, recall and
F1-score) are given for 5 sections (A, abstract; M, materials/methods; R, results; RD, results and
discussion (as single section); D, discussion) for the 5 models.

Figure 4. Graphical representation of metabolites mentioned in the abstract, results and discussion
sections of 492 cancer-related metabolomics articles. Each node represents a metabolite and is
displayed as the (lower-cased) metabolite name if it appeared in 3 or more articles. The closer
metabolites are in the graph, they are more likely to co-occur in the same article. The text is sized
proportionally to the number of articles that report the metabolite.

In the cancer summary graph, no apparent patterns or clusters are observable based
on the node colours due to the three-article threshold applied to the graph. This is in
contrast to other networks such as one created for the smoking trait where the restriction
of 3 articles is not applied and all 1360 metabolites reported in 124 articles are visualised
(see Appendix B). This reflects the low number of common metabolites for this trait in the
corpus (Table 4). Glucose is the only metabolite that appears in the top 10 for all traits, with
it being reported in 62% of articles on metabolic syndrome.
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Table 4. Top ten metabolites reported for each trait in the metabolomics corpus. The number of
articles that report the metabolite are given including the percentage of the total. The total number of
articles in each category can be found in Table 2.

Cancer Gastrointestinal Liver Disease Metabolic Syndrome

glucose 142 (29%) glucose 12 (32%) glucose 29 (24%) glucose 178 (62%)
glutamine 121 (25%) tyrosine 12 (32%) cholesterol 25 (21%) cholesterol 108 (38%)
lactate 117 (24%) lactate 11 (30%) creatinine 21 (17%) valine 83 (29%)
alanine 111 (23%) acetate 10 (27%) tyrosine 20 (17%) leucine 73 (26%)
glutamate 109 (22%) phenylalanine 9 (24%) glycine 18 (15%) tyrosine 71 (25%)
tyrosine 105 (21%) leucine 9 (24%) phenylalanine 17 (14%) triglycerides 70 (24%)
glycine 105 (21%) tryptophan 9 (24%) lactate 16 (13%) alanine 67 (23%)
valine 104 (21%) alanine 8 (22%) bilirubin 16 (13%) isoleucine 65 (23%)
choline 103 (21%) arginine 8 (22%) pyruvate 15 (12%) phenylalanine 62 (22%)
creatinine 95 (19%) citrate 8 (22%) valine 15 (12%) glycine 59 (21%)

Neurodegenerative, Psychi-
atric, and Brain Illnesses Respiratory Sepsis Smoking

tryptophan 31 (27%) lactate 8 (22%) phenylalanine 11 (50%) creatinine 24 (19%)
glucose 26 (23%) glycine 6 (16%) glucose 9 (41%) cotinine 15 (12%)
glycine 25 (22%) leucine 6 (16%) lactate 9 (41%) nicotine 14 (11%)
glutamate 22 (19%) pyruvate 6 (16%) arginine 8 (36%) glucose 14 (11%)
kynurenine 22 (19%) glucose 6 (16%) urea 6 (27%) leucine 11 (9%)
phenylalanine 21 (19%) lysine 5 (14%) nitric oxide 6 (27%) isoleucine 11 (9%)
serotonin 18 (16%) creatine 5 (14%) methionine 6 (27%) valine 11 (9%)
tyrosine 18 (16%) isoleucine 5 (14%) pyruvate 6 (27%) cholesterol 11 (9%)
creatinine 18 (16%) glutamine 5 (14%) creatinine 6 (27%) lactate 10 (8%)
lactate 17 (15%) acetate 4 (11%) ATP 5 (23%) glutamate 9 (7%)

3. Discussion

We have described three new DL models, using different word embedding layers, that
have both achieved state-of-the-art performance (F1-score > 0.89) for metabolite NER on
a manually annotated dataset with OA metabolomics articles. Our DL models (F1-scores
of 0.91, 0.90 and 0.89 for TABoLiSTM (BioBERT), TABoLiSTM (BERT) and MetaboLis-
tem, respectively) surpass by a considerable margin previous methods (using CRFs) for
metabolite NER which achieved maximum F1-scores of 0.78 [8] and 0.87 [9], albeit these
methods were trained and evaluated on different corpora. The full corpora for both of
these methods are not available, only the annotations from the manually annotated test
corpus were available for one [8]. The models themselves were not made available so could
not be evaluated on our corpus. TABoLiSTM (BioBERT) evaluated on the test annotations
(1856 entities) from [8] resulted in a recall of 0.81 which outperforms the recall of 0.74 ob-
tained by the authors. However, the test annotations also include several entities that are
not metabolites, such as chemical elements/ions (calcium, Fe2+, H(+), nitrogen, oxygen,
potassium, sodium and sulfur) and enzymes (aminoacyl-tRNA synthetases, asparagine
synthetase, lactaldehyde dehydrogenase and vacuolar proton ATPase); Excluding these
gives a total of 1815 entities that are metabolites (including abbreviations) and applying
TABoLiSTM resulted in a recall of 0.84 for these data. Excluding the 317 abbreviations of the
test annotations resulted in the TABoLiSTM recall of 0.92 (evaluated on 1498 entities). This
exemplifies two aspects, first, while the training data for TABoLiSTM does include some
abbreviations (insofar the definition was found as a metabolite using the Auto-CORPus
abbreviation file) it is less capable of recognising these in the absence of the definitions.
This highlights further improvements can be made with better abbreviation detection
algorithms. Second, the manual test annotations from [8] include several entities that are
not metabolites. Our metabolomics test corpus contains over 19K metabolites, each of
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which are listed in HMDB [12] or found by rule-based methods, and the corpora (training
and test) contribute both the sentences and annotations.

Our methods, compared to similar methods for chemical entity recognition [17,21,27]
and metabolite NER [8,9], have the benefit of having been trained not only on abstracts and
titles, but also on full-text paragraphs that are relevant for information retrieval from studies
(results and discussion sections). The corpora these algorithms were trained and evaluated
on are made available for future re-use and algorithm development, and to the best of
our knowledge is the first of its kind for metabolomics. In addition, we developed a semi-
automated annotation pipeline combining regular expression and rule-based approaches
with dictionary searching, both for processing the training data for and as an alternative
to DL methods, which too achieved outstanding performance (F1-score > 0.88) and also
surpassed prior metabolite NER work.

3.1. Annotation Pipeline

Recent work that used NLP methods via dictionary searching for text mining in
metabolomics highlighted the considerable user effort (1–4 h as per [10]) required to run
these types of analyses. Our annotation pipeline consists of a dictionary of metabolite
names and synonyms (from HMDB) which can easily be added to by including data from
other databases such as ChemSpider [30] and ChEBI [31]. However, any entity added
to the dictionary must undergo some form of quality control to ensure it is a metabolite.
Here, we have limited ourselves to only including metabolites listed in HMDB that were
classified as either ‘quantified’ or ‘detected’ and have not included those that are ‘expected’
or ‘predicted’.

