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Background: Large individual differences exist in sleep deprivation (SD) induced sustained attention deterioration. Several brain
imaging studies have suggested that the activities within frontal-parietal network, cortico-thalamic connections, and inter-hemispheric
connectivity might underlie the neural correlates of vulnerability/resistance to SD. However, those traditional approaches are based on
average estimates of differences at the group level. Currently, a neuroimaging marker that can reliably predict this vulnerability at the
individual level is lacking.
Methods: Efficient transfer of information relies on the integrity of white matter (WM) tracts in the human brain, we therefore applied
machine learning approach to investigate whether the WM diffusion metrics can predict vulnerability to SD. Forty-nine participants
completed the psychomotor vigilance task (PVT) both after resting wakefulness (RW) and after 24 h of sleep deprivation (SD). The
number of PVT lapse (reaction time > 500 ms) was calculated for both RW condition and SD condition and participants were
categorized as vulnerable (24 participants) or resistant (25 participants) to SD according to the change in the number of PVT lapses
between the two conditions. Diffusion tensor imaging were acquired to extract four multitype WM features at a regional level:
fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) learning
approach using leave-one-out cross-validation (LOOCV) was performed to assess the discriminative power of WM features in SD-
vulnerable and SD-resistant participants.
Results: LSVM analysis achieved a correct classification rate of 83.67% (sensitivity: 87.50%; specificity: 80.00%; and area under the
receiver operating characteristic curve: 0.85) for differentiating SD-vulnerable from SD-resistant participants. WM fiber tracts that
contributed most to the classification model were primarily commissural pathways (superior longitudinal fasciculus), projection
pathways (posterior corona radiata, anterior limb of internal capsule) and association pathways (body and genu of corpus callosum).
Furthermore, we found a significantly negative correlation between changes in PVT lapses and the LSVM decision value.
Conclusion: These findings suggest that WM fibers connecting (1) regions within frontal-parietal attention network, (2) the thalamus
to the prefrontal cortex, and (3) the left and right hemispheres contributed the most to classification accuracy.
Keywords: sleep deprivation, vulnerability, diffusion tensor imaging, machine learning, psychomotor vigilance task

Introduction
Sleep facilitates the clearance of waste products that accumulate during wakefulness and plays an essential role in
maintaining health and well-being.1 Sleep is also of critical importance for learning and memory. According to the
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synaptic homeostasis theory, one essential role of sleep is the optimization of synaptic circuits to retain salient memory
traces. Therefore, sleep is believed to consolidate synaptic connections required for encoding and retention of memories.2

Sleep deprivation (SD) has become increasingly common in modern society. SD can lead to a variety of cognitive
deficits, in which deterioration of sustained attention appears to be the most consistent consequence.3 Previous studies
using functional magnetic resonance imaging (fMRI) have suggested that decreased activation within the frontal-parietal
network (FPN),4 disrupted cortico-thalamic connections,5 and compromised interhemispheric connectivity might con-
tribute to sustained impairments to attention after SD.6

Interestingly, not everyone experiences cognitive deficits after SD to the same extent and large individual differences
exist in the degree of attentional impairment. Previous studies have demonstrated that amount of vulnerability (or
resistance) to SD-induced attentional deterioration is trait-like and reproducible within a given individual.7,8 A number of
studies have attempted to discern the underlying neural mechanisms that contribute to this vulnerability. For example,
Chee et al found that frontal-parietal activation when performing a sustained attention task was higher in SD-resistant
individuals than in vulnerable individuals.9 They also found that while thalamic activity after SD and at baseline were
comparable in resilient individuals, it was reduced in vulnerable participants following SD. Yeo et al found that
vulnerable participants had poorer negative correlations between default mode network and FPN activity compared
with those who were resistant.10 Normal cognitive function requires effective communication among distributed neuronal
populations in functionally specialized brain areas. Additionally, the efficient transfer of information relies on the
integrity of white matter (WM) tracts in the human brain. Studies using diffusion tensor imaging (DTI) have suggested
that primary insomnia was associated with WM tracts disruptions of several, such as superior longitudinal fasciculus
(SLF) within the FPN network and corona radiate, internal capsule within the thalamocortical networks.11 A previous
study using DTI also found that participants vulnerable to SD-induced attentional impairments exhibited significantly
lower integrity in several WM fiber tracts compared with resistant participants.12