The annotation pipeline also includes regular expression and rule-based methods used
to recognise metabolites in text and these add additional advantages: they are time-efficient,
easily customisable and explainable. While it requires minutes or even hours for a skilled
expert to annotate paragraphs and entire full-text articles, the time to process one full
article using these methods is less than 15 s on average. Once experts establish additional
rules focusing on recognising naming conventions, then these can easily be added into
the pipeline. Moreover, for each identified entity it is immediately obvious which rule(s)
resulted in it being predicted as a metabolite entity, and therefore more interpretable than
a DL model. For this reason, any false positives or false negatives can be analysed and
new sets of rules established to correctly annotate the metabolites in text. This also allows
for developing a user-feedback pipeline in which new rules can be shared to obtain better
results. We have used this semi-automated annotation pipeline to prepare the training
corpus for the DL methods, therefore any improvement in the rules for annotation may
also improve DL models. Another application of the pipeline is to run it in parallel with
the DL-based methods and combine the results as a post-processing step.

The main limitation of the annotation system is that the system assumes that the
dictionary of metabolite names contains all known metabolites with irregular names. We
used the HMDB as dictionary because it is the most comprehensive database of human
metabolites thus far, however our annotation approach may still result in missing metabo-
lites. One example is endoxifen, which is an active metabolite of the breast cancer drug
tamoxifen. Although its synonym 4-hydroxy-N-desmethyltamoxifen can be recognised
using regular expressions (for example because of the prefix, see Appendix C), the word
endoxifen itself is not recognised by the pipeline because of its irregularity and not being
included in our dictionary (it exists in HMDB as ‘expected’). Augmenting the dictionary
with the metabolites listed as ‘expected’/‘predicted’ may appear to be a feature and obvious
solution, however adding all of these terms would generate a dictionary 4 times larger
than the current one and therefore drastically increase the run-time for the rule-based
annotation. Also, >90% of the ‘expected’ metabolites are lipids [12], and these names are
usually recognisable using regular expressions.

Overall, the annotation pipeline is dependent on its data and rules, it can therefore not
detect metabolites that have been misspelled, nor will it flag certain terms as false positives
if they appear in the dictionary as synonyms for a metabolite. For example, common words
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or words with multiple meanings (depending on the context) would be recognised by the
system such as ‘result’ (synonym of ‘omeprazole’) and ‘retinal’ (both a vitamin-derivative
and a medical term for ‘eye’). HMDB also includes chemical entities such as ‘ammonium
acetate’ and ‘silica’, which are commonly mentioned in methods sections of metabolomics
articles. As the HMDB includes more than 18,000 ‘detected’ and ‘quantified’ metabolites
and their synonyms, it was not feasible to examine all entities as pre-processing in this
study and only those with 5 or less characters were manually checked; therefore, further
cleaning of the dictionary would likely improve the precision of the annotation pipeline.
Our results indicate that the combination of regular expressions, dictionary searching and
rules can indeed correctly capture a vast amount of metabolite names as also reported by
Majumder et al. [10].

3.2. Metabolomics Corpus

To the best of our knowledge, our metabolomics corpus, which consists of the ab-
stract, method, result and discussion sections of 183 manually annotated (test set) and
1034 semi-automatically annotated (training set) PMC articles, is the first available cor-
pus that is designed for human metabolomics research. While some databases include
some references to articles where metabolites are mentioned, the databases do not contain
enough information (e.g., annotated texts) for NLP model development. An advantage
of our metabolomics corpus, compared to common chemical NER corpora [15,16], is that
it contains not only abstracts but also sentences from the method, result and discussion
sections which is relevant for context-dependent NER. While abstracts indeed provide a
rich set of context, the structure of sentences is often different from the main text and there-
fore training and employing contextual NLP models only on abstracts could potentially
result in overlooking valuable information while mining the full text of articles. Methods
sections are included since these can include information on targeted metabolites with
different assays.

The limitation of the current metabolomics corpus is that it was designed only to label
metabolites that appear in full in sentences; that is, if the recognition of a metabolite requires
semantic interpretation then it would not be correctly detected. For example, if the string
‘1- and 3-methylhistidine’ is encountered by the pipeline, then only ‘3-methylhistidine’ is
annotated, whereas the metabolite ‘1-methylhistidine’ is also in the string. To overcome this
limitation of the corpus, it needs to be processed further using semantic analysis techniques
such as parse trees [32,33].

We are currently working on addressing a limitation of the Auto-CORPus package [29]
that we used to process the full-text. In investigating our results, we found that any
abbreviations that cannot be mapped to full names are not annotated, this includes for
example cases where Greek letters are abbreviated by letters of Latin alphabet (α as ‘a’). We
also encountered instances where metabolites are abbreviated without the abbreviation
(PC, PE, SM, and others) being defined, because the abbreviations are commonly used in
the (lipidomics) community. These abbreviations were also not annotated in the (semi-
automatically annotated) metabolomics corpus, but could easily be added as a set of rules
to the algorithm. Lastly, superscripts and subscripts in the corpus are encoded differently
from normal text by Auto-CORPus [29] and this causes negative impact on the annotation
algorithms. We therefore anticipate periodically updating the metabolomics corpus based
on user feedback and further research.

3.3. Deep Learning Models

Four LSTM-based models were evaluated on the same manually annotated test set
as the annotation pipeline. ChemListem [21], which achieved an F1-score > 0.90 on the
BioCreative V5 [16] challenge data, achieved a lower F1-score of 0.77 when evaluated on the
metabolomics corpus test set. This is in contrast with our MetaboListem model that used
the same neural network architecture as ChemListem, but was trained on the metabolomics
corpus, achieving an F1-score of ∼0.89. The lower precision and recall rates of ChemListem,
when applied to our corpus, are the results of higher false positives and false negatives,
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respectively. The false positives are expected due to the fact ChemListem was trained to
recognise chemical entities and not metabolites specifically. The higher false negative rate
is indicative of limited power for detecting metabolites—despite these also being chemical
entities. The recall rates of ChemListem evaluated on the CEMP and metabolomics corpora
are 0.89 [21] and 0.81 (here), respectively, which is indicative of the fact that metabolites
appear less frequently in the BioCreative V5 dataset. Our MetaboListem model outperforms
ChemListem on all three metrics for the metabolomics corpus, thus indicating that the
BiLSTM network structure is generalisable to finer NER tasks and that training on relevant
data further improves performance. This allows the algorithms to deal with changes in
nomenclature and overcome the issue of having to define complex domain knowledge with
limited sets of rules which was observed in NLP tasks for recognising genes and proteins
previously [34]. Moreover, we have shown how each algorithm achieves different levels of
performance on individual sections of a publication, therefore algorithms developed only
on abstracts (as these are easily available) may not perform as well on full-text sections.
Our algorithms have been trained on a variety of sections (including abstracts) and have
shown good performance across all sections.

Our second model, TABoLiSTM, replaced the GloVe embedding [23] that was used in
MetaboListem with BERT [24] and BioBERT [25]. The TABoLiSTM model with BioBERT
achieved the highest F1-score (0.91) of all models evaluated and improves on all metrics
compared to MetaboListem. This improvement is directly attributable to using contex-
tualised token embeddings—enhancing the contextual sensitivity—and using smaller
token sequences that are in between character- and word-level embeddings. Smaller to-
ken sequences are known to be more suitable for NER tasks where segmenting words is
difficult [35], for example with metabolites.

While the annotation pipeline has the highest recall rate, we observed that for many
instances with spelling errors in metabolite names that these were recognised by the
MetaboListem and TABoLiSTM models but were missed by the rule-based annotation
pipeline. This includes for example misspelled entities such as ‘slanine’ (typo of ‘alanine’),
‘acetoace acid’ (typo of ‘acetoacetic acid’) and ‘palmi acid’ (typo of ‘palmitic acid’) indicat-
ing that the DL models are capable to generalise and identify unseen metabolite names,
including the misspelled ones, by recognising the token structures and the contexts. In light
of earlier discussion on the annotation pipeline not recognising endoxifen, the DL models
do correctly recognise endoxifen as metabolite which is likely because the token structure
of endoxifen is similar to that of tamoxifen in addition to the similar context embedding
of metabolites.

MetaboListem outperforms the precision of the annotation pipeline by 0.7% which may
be explained by the ambiguous synonyms falsely identified by the annotation pipeline. For
the TABoLiSTM model (BioBERT embedding achieving higher precision by 4% compared
to the annotation pipeline) this may be to learning contexts rather than learning the rules
and regular structures designated to the annotation pipeline. The algorithms were (trained
and) evaluated on the full text output from Auto-CORPus [29], however Auto-CORPus
also provides separate JSON output files for table data and abbreviations and these files
mostly contain single terms without context. Empirically, we found that although the DL
models are context sensitive by construction (BiLSTM network and BioBERT embedding)
they detect entities in tables and abbreviation lists with high accuracy comparable to the
full text results.

Overall, the semi-automatic annotation pipeline is ideally used in parallel with the
DL methods as combining these can to provide wider coverage of features that are not
yet learned by the DL algorithms due to limited training examples. Likewise, this is also
relevant for addressing some limitations of the DL methods identified from their false
positives. We found that while most bacteria are not recognised, a very small number of
bacterial species are picked up as ‘metabolites’ by the DL methods. These terms all include
tokens that can also be found in metabolites such as ‘lact’ (Lactobacillus, Lactococcus), ‘butyr’
(Butyricimonas, Pseudobutyrivibrio, Butyrivibrio), ‘chloro’ (Chloroflexi), ‘succini’ (Succinivibrio),
‘sulfo’ (Desulfovibrio), and ‘acid’ and ‘amino’ (Acidaminobacter). As part of a wider effort
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to provide NLP tools to the omics community, we are developing an NER algorithm for
microbiome studies which can also be used to filter out false positives from our DL models
when complete. Other metabolites are identified (by both the DL and rule-based methods)
that are in fact part of an enzyme or pathway name. In our DL models we have not included
negative training examples of terms in these contexts, however more elaborate rules can
also be developed to filter these false positives out in a post-processing step. For example,
we observed in the training set that the words ‘process’ and ‘success’ are falsely recognised
as metabolites in a certain context. Based on the dictionary list, no known metabolite
name/synonym ends with ‘ss’, so therefore all terms that match the regular pattern ‘ss$’
could be excluded. This type of rule-based post-processing was not used for our models
because of the risk of introducing bias in model evaluation, where an n-gram of ‘success’ is
found in metabolite names such as succinic acid/succinate.

In terms of usability of the DL algorithms, the model size is an important factor. The
TABoLiSTM models require 827 MB of storage, whereas ChemListem and MetaboListem
only need 26 MB. Therefore, TABoLiSTM may be too heavy to be leveraged on web
services and would ideally be used on local systems. Therefore, employing the lighter
MetaboListem model in an online environment is more feasible in future, regardless of the
cost of 1.8% in the F1-score relative to the TABoLiSTM (BioBERT) model (which outperforms
MetaboListem on all evaluation metrics). On average, a full-text article can be annotated by
MetaboListem in under 10s, whereas for TABoLiSTM this is close to 40 seconds, hence users
may find MetaboListem easier to use. The annotation pipeline and TABoLiSTM (BioBERT)
could be used together to increase the confidence of automated annotations (where both
methods are in agreement) as they are based on separate methodologies. However, the
recall rates are virtually identical and the precision of TABoLISTM is over 4% higher
compared to the pipeline, hence it is doubtful this will increase the overall performance
of a ‘hybrid’ algorithm. Moreover, the annotation pipeline requires users using the most
up-to-date dictionary at all times to achieve the best results whereas our DL methods have
already shown they are capable of generalisation (e.g., correctly recognising metabolites
with spelling errors). Hence, the contribution of TABoLiSTM (and MetaboListem) here is
to provide an alternative to the reliance upon dictionaries of other NER algorithms [10].
However, as we have shown by using different abbreviation detection algorithms in Auto-
CORPus [29] this can be used to increase the number of annotations, therefore an open line
of investigation is to evaluate whether the confidence of users in the accuracy of automatic
(opposed to manual) annotations is increased if the annotations are identified with multiple
(different) methods.

3.4. Biological Interpretation

We have exemplified how the algorithms can be used to speed up literature review
by providing a summary of all identified metabolites in the full text. The most common
metabolites reported appear to be those that can be measured using virtually all major
assays. Glucose is reported most frequently for 4 of the traits, and as one of the top
5 metabolites for the other traits. For cancer studies, the high co-occurence of glucose and
lactate is indicative of the Warburg effect [36] where glucose is converted to lactate for
cancer cell energy metabolism. However, the remaining top reported metabolites are mostly
amino acids, which is also observed for other traits. At the same time, some trait-specific
metabolites are found such as bilirubin and cholesterol for liver diseases, cholesterol and
triglycerides for metabolic syndrome, cotinine and nicotine for smoking, and tryptophan,
kynurenine and serotonin for neurological/psychiatric/brain diseases. The latter being
reflective of the serotonin hypothesis [37] that has resulted in antidepressant drugs such
as kynurenine uptake inhibitors. The proximities between nodes in the network graphs
are known to express community structures [38], hence it is not surprising to find so many
amino acids and other common metabolites near the centre of the graphs.
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4. Materials and Methods
4.1. Dataset

The data used in the study consists of Open Access metabolomics publications from
PMC (n = 1217). The metabolomics corpus is constituted of human-related articles in
18 categories; 10 are by journals (see Table 1) and 8 of which are selected by traits (see
Table 2). The complete search terms are provided in Appendix D.