However, a reliable neuroimaging marker that can predict this kind of vulnerability is still missing. The most likely
reason for the difficulty is that the differences between vulnerable participants and resistant participants are usually
reported at the group level, which provides limited information for making inferences at the individual level. Unlike
traditional group-level univariate analysis, cutting-edge machine learning techniques can detect differences that are subtle
and spatially distributed and have been indicated to improve diagnoses, classification, and treatment-outcome prediction
in a range of situations.13,14 However, to our best knowledge, studies using DTI and machine learning strategies for SD
vulnerability prediction are rare. In the current study, we applied a linear support vector machine learning approach to
investigate whether the WM diffusion metrics can predict vulnerability to SD. Based on the findings mentioned above,
we hypothesized that microstructural properties of WM tracts within the FPN (superior longitudinal fasciculus),
thalamocortical projections (corona radiata, internal capsule), and interhemispheric association tracts (corpus callosum)
would be the primary contributors to accurate classification.

Methods
Participants
Forty-nine participants were recruited from universities and the local community via advertisements. Consistent with our
previous studies,15,16 the exclusion criteria included sleep disorders, claustrophobia, drug/alcohol abuse, and a history of
neurological or psychiatric illness. All participants provided their informed consent according to the Declaration of Helsinki.
The study was approved by the clinical trial ethics committee of Xijing Hospital at Air Force Medical University.

Sleep-Deprivation Procedure
Participants were asked to make three visits to the laboratory. During the first visit, they were briefed about the study
protocol and signed the informed consent form. To record their sleep patterns, participants were asked to wear a wrist
Actiwatch (Philips Respironics, Mini Mitter) 24 hours continuously for 1 week. The monitor was placed on the
nondominant wrist and participants were asked not to remove it. One week later, participants came to the laboratory
either for a RW (resting wakefulness) session or a SD session. The session order was randomized in a cross-over fashion,
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and there was a ~ 1-week interval to minimize possible residual effects of sleep deprivation on cognition.17 During the
RW condition, participants reached the laboratory at 8:00 AM. Compliance to a regular sleep schedule was verified by
checking the participant’s sleep diary and wrist Actiwatch. Participants who did not comply with a regular sleep schedule
(>6 h of sleep/night; sleep time no later than 1:00 AM; wake time no later than 9:00 AM) were excluded. The MRI scans
(functional MRI scanning, published elsewhere) were scheduled after participants had completed the 10 min of the PVT.
The SD process began at 8:00 AM and ended at 8:00 AM on the following day. During SD, participants were allowed to
read, watch TV, or surf the internet. Strenuous activities and beverages with caffeine were not allowed during the
experiment. The temperature was around 23°C with standard light (340 lux). Two researchers accompanied the
participants to prevent them from falling asleep. The DTI scans used in the analyses were performed at 10:00 PM
during the SD session. Functional MRI scanning was scheduled at 8:00 AM on the following day after participants had
completed the 10 min of the PVT.

The ability to sustain attention was measured using the well-defined psychomotor vigilance task (PVT), which has
been described in detail elsewhere.18 Briefly, at random intervals, a millisecond counter began to scroll, and participants
were asked to press the space bar on a keyboard to stop the scrolling counter as quickly as possible. After pressing the
button, the counter displayed the achieved RT for 1 second as a feedback for monitoring their performances. The duration
of the task was 10 minutes, and the inter-stimulus intervals were distributed randomly from 2 to 10s. The average stimuli
trials (RW mean: 61.1± 1.38; SD mean: 60.2 ±1.97) and the inter-stimulus intervals (RW mean: 6.13± 0.61 s; SD mean:
6.09 ±0.56 s) showed no significant differences between the two conditions. Reaction times longer than 500 ms were
defined as a lapse in performance. The participants completed the PVT for both RWand SD conditions and the number of
PVT lapse was calculated for both RW condition and SD condition. Vulnerability to SD was computed on the basis of the
extent of an individual’s change in number of lapses after SD, taking into account their performance at RW condition. In
other words, participants were stratified as SD-resistant or SD-vulnerable according to the number change of PVT lapse
(lapseSD-lapseRW).