The metabolomics articles were stored in HyperText Markup Language (HTML)
format, which were then processed by the Auto-CORPus package [29], and standardised
into machine-readable JavaScript Object Notation (JSON) documents.

Auto-CORPus outputs three JSON files based on the input of an HTML file of an
article: ‘maintext’, ‘table’ and ‘abbreviation’. In the maintext file, the textual content in the
HTML is split into subsections, and each subsections have five attributes: ‘section_heading’,
‘subsection_heading’, ‘body’, ‘IAO_term’ and ‘IAO_ID’, where IAO stands for Information
Artifact Ontology [39]. Here we focused on four section types based on standardised
IAO terms, namely the textual abstract (‘A’),methods (‘M’), results (‘R’) and discussion
(‘D’) sections. We did not use the introduction sections as these do not typically contain
information pertaining to the study itself or (how) new results (were acquired).

4.2. Rule-Based Annotation Pipeline

The metabolomics corpus was annotated using a semi-automated pipeline to deal
with the large volume of texts and prepare it for supervised learning. The pipeline takes
the Auto-CORPus-processed articles as JSON input, and outputs the location (character
number) of metabolites in each text (an example can be found in Figure 1 in the Results
section). The annotation pipeline is comprised of three steps: pre-processing, identifying
metabolites and locating recognised entities.

4.2.1. Pre-Processing

(Sub)sections are split into sentences using sentence tokenisation with the BioBERT [25]
model (version biobert-base-cased-v1.2) using the Huggingface Transformer package [40].
Each sentence is uniquely identifiable by two attributes: the PMC identifier (PMCID) of
the article that the sentence belongs to, and a sentence identifier. A sentence identifier is a
string that contains a letter and five digits (Figure 5) where the letter indicates the relevant
sections types (textual abstract (A), methods (M), results (R) and discussion (D)). These
section types are determined by the IAO_term key in the Auto-CORPus full-text JSON file.

Figure 5. An example of sentence ID. The ID refers to the second sentence in the second subsection of
the method section. Indexes start with 0.

4.2.2. Metabolite Identification

The next step is to identify any metabolite mentioned in each tokenised sentence using
both dictionary searching and regular expression matching. The dictionary used here was
based on the list of metabolites (and their synonyms) that are classified in HMDB [12] as
‘quantified’ or ‘detected’. A list of all metabolites and synonyms was first downloaded on
25 June 2020, and subsequently refreshed on 16 August 2021, after which it was filtered
for the ‘quantified’ or ‘detected’ metabolites. Short abbreviations (up to 5 characters)
that are not exclusive for metabolites were removed (e.g., ‘PC’ can refer to the metabolite
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‘phosphatidylcholine’, but is also a common abbreviation for ‘principal component’ and
‘pancreatic cancer’), and it was then further cleaned of other non-specific words such as
‘result’ (a synonym of ‘omeprazole’).

To complement dictionary searching, the regular expressions are designed to provide
partial matches for the metabolite entities (Table A1). It is expected that more metabolites
can be captured in this manner compared to complete matching. Entities with a partial
match are then expanded to include the entire word and included a full metabolite name
or part of a metabolite name; the latter scenario is treated further in post-processing. To
craft the regular expressions, the HMDB dictionary was used as a reference. From the
dictionary, the entities with one or more spaces and the ones with symbols like hyphen
(‘-’) and colon (‘:’) were selected to form a ‘reference set’. The reference set meant to
include metabolite names that are less trivial (and thereby more regular). Trivial terms such
as singletons are usually more difficult to be captured with regular expressions without
drastically increasing the number of false positives by including common words. The
regular expression approach is used to complement the HMDB dictionary, therefore trivial
terms are omitted from the reference set as they are assumed to be listed in HMDB already.
This was used to create a set of regular expressions such that most, if not all, of the reference
set can be (at least partially) matched by at least one regular pattern in the set, while
avoiding matching unwanted terms.

The regular expressions were created in a recursive manner: while not all terms in
the reference set are matched and there remain some observable patterns in the remaining
terms, either a new expression was created or an existing expression augmented in order to
match the remaining regular terms. Examples of regular expressions and the terms that
they are expected to match are shown in Appendix C.

4.2.3. Post-Processing

Post-processing of the matches was utilised to integrate the result of dictionary search-
ing and regular expression matching, including those from partial matching. This step
is comprised of three components: combining adjacent words, balancing the number of
brackets, and merging overlapped entities.

For each metabolite entity that has been recognised its adjacent words are evaluated.
The term before the entity is prepended to the annotation only if certain rules are satisfied:
the preceding word ends with a hyphen (‘-’), ends with a number, the recognised entity
itself starts with a comma and number (e.g., ‘,3’) or the current word starts with a hyphen.
If the preceding word is a stop word, or if none of the rules can be met, then the procedure
is complete an no term is prepended to the entity. The rules for the next word are the
same as described above, except now the entity becomes the ‘preceding’ word in the above
scenario and one more rule is evaluated (whether the next word is one of either ‘acid’,
‘isomer’, ‘ester’ or ‘ether’). This process is recursive and is done until no adjacent words
satisfy any of the rules.

For all entities the number of brackets is evaluated to ensure all parentheses, square
brackets and curly brackets have a starting and ending bracket in the entity. If an opening or
closing bracket is missing then the entity is enclosed by the corresponding missing bracket.

All entities that overlap or separated only by a (white)space character are merged into
a single entity. The entire post-processing step is executed recursively, i.e., until there is no
more change in the list of identified metabolite entities. Once this has finished, two files are
created that are used to train the DL models. The first file contains all sentences that have at
least one recognised metabolite, along with their sentence identifiers (see Figure 5) and the
PMCIDs of the articles the sentences originate from. The second file is in table with 5 fields:
PMCID, sentence identifier, position of the start character of the entity, position of the end
character of the entity, and the entity itself. These two files are exemplified in Figure 1B,C.

4.3. Training, Validation and Test Set Generation and Evaluation

The 1218 metabolomics publications were split at random into a training, validation
and test set a 75:10:15 ratio, corresponding to 913 training publications, 122 publications for
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validation and 183 publications for the test set. The publications in the training and valida-
tion set were processed using the rule-based annotation pipeline described above, creating
a semi-automatically annotated corpus. The TrainingSet.txt and TrainingSetAnnot.tsv (see
https://github.com/omicsNLP/MetaboliteNER, accessed on 15 March 2022) files contain
both the training and validation partitions as these are split within the training process
by the algorithms. The publications in the test set, this included entities in the full text as
well as in tables, were manually annotated to avoid bias and to provide a ground truth to
evaluate the algorithms on.

Although metabolite abbreviations and entities in tables were not deliberately anno-
tated in the training set with the annotation pipeline, they were manually annotated in
the test set for completeness; these types of metabolite names were considered separately
while employing models and evaluating performances (detailed in Post-processing). The
performance of algorithms was assessed by evaluating the number of true positives (TP),
false positives (FP) and false negatives (FN) and calculating the precision ( TP

TP+FP ), recall

( TP
TP+FN ), F1-score ( 2×precision×recall

precision+recall ) and F*-score [41] ( precision×recall
precision+recall−precision×recall ) on the

test set.

4.4. Metabolite NER Using LSTM

A BiLSTM model architecture that was used previously on chemical NER task achiev-
ing F1-scores > 0.9 [21] was used here for metabolite NER. We first evaluated the original
ChemListem model on the corpus, we then developed two new methods (MetaboListem,
TABoLiSTM) based on the prior methodology to improve the performance and described
below. Our new models were trained in 50 epochs, and the epoch that achieved the highest
F1-score on the validation set was used for evaluation of the test set. All F1-scores reported
here are for the test set only.

4.4.1. Pre-Processing

Following prior work [21], a tokeniser designed for chemical text-mining (OSCAR4) [42]
was employed to tokenise words in the metabolomics corpus for MetaboListem. For the
TABoLiSTM model, we used BioBERT as tokeniser [40] because TABoLiSTM uses the
BioBERT token embeddings.

For both word tokenisation systems, the BIOES tag scheme was employed to label
token sequences. BIOES tag scheme is a standard sequence labeling technique that classifies
tokens into five categories: ‘B’ labels the tokens at the beginning of entities, ‘I’ labels internal
tokens of entities, ‘E’ labels the ending tokens of entities, ‘S’ labels singletons (i.e., tokens
that are a complete entity on their own), and ‘O’ the tokens that do not belong to an entity.

ChemListem used a pre-classifier random forest to predict the probability of a token
being (part of) a chemical entity (‘B’, ‘I’, ‘E’ or ‘S’) based on a set of ChEBI-derived [31]
chemicals and chemical elements. For MetaboListem and TABoLiSTM we implemented
the same pre-classifier approach using the set of metabolites from HMDB [12] rather than
chemicals from ChEBI, where tokens were segmented using OSCAR4 and BioBERT for
MetaboListem and TABoLiSTM, respectively. The pre-classifier produces name-internal
features that were used in the model training.

4.4.2. ChemListem and MetaboListem

For ChemListem [21], name-internal features for each token were computed in the
pre-processing stage using the pre-classifier and treated as one of the two inputs to the
model (Figure 6). The features go through a convolutional layer with width of 3 and are
concatenated with the numeric representation of words (i.e., a unique number assigned to
each word) in the GloVe [23] vector space. Each token now has 256 + 300 = 556 dimensions,
where 256 is the output neuron number of the convolutional layer, and 300 the GloVe vector
representation. The concatenated tensor is then fed into the BiLSTM layer, before outputting
a 5-dimensional result (number of tags used in BIOES tagging) via a TimeDistributed
Dense neuron.

https://github.com/omicsNLP/MetaboliteNER
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Figure 6. The architecture of the ChemListem network. The input tensors ‘wordn’ and ‘ni’ correspond
to the numerical representations of word (token) sequences and the name-internal features of word
(token) sequence determined by the pre-classifier, respectively.

Our MetaboListem algorithm is based on the same neural network architecture (and
GloVe embedding) as ChemListem, hence we named the algorithm in the same manner. It
differs from ChemListem only in the training data (metabolomics corpus opposed to BioCre-
ative V5 [16]), pre-classifier data (HMDB instead of ChEBI) and TensorFlow implementation
(version 2.0 versus 1.3).

4.4.3. TABoLiSTM (Transformer-Affixed Bidirectional LSTM)

Our TABoLiSTM model differs from MetaboListem mainly in the use of pre-trained
BERT [24] (bert-base-cased) and BioBERT [25] (biobert-base-cased-v1.2) embedding. The
name-internal features and the numeric presentation of words were all re-computed using
(Bio)BERT tokens instead of words and the last hidden layer of the (Bio)BERT model re-
places the GloVeEmbeddingLayer in Figure 6. The (Bio)BERT layer provides contextualised
word embeddings, and the embeddings were concatenated with the convolution output
of name-internal features as previously, except for larger tensors of 256 + 768 = 1214 di-
mensions. A SpatialDropout1D layer with dropout rate 0.25 is applied on top of the
(Bio)BERT layer to prevent overfitting and improve model performance by embedding the
dropout [43].

4.4.4. Post-Processing

Post-processing of our DL models involves the same procedure as that of the an-
notation pipeline (Section 4.2.3) to fix pathological terms such as incomplete entities: to
check the neighbouring entities, to fix unbalanced parentheses if possible, and to merge
overlapped positions. At this stage further rule-based approaches can be employed to
further improve models, for MetaboListem and TABoLiSTM these were not used, but rather
represent potential further improvements that can be made to the post-processing.

The DL algorithms were trained on sentences with full metabolite names only, and
were not trained on abbreviations or data in tables. In the post-processing step, the al-
gorithms were applied to the Auto-CORPus JSON output of the list of abbreviations
(abbreviations and definitions) and any recognised entity (definition) was then linked to its
abbreviation and all occurrences in the full text marked as a recognised entity. This was
only done when the entire definition was recognised as metabolite entity, i.e., the rules
to fix incomplete entities are not applied here. A direct approach to replace all abbrevi-
ations in the text with their definitions was investigated but discarded since the current
implementation of the abbreviation recognition does not detect all types of abbreviations.
The same approach was undertaken on the Auto-CORPus JSON output of all tabular data,
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where each cell was evaluated by the DL models as a sentence. Any recognised entity was
annotated and evaluated against the manually annotated entities in the test set.