MRI Data Collection
Diffusion data were acquired using a GE Discovery MR750 3.0T scanner with a standard 8-channel head coil at Xijing
Hospital. During scanning, all participants were instructed to keep their eyes open, let their minds wander, and stay
awake.19 Diffusion-weighted sequences with single-shot echo planar imaging aligned to the anterior-posterior commis-
sural plane were acquired using the following parameters: field of view (FOV) = 282 mm × 282 mm, repetition time
(TR)/echo time (TE) = 8000/89 ms, flip angle = 90°, slice thickness = 2.2 mm, and 62 continuous axial slices with no
gap. The diffusion sensitizing gradients were applied along 64 non-linear directions (b = 1000 s/mm2), combined with an
acquisition without diffusion weighting (b = 0 s/mm2).

Whole Brain WM Diffusion Metrics
Individual diffusion-weighted images were corrected for head motion and eddy current distortion using Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Diffusion Toolbox v2.0 (FDT) from the FMRIB Software Library
(FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).20,21 Gradient directions were also corrected to preserve the orientation
information.22 Non-brain tissue and background noise were removed using FSL’s brain extraction tool.23 The diffusion
tensor and diffusion parameter maps for fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and
mean diffusivity (MD) was calculated using DTIFIT from FMRIB’s Diffusion Toolbox.20

The population-specific template was constructed through tensor-based registration using affine and diffeomorphic
registration algorithms from the Diffusion Tensor Imaging ToolKit (DTI-TK; http://dti-tk.sourceforge.net).24–27 The JHU
ICBM-DTI-81 template was normalized into this population template space using the Advanced Normalization Tools
(ANTs; https://www.nitrc.org/projects/ants), diffeomorphic spatial registration algorithms, and nearest neighbor
interpolation.28–31 The normalized JHU ICBM-DTI-81 template was then warped by the inverse of the transformation
fields that were estimated in the population-specific template generation process to acquire the participant-specific WM
tracts.29 Quality-control was performed throughout visual inspection of the direction-encoding color fractional aniso-
tropic image and the participant-specific WM atlas.32 Distribution metrics (mean, standard deviation, skew, and kurtosis)
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for each tract were computed from diffusion parameter maps in individual diffusion space for each participant.32 The 768
diffusion metrics that represented the whole brain WM characteristics were selected as features in the following step.

Machine Learning Pipeline
This study applied a nested leave-one-out cross-validation (LOOCV) procedure. An external LOOCV was used to
estimate classification accuracy and an internal LOOCV was used to determine the optimal subset of relevant features.
The LOOCV means that data from N-1 subjects were used as the training set and the remaining one subject was the test
sample, where N is the number of all subjects. Internal LOOCVs were applied in the training set for each external
LOOCV. The LOOCV strategy provides a good estimation for evaluating the generalization ability of the model,
especially applicable in the case of relatively small sample size (as in this study).33 The schematic overview of the
proposed nested LOOCV classification framework is shown in Figure 1.

Feature Selection Procedure
In machine learning and statistics, feature selection has been widely employed to identify relevant features for
dimensionality reduction, to strengthen generalization capability, and to simplify the model.34,35 For each internal
LOOCV, the feature selection was realized through an L1-regularized logistic regression model implemented within
LIBLINEAR v2.4 (https://www.csie.ntu.edu.tw/~cjlin/liblinear/).36 As an embedded feature selection method, L1 reg-
ularization selects the optimum feature subset by shrinking the coefficients of irrelevant features toward zero with the
regularization parameter C37. All features were normalized to a mean of 0 and a standard deviation of 1 before entering
the feature selection process. Each value for C 2 2� 14; 2� 13; � � �; 214

� �
was applied to the training set (N-2 participants)

for each internal LOOCV, resulting in 29 internal LOOCVs. Thus, 29 classification accuracies were obtained for each
internal LOOCV. The C value with the highest classification accuracy for the internal LOOCV was defined as the optimal
regularization parameter. This optimal parameter was then applied to the training set (N-1 participants) to train the model
and the features corresponding to nonzero coefficients of the model were regarded as selected features.