4.5. Metabolite Co-Occurence Network

TABoLiSTM (BioBERT) was applied to all articles in the corpus related to cancer and
smoking, and only on the abstract, result (including those in tables) and discussion sections.
For each pair of (unique) metabolites mentioned in an article the edge is weighted, likewise
the node weight is increased for each (unique) metabolite found. Using these data an
adjacency list was created and imported into Gephi [44]. The graph layout was optimised
using the ForceAtlas2 [45] algorithm and visualised without edges for the sake of visibility.
Nodes placed closer together are more likely to be mentioned in the same articles, and the
size of the text is directly proportional to the number of times the metabolite is mentioned
across all articles of the same trait. For the cancer graph only the metabolites that appear in
three or more articles are used for the graph construction because of the large number of
unique metabolites reported (see Table 2). For the smoking graph all metabolites (including
those only found by a single study) are displayed. The node names are coloured based on
the article that reports the metabolite most (if such article is not unique, the one with lower
PMCID number is selected).

5. Conclusions

In summary, this work contributed the first annotated metabolomics corpus of full-text
articles to facilitate future NER development for metabolomics research. This corpus is
split into two parts: a training set with 49,007 sentences from different sections (abstract,
methods, results, discussion) that contains 105,335 annotated metabolite entities, and a
(gold-standard) test set with 8950 sentences and 19,138 manually annotated metabolites.
This will allow future work on metabolite NER to be trained and/or evaluated on the same
data to allow direct comparison of performance between different algorithms. Our four
novel NER algorithms, including a rule-based annotation algorithm and three DL NER
systems (each with different word embedding layers), are implemented in Python. These
algorithms have all shown state-of-the-art performance (F1-score > 0.88) for metabolite
NER tasks with the best model (TABoLiSTM with BioBERT word embeddings) achieving
an F1-score of 0.91, thereby facilitating future effort in text-mining metabolomics literature.
Current on-going work by us focuses on developing new corpora and algorithms for
enzyme, pathway and microbiota NER, each of which will allow more effective data
extraction and these are intended to further improve the performance of TABoLiSTM by
filtering out any false positives or better indicate the context of the metabolite (part of an
enzyme or pathway name opposed to a metabolite on its own). Fine-tuning a bidirectional
transformer model such as BioBERT for metabolite NER is another potential avenue worth
exploring using the metabolomics corpus. All code and data is made available to allow
other researchers to use or build upon our work to enable researcher to more effectively
perform literature review for metabolomics research.
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Appendix A. Metabolomics Studies PubMed Search

Figure A1. PubMed search results for metabolomics studies (2000–2021), performed on
7 October 2021. PubMed was searched using the following terms in the title and/or abstract:
metabolomics, metabonomics, metabolome-wide association, metabolic phenotyping, metabolic fin-
gerprinting, metabolomic, metabonomic, metabolome, metabonome, metabolic profiling, MWAS. The
number of projected metabolomics articles in 2021 was calculated as the number on 7 October 2021
(day 278) multiplied by 365/278 to obtain an estimate at the end of the year. (A) All metabolomics
studies. (B) Metadata mining by PubMed, such as the studies species (e.g., human), is updated as
data becomes available which can be up to 2 years. Here, we estimated the proportion of human
studies for 2020 and 2021 based on a robust second-order polynomial regression on the data from
2000–2019 from the total. From 2006–2019 this proportion has been relatively stable between 39–46%.

https://github.com/omicsNLP/MetaboliteNER
https://doi.org/10.5281/zenodo.6340002
https://doi.org/10.5281/zenodo.6340002
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Appendix B. Network Representing the Co-Occurrence of Metabolites in
Smoking Articles

Figure A2. Graphical representation of metabolites mentioned in 124 smoking-related metabolomics
articles. Each node represents a metabolite and the closer metabolites appear in the graph, the more
likely they are to appear together in articles. The displayed metabolite names are sized proportionally
to the number of articles that report the metabolite, and are coloured based on the article that reports
the metabolite most.

Appendix C. Regular Expression Table

Table A1. Examples of regular expressions used in the rule-based annotation pipeline. Example
metabolites that each regular expression matches are shown on the right; the matching parts of the
entities are underlined.

Regular Expression Example Metabolite

(\(?\)?-?\w+(oxy|yl|ol|ine|ene|ose|ane|ate|ester
|isomer|ium|ino|ide|one|oxo|en|estra))+
(-\w+)s?\(?\)?(ic)?(?=[-,\.\!\?; ])

3-Methoxy-4-hydroxy-phenyl-acetate

([a-z]|-|[0-9])*([0-9]+([a-z]|alpha|beta|sigma|
omega|tau|epsilon|zeta|[α-ω])*
[ \), \+ \- \] \}])+(([a-z]|[0-9])+-)+

5alpha-Androstan-3alpha,17beta-diol disulfate

(([a-z]?[0-9]+(:)[0-9]+)(/[a-z]?[0-9]+(:)[0-9]+)*) d18:1/16:0
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Table A1. Cont.

Regular Expression Example Metabolite

\d+[a-z]?(,\d+[a-z]?)+\)?-
(1S,10R,11S,15S)-5-hydroxy-4-methoxy

-15-methyltetracycloheptadeca
-2(7),3,5-trien-14-one

([1-9]|\()((alpha|beta|sigma|omega|tau|epsilon|
zeta|[α-ω]|Z|E|L|R|S|-|\+),?)+\)- (11E)-Octadecenoic acid

(oline|dino|etin|olin|ecine|idine|noid|oate|gmine|
[a-z]dine|none|igine|zole|pine|nime|anide|acene|
prost|sone|idone|hane|cine|cin|tril|erol|
[a-wy-z]amine|zime|[a-z]toxin(e?)|otin(e?)|ione|
oside|zine|olone|xone|[a-z]dene|lene|lasin(e?)|
atin(e?)|ffin(e?)|[a-np-z]yline|xin(e?)|zin(e?)|
bene|stine|ythin(e?)|astin(e?)|xitin(e?))(s?)$

Ribofuranosylcreatine

Appendix D. PMC Search Terms for Metabolomics

The following search terms were used for filtering the metabolomics corpus:
(metabolomics[Abstract] OR metabolome[Abstract] OR metabolomic[Abstract] OR

metabolome-wide[Abstract] OR metabonomics[Abstract] OR metabonome[Abstract] OR
metabonomic[Abstract] OR metabonome-wide[Abstract] OR lipidomics[Abstract] OR
lipidome[Abstract] OR lipidomic[Abstract] OR lipidome-wide[Abstract] OR metabolites
[Abstract] OR metabolite[Abstract] OR metabolic profiling[Abstract] OR metabolic phe-
notyping[Abstract] OR metabolomics[Title] OR metabolome[Title] OR metabolomic[Title]
OR metabolome-wide[Title] OR metabonomics[Title] OR metabonome[Title] OR metabo-
nomic[Title] OR metabonome-wide[Title] OR lipidomics[Title] OR lipidome[Title] OR
lipidomic[Title] OR lipidome-wide[Title] OR metabolites[Title] OR metabolite[Title] OR
metabolic profiling[Title] OR metabolic phenotyping[Title]) AND (urine[Abstract] OR
urinary[Abstract] OR blood[Abstract] OR serum[Abstract] OR plasma[Abstract] OR fae-
cal[Abstract] OR faeces[Abstract] OR cerebrospinal fluid[Abstract] OR CSF[Abstract] OR
biofluid[Abstract] OR stool[Abstract] OR feces[Abstract] OR fecal[Abstract] OR stool[Title]
OR feces[Title] OR fecal[Title] OR urine[Title] OR urinary[Title] OR blood[Title] OR serum
[Title] OR plasma[Title] OR faecal[Title] OR faeces[Title] OR cerebrospinal fluid[Title] OR
CSF[Title] OR biofluid[Title]) AND (nmr spectroscopy[Abstract] OR nuclear magnetic reso-
nance[Abstract] OR NMR[Abstract] OR mass spectrometry[Abstract] OR LCMS[Abstract]
OR GCMS[Abstract] OR UPLCMS[Abstract] OR LC-MS[Abstract] OR GC-MS[Abstract] OR
UPLC-MS[Abstract] OR CEMS[Abstract] OR CE-MS[Abstract] OR nmr spectroscopy[Title]
OR nuclear magnetic resonance[Title] OR NMR[Title] OR mass spectrometry[Title] OR
LCMS[Title] OR GCMS[Title] OR UPLCMS[Title] OR LC-MS[Title] OR GC-MS[Title] OR
UPLC-MS[Title] OR CEMS[Title] OR CE-MS[Title]) AND (human[Abstract] OR patients
[Abstract] OR subjects[Abstract] OR participants[Abstract] OR human[Title] OR pa-
tients[Title] OR subjects[Title] OR participants[Title]) NOT (mouse[Abstract] OR mice
[Abstract] OR rat[Abstract] OR rats[Abstract] OR dog[Abstract] OR dogs[Abstract] OR
animal[Abstract] OR cell culture[Abstract] OR dose[Abstract] OR review[Title] OR pro-
teomics[Abstract] OR diet[Abstract] OR proteomic[Abstract] OR proteome[Abstract] OR
transcriptomics[Abstract] OR transcriptomic[Abstract] OR transcriptome[Abstract] OR
mouse[Title] OR mice[Title] OR rat[Title] OR rats[Title] OR dog[Title] OR dogs[Title] OR
animal[Title] OR cell culture[Title] OR dose[Title] OR proteomics[Title] OR diet[Title] OR
proteomic[Title] OR proteome[Title] OR transcriptomics[Title] OR transcriptomic[Title] OR
transcriptome[Title]) AND (“01/01/2000”[Publication Date] : “3000”[Publication Date]).

The publications were extracted on the following dates: cancer (27 November 2020),
gastrointestinal (15 April 2020), liver disease (4 June 2021), metabolic syndrome (27 Novem-
ber 2020), neurodegenerative, psychiatric, and brain illnesses (27 November 2020), respira-
tory (l16 April 2020), sepsis (8 April 2020), smoking (4 June 2021); Analytica Chimica Acta
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(14 April 2020), Analytical and Bioanalytical Chemistry (15 April 2020), Analytical Chemistry
(22 April 2020), Journal of Chromatography A (14 April 2020), Journal of Proteome Research (8
April 2020), Metabolites (11 September 2020), Metabolomics (15 April 2020), PLOS One (27
November 2020), Proceeding of the National Academy of Sciences of the United States of America
(14 April 2020), Scientific Reports (15 April 2020).

The search terms above are formatted in segments, and the segments were to filter PMC
articles by: types of metabolomics studies, type of sample (biofluid), technology/assay,
human study, avoiding non-human and non-metabolomics studies and publication date
respectively. After we filtered for metabolomics articles, a list of search terms was used to
search by phenotypes/journals. Journals were filtered by adding a term such as ‘(Metabo-
lites[Journal])’, whereas the phenotypes were filtered by adding the following:

Neurodegenerative, psychiatric, and brain illnesses:(Alzheimer[Abstract] OR Demen-
tia[Abstract] OR Creutzfeldt-Jakob[Abstract] OR Stroke[Abstract] OR Multiple Sclero-
sis[Abstract] OR Guillain-Barre[Abstract] OR epilepsy[Abstract] OR Parkinson[Abstract]
OR migraine[Abstract] OR headache[Abstract] OR Schizophrenia[Abstract] OR Hunt-
ington[Abstract] OR autism[Abstract] OR depression[Abstract] OR Alzheimer[Title] OR
Dementia[Title] OR Creutzfeldt-Jakob[Title] OR Stroke[Title] OR Multiple Sclerosis[Title]
OR Guillain-Barre[Title] OR epilepsy[Title] OR Parkinson[Title] OR migraine[Title] OR
headache[Title] OR Schizophrenia[Title] OR Huntington[Title] OR autism[Title] OR depres-
sion[Title]).

Metabolic syndrome: (obesity[Abstract] OR adiposity[Abstract] OR BMI[Abstract]
OR fat mass[Abstract] OR obese[Abstract] OR hypertension[Abstract] OR blood pres-
sure[Abstract] OR diabetes[Abstract] OR CVD[Abstract] OR lipidemia[Abstract] OR waist
circumference[Abstract] OR insulin resistance[Abstract] OR fasting glucose[Abstract] OR
obesity[Title] OR adiposity[Title] OR BMI[Title] OR fat mass[Title] OR obese[Title] OR
hypertension[Title] OR blood pressure[Title] OR diabetes[Title] OR CVD[Title] OR lipi-
demia[Title] OR waist circumference[Title] OR insulin resistance[Title] OR fasting glu-
cose[Title]).

Sepsis: (Sepsis[Abstract] OR Septic shock[Abstract] OR Septic[Abstract] OR Sys-
temic inflammatory response syndrome[Abstract] OR Multiple organ dysfunction syn-
drome[Abstract] OR Acute pancreatitis[Abstract] OR toxic shock syndrome[Abstract] OR
atypical Kawasaki disease[Abstract] OR Sepsis[Title] OR Septic shock[Title] OR Septic[Title]
OR Systemic inflammatory response syndrome[Title] OR Multiple organ dysfunction syn-
drome[Title] OR Acute pancreatitis[Title] OR toxic shock syndrome[Title] OR atypical
Kawasaki disease[Title]).