LSVM-Based Classifier Implementation
For the external LOOCV, a linear support vector machine (LSVM) was adopted based on the features selected by the L1-
regularized logistic regression. The LSVM was then used to construct the classification model and evaluate classification
performance. This analysis was implemented using the LIBSVM MATLAB module (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/).38 As a widely used supervised learning algorithm, the LSVM maps training samples to points in
a multidimensional space, with each dimension corresponding to a feature, and finds the hyperplane that maximizes
the margin between the samples of different categories (SD-resistant was labeled as 1 and SD-vulnerable as −1).38 The
hyperplane can be represented by a decision function y ¼ wTxþ b, in which y is the decision value, x is the multi-
dimensional feature vector, and w is the coefficient/weight of the corresponding feature. The resultant weight for each
feature represents the feature contribution/importance to the classification.34,35,39 We apply the untrained test sample to
the decision function, any sample with a positive decision value was classified as SD-resistant and a negative score as
SD-vulnerable.

The above procedure contains a total of 49 (external LOOCV) * 48 (internal LOOCV) * 29 (regularization parameter)
= 68,208 cycles. The internal LOOCV takes the default approach in the LIBLINEAR toolkit. The pipeline system for
Octave and Matlab (PSOM; https://www.nitrc.org/projects/psom/) was used to speed up this process.

LSVM Classification Performance Evaluation
In the current study, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV) were used to evaluate the performance of the classification model. Accuracy (proportion of true positives and true
negatives) was defined as the proportion of participants who were correctly identified as vulnerable or resistant.
Sensitivity (proportion of true positives) and specificity (proportion of true negatives) measured the proportion of
participants correctly classified as SD-vulnerable or SD-resistant, respectively. The PPV was the odds of being SD-
vulnerable when classified as SD-vulnerable and the NPV was the odds of being SD-resistant if classified as SD-resistant.
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In addition, receiver operating characteristic (ROC) analysis was also used to evaluate classification performance.40 The
area under the ROC curve (AUC) reflects the classification power of the classifier, with larger AUCs indicating better
classification power.40

The permutation test was also conducted to assess whether the accuracy and AUC were significantly higher than
values expected by chance.41,42 As a non-parametric statistical method, the permutation test can be used to analyze
quantified data that do not satisfy statistical assumptions derived from traditional parametric tests.43,44 Specifically, the
class labels across the entire sample were randomly permutated 1000 times without replacement, and the entire machine
learning pipeline was re-executed each time. The p-value of the permutation test was calculated as the number of
permutations that resulted in a greater statistic (accuracy or AUC) than was obtained using the real data, divided by the
total number of permutations (ie, 1000).

Figure 1 Schematic overview of the proposed nested LOOCV classification framework.
Abbreviation: LR, logistic regression.
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Weight of Features
Because of the nested LOOCV strategy, the training set for each external LOOCV was slightly different, resulting in
differences in selected features across repetitions.45 In the current study, the overlapping features across all folds of the
external LOOCV were defined as the discriminative features and the discriminative weight represents the discriminative
power of the corresponding feature. The discriminative weight was quantitatively calculated as the average of the
absolute weights across all repetitions.45 A higher absolute value of the discriminative weight indicates a greater
contribution of the corresponding feature to the classification.34,39,46

Results
Demographic Characteristics, Stanford Sleepiness Scale, and Objective Sleep
Measures
Forty-nine participants successfully completed the SD experiment. Based on the change in the number of lapses between
SD and RW condition. Participants were stratified as SD-resistant or SD-vulnerable group. The average change in PVT
lapse was 0.54 for the SD-resistant group and 9.56 for the SD-vulnerable group. The two groups were similar in age
(22.00 ± 1.71 for resistant group, 22.08 ± 1.77 for vulnerable group, P > 0. 5), gender distribution (12 females in resistant
group, 13 females in vulnerable group, P > 0. 5) and body mass index (23.60 ± 0.96 for resistant group, 23.70 ± 1.10 for
vulnerable group, P > 0. 5). They all had habitually good sleep confirmed by Actiwatchs and no significant differences
were found for objective sleep parameters, including number of wakening each night, sleep duration all night, sleep
efficiency and sleep latency. Detailed demographic and sleep-pattern information are listed in Table 1.

Classification Performance
The classification performance for different features using the total sample is presented in Table 2. By using the
combined FA, MD, AD, and RD features, the LSVM classifier accurately discriminated SD-vulnerable from SD-
resilient individuals. Specifically, the accuracy, sensitivity, specificity, PPV, and NPV were 83.67%, 87.50%, 80.00%,
86.96%, and 80.77%, respectively. The permutation tests showed that the true prediction accuracies were significantly
higher than those obtained after random generation (P < 0.003) (Figure 2). The ROC analyses for the classification
model based on combined features and single features are presented in Figure 3. The LSVM classifier using the
combined features generated a larger AUC, indicating better classification performance. The permutation tests revealed
that the true prediction AUC was significantly higher than that obtained through chance (P < 0.009) (Figure 2).

Table 1 Demographic Characteristics, Stanford Sleepiness Scale, and Objective Sleep Measures

Vulnerable (n = 25) Resilience (n = 24) Statistical
Value

P value

Gender (male/female) 12/13 12/12 0.02a 0.88

Age (years) 22.08 ± 1.77 22.00 ± 1.71 0.16b 0.87
Body mass index 23.70 ± 1.10 23.60 ± 0.96 0.33b 0.73

Objective sleep characteristics from
Actiwatch
Number of wakening each night 27.64 ± 6.28 27.95 ± 6.03 −0.18b 0.85

Sleep duration all night 6.75 ± 1.38 6.66 ± 1.28 0.23b 0.81

Night sleep durations before work days 6.35 ± 1.38 6.33 ± 1.27 0.05b 0.95
Night sleep durations before free days 7.14 ± 1.38 7.05 ± 1.28 0.25b 0.80

Sleep efficiency in % 84.20 ± 2.87 83.50 ± 2.02 0.98b 0.33

Sleep latency in minutes 16.32 ± 6.87 16.10 ± 7.63 0.11b 0.91
PVT performance
Number of Lapse 9.56 ± 5.96 0.54 ± 1.06 −5.98c <0.001

Notes: a.Value from the 2 test. P value also obtained by using the 2 test.b T value obtained by using the two-sample t test.cZ value and P value obtained by using the rank-sum test.
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To compare the classification performance for different features, we conducted a one-way analysis of variance
(ANOVA) on the accuracy and AUC values obtained using the permutation tests. Post hoc analyses were conducted to
further examine specific between-feature differences. The results showed significant differences in both accuracy and
AUC among the classification models constructed using different features (FAUC = 11.43, P < 0.001, Faccuracy = 9.65,
P < 0.001). Post hoc analysis revealed that accuracy and AUC were both significantly higher for the models with
combined features (COMB) than the models with individual FA, AD, or RD features (COMB vs FA: Paccuracy < 0.001,
PAUC < 0.001; COMB vs AD: Paccuracy < 0.001, PAUC < 0.001; COMB vs RD: Paccuracy < 0.001, PAUC < 0.001).
A trend was also observed for the MD features (COMB vs MD: Paccuracy = 0.32, PAUC = 0.23). Detailed results of the
post hoc analysis are shown in Supplementary Table 1.

Relationship Between LSVM Decision Value and PVT Performance
The decision value of the LSVM classifier for each participant is shown in Figure 4. The decision value was defined as
the distance from the sample (ie, each participant) to the optimal separating hyperplane. Individuals with negative values
were classified as SD-vulnerable, and individuals with positive values were classified as SD-resilient. Based on the
proposed nested LOOCV strategy, five SD-vulnerable individuals were misidentified as SD-resilient, and 3 SD-resilient
individuals were misidentified as SD-vulnerable. Correlation analysis showed that the decision values were significantly
negatively correlated with PVT performance (r = −0.497, P < 0.001), which further supports the validity of the
classification model.

Table 2 Classification Performance of the LSVM Classifier Using Different Feature Types

Feature Type AUC Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%)

Combined feature 0.85 83.67 87.50 80.00 86.96 80.77
FA feature 0.83 75.51 72.00 79.17 78.26 73.08

MD feature 0.66 65.31 62.50 68.00 65.38 65.22

AD feature 0.77 67.00 70.83 64.00 69.57 65.38
RD feature 0.64 59.18 54.17 64.00 59.26 59.09

Abbreviations: AUC, area under ROC curve; PPV, positive predictive value; NPV, negative predictive value.

Figure 2 Two histograms depicting the accuracy and AUC permutation distributions for the classifier constructed using a combination of features. The values obtained using
the real labels are indicated by the red dotted line.
Abbreviation: AUC, area under the (receiver operating characteristic) curve.
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The Most Discriminative WM Tracts
The WM tracts that were most different (ie, most discriminative) between SD-vulnerable and SD-resilient individuals
were selected using the proposed classification framework. Specifically, there were 27 discriminative WM features,
including 8 FAs, 9 MDs, 6 ADs, and 4 RDs (Table 3). The WM regions that differed in FA features mainly included the
left anterior limb of the internal capsule, left cingulum, left corticospinal tract, right superior corona radiata, right
superior cerebellar peduncle, right tapetum, and middle cerebellar peduncle. The regions selected for the MD feature
were located in the right cingulum, left superior fronto-occipital fasciculus, left anterior limb of internal capsule, right
cingulum, right posterior corona radiata, right superior longitudinal fasciculus, genu of the corpus callosum, cerebellar
peduncle, and the body of the fornix. The corresponding regions for the AD feature were the left genu of the corpus
callosum, body of the corpus callosum, and the left superior longitudinal fasciculus. The discriminative RD features were
derived from the right superior corona radiata, left superior fronto-occipital fasciculus, and right superior longitudinal
fasciculus. We found that the discriminative features include the mean, standard deviation, skew, and kurtosis of the
diffusion parameters of the corresponding WM regions, indicating existence of complementary information between
different features’ distribution metrics. The discriminative WM regions are shown in Figure 5.

Discussion
Using WM metrics derived from diffusion tensor imaging and multivariate classification (LSVM), the current study
found that combining FA, MD, AD and RD features from several WM tracts can predict vulnerability to SD with high
accuracy. The WM tracts that showed the most discriminatory power were commissural pathways (superior longitudinal
fasciculus), projection pathways (posterior corona radiata, anterior limb of internal capsule), and association pathways
(body and genu of corpus callosum). The present study highlights the importance of WM in regulating cognitive
instability after SD.

Rather than eliminating cognitive capability, SD affects cognitive performance by causing cognitive instability.47

After SD, cognitive instability manifests as increased number of attentional lapses. However, large inter-individual
differences exist in SD-induced PVT lapses and substantial evidence indicates that this vulnerability to SD is stable

Figure 3 The ROC curves for classifiers constructed using different feature types.
Abbreviation: ROC, receiver operating characteristic.
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within a given individual.8 Due to the 24/7 demands of contemporary society, a reliable biomarker that can be used to
screen for SD-vulnerability is of great importance. Although a previous study tried to use baseline PVT measures with
a drift-diffusion model to predict SD-vulnerability, classification accuracy was unsatisfactory (around 77%).48

Additionally, a recent study attempted to use imaging features derived from fMRI to predict SD-vulnerability.
Accuracy was good enough, but resting-state fMRI is state-dependent and easily affected by head motion and preproces-
sing (such as with or without global signal regression).49 As SD-vulnerability is trait-like, intrinsic structural measures,
such as the properties WM microstructure, might guarantee robust classification performance. Supporting this theory, we
obtained 84% accuracy by combining FA, MD, AD, and RD measures and found a significant negative correlation
between the change in PVT lapse number and the LSVM decision value.

Involvement of the FPN for attention has been consistently observed during sustained attention tasks. The first study
that investigated the neural correlates of the PVT indicated that cortical activation within the dorsal attention network that
encompasses the frontal and parietal regions is related to sustained attention performance.18 Another study by Chee et al
further found that signal increases in frontal-parietal regions were lower in SD-vulnerable participants than in SD-
resistant participants.9 These investigations have all suggested that the FPN helps regulate attentional lapses. FPN
network connectivity was also associated with sleep disturbance in clinical populations. A recent study by Pini et al
indicated that increased FPN connectivity were found in mild cognitive impairment (MCI) participants with high quality
of sleep, positive coupling of connectivity between FPN network and default mode network (DMN) was also found in
MCI reporting high quality of sleep.50 A large independent sample study by McKinnon et al found that MCI participants
with nocturnal awakenings (defined by actigraphy) demonstrated reduced connectivity between temporal and parietal,
and between temporal and temporal-parietal regions, compared with MCIs with intact sleep.51 Those studies implicated
that distinct alterations in FPN and DMN functional connectivity are related with sleep disturbance in MCI. The superior
longitudinal fasciculus (SLF) is an extensive longitudinal WM tract connecting the frontal and parietal lobes, which is

Figure 4 Correlation between the LSVM decision value and PVT performance. A significant negative correlation between the LSVM decision value and PVT performance
was observed across all participants (r= −0.497, p<0.001). Here, individuals with negative values were classified as SD-vulnerable, and individuals with positive values were
classified as SD-resilient.
Abbreviations: LSVM, linear support vector machine; SD, sleep deprivation; RW, resting wakefulness.
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divided into three branches: SLF I, SLF II, and SLF III.52 SLF I extends between the superior parietal lobe and the dorsal
and medial parts of the frontal lobe, while SLF II connects the inferior parietal lobe to posterior portions of the middle
frontal gyrus, and SLF III connects the inferior parietal lobe to the inferior frontal gyrus. All three segments of the SLF
facilitate top-down control of behavior. The contribution of RD and MD features from the right SLF and AD from the left
SLF to the classification model found in the current study indicates that efficient signal communication between frontal
and parietal regions are likely necessary for better resistance to SD.

We further found that RD and FA of the superior corona radiata, MD of the posterior corona radiata, and FA of the
anterior limb of internal capsule contributed to the accuracy of SD-vulnerable/resilient classification. The corona radiata
is part of the thalamocortical circuitry and contains fibers (thalamic radiations) that mostly connect the prefrontal cortex
to the thalamus.53 Additionally, the anterior limb of the internal capsule connects the prefrontal cortex with the
thalamus.53 A broad review of previous studies has implicated the thalamus in regulating sustained attention, with
increased thalamic activation frequently observed after SD.54 Consistent with our finding, a previous study found that
patients who experienced strokes that were localized to the corona radiata and the internal capsule performed poorly on
the PVT.55

Another important finding was that the AD for the body and genu of corpus callosum also contributed to the
classification. The corpus callosum is the major WM tract connecting the left and right cerebral hemispheres and thus
plays an important role in interhemispheric communication. Our previous study found that functional interhemispheric
connectivity in increased after SD, which might reflect compensation for the detrimental effects of accumulating sleep
debt.56 By increasing the number of imaging scans during the SD process, our recent study found a monotonically

Table 3 The Selected Discriminative Features Using the Proposed Nested LOOCV Strategy

WMPM Regions Hemisphere Metric Statistic Discriminative Weight

Superior corona radiata R RD Kurtosis 0.059
Fornix / MD Mean 0.058

Cingulum R MD Mean 0.053

Anterior limb of internal capsule L FA Standard deviation 0.051
Superior fronto-occipital fasciculus L MD Standard deviation 0.050

Genu of corpus callosum / AD Mean