Cancer: (cancer[Abstract] OR tumor[Abstract] OR tumour[Abstract] OR cancerous
[Abstract] OR carcinogen[Abstract] OR carcinogenic[Abstract] OR carcinoma[Abstract] OR
leukaemia[Abstract] OR leukemia[Abstract] OR leukaemic[Abstract] OR leukemic[Abstract]
OR lymphoma[Abstract] OR malignancy[Abstract] OR premalignancy[Abstract] OR pre-
malignancy[Abstract] OR melanoma[Abstract] OR metastasis[Abstract] OR sarcoma[Abstract]
OR adjuvant[Abstract] OR neoadjuvant[Abstract] OR chemotherapy[Abstract] OR chemo
therapy[Abstract] OR chemo-therapy[Abstract] OR malignant[Abstract] OR premalig-
nant[Abstract] OR pre-malignant[Abstract] OR precancerous[Abstract] OR pre-cancerous
[Abstract] OR adenocarcinoma[Abstract] OR metastatic[Abstract] OR cancer[Title] OR tu-
mor[Title] OR tumour[Title] OR cancerous[Title] OR carcinogen[Title] OR carcinogenic[Title]
OR carcinoma[Title] OR leukaemia[Title] OR leukemia[Title] OR leukaemic[Title] OR
leukemic[Title] OR lymphoma[Title] OR malignancy[Title] OR premalignancy[Title] OR
pre-malignancy[Title] OR melanoma[Title] OR metastasis[Title] OR sarcoma[Title] OR adju-
vant[Title] OR neoadjuvant[Title] OR chemotherapy[Title] OR chemo therapy[Title] OR chemo-
therapy[Title] OR malignant[Title] OR premalignant[Title] OR pre-malignant[Title] OR precan-
cerous[Title] OR pre-cancerous[Title] OR adenocarcinoma[Title] OR metastatic[Title]).

Gastrointestinal: (IBS[Abstract] OR IBD[Abstract] OR Crohn[Abstract] OR ulcera-
tive colitis[Abstract] OR inflammatory bowel disease[Abstract] OR irritable bowel syn-
drome[Abstract] OR microscopic colitis[Abstract] OR collagenous colitis[Abstract] OR
lymphocytic colitis[Abstract] OR bile acid malabsorption[Abstract] OR celiac[Abstract]
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OR diversion colitis[Abstract] OR Behçet[Abstract] OR Behcet[Abstract] OR indeterminate
colitis[Abstract] OR IBS[Title] OR IBD[Title] OR Crohn[Title] OR ulcerative colitis[Title]
OR inflammatory bowel disease[Title] OR irritable bowel syndrome[Title] OR microscopic
colitis[Title] OR collagenous colitis[Title] OR lymphocytic colitis[Title] OR bile acid malab-
sorption[Title] OR celiac[Title] OR diversion colitis[Title] OR Behçet[Title] OR Behcet[Title]
OR indeterminate colitis[Title]).

Smoking: (smoking[Abstract] OR cigarette[Abstract] OR tobacco[Abstract] OR vaper
[Abstract] OR vaping[Abstract] OR smoker[Abstract] OR smokers[Abstract] OR e-cig[Abstract]
OR e-cigarette[Abstract] OR e-smoking[Abstract] OR e-smoker[Abstract] OR nicotine
patch[Abstract] OR nicotine dependence[Abstract] OR cigar[Abstract] OR pack-year[Abstract]
OR pack-years[Abstract] OR pack year[Abstract] OR packyear[Abstract] OR nicotine
use[Abstract] OR cannabis use[Abstract] OR smoking[Abstract] OR cigarette[Abstract] OR
tobacco[Abstract] OR vaper[Abstract] OR vaping[Abstract] OR smoker[Title] OR smok-
ers[Title] OR e-cig[Title] OR e-cigarette[Title] OR e-smoking[Title] OR e-smoker[Title] OR
nicotine patch[Title] OR nicotine dependence[Title] OR cigar[Title] OR pack-year[Title]
OR pack-years[Title] OR pack year[Title] OR packyear[Title] OR nicotine use[Title] OR
cannabis use[Title]).

Respiratory: (pneumonia[Abstract] OR respiratory tract infection[Abstract] OR COVID
[Abstract] OR SARS[Abstract] OR MERS[Abstract] OR respiratory syndrome[Abstract] OR
coronavirus[Abstract] OR pulmonary fibrosis[Abstract] OR COPD[Abstract] OR Chronic
Obstructive Pulmonary Disease[Abstract] OR SARS-CoV-2[Abstract] OR Acute Respiratory
Syndrome[Abstract] OR Middle East respiratory syndrome[Abstract] OR severe acute
respiratory syndrome[Abstract] OR respiratory virus[Abstract] OR pneumonia[Title] OR
respiratory tract infection[Title] OR COVID[Title] OR SARS[Title] OR MERS[Title] OR respi-
ratory syndrome[Title] OR coronavirus[Title] OR pulmonary fibrosis[Title] OR COPD[Title]
OR Chronic Obstructive Pulmonary Disease[Title] OR SARS-CoV-2[Title] OR Acute Res-
piratory Syndrome[Title] OR Middle East respiratory syndrome[Title] OR severe acute
respiratory syndrome[Title] OR respiratory virus[Title]).

Liver disease: (hepatitis[Abstract] OR haemochromatosis[Abstract] OR hemochro-
matosis[Abstract] OR cirrhosis[Abstract] OR non-alcoholic fatty liver disease[Abstract] OR
NAFLD[Abstract] OR nonalcoholic fatty liver disease[Abstract] OR nonalcoholic steatohep-
atitis[Abstract] OR non-alcoholic steatohepatitis[Abstract] OR liver fibrosis[Abstract] OR
hepatocellular carcinoma[Abstract] OR HCC[Abstract] OR hepatocellular cancer[Abstract]
OR acute fatty liver disease[Abstract] OR hepatic encephalopathy [Abstract] OR primary bil-
iary cholangitis[Abstract] OR primary sclerosing cholangitis[Abstract] OR chronic liver dis-
ease[Abstract] OR alcoholic liver disease[Abstract] OR ALD[Abstract] OR alcohol-related
liver disease[Abstract] OR ARLD[Abstract] OR steatosis[Abstract] OR hepatitis[Title] OR
haemochromatosis[Title] OR hemochromatosis[Title] OR cirrhosis[Title] OR non-alcoholic
fatty liver disease[Title] OR NAFLD[Title] OR nonalcoholic fatty liver disease[Title] OR
nonalcoholic steatohepatitis[Title] OR non-alcoholic steatohepatitis[Title] OR liver fibro-
sis[Title] OR hepatocellular carcinoma[Title] OR HCC[Title] OR hepatocellular cancer[Title]
OR acute fatty liver disease[Title] OR hepatic encephalopathy [Title] OR primary biliary
cholangitis[Title] OR primary sclerosing cholangitis[Title] OR chronic liver disease[Title]
OR alcoholic liver disease[Title] OR ALD[Title] OR alcohol-related liver disease[Title] OR
ARLD[Title] OR steatosis[Title]).
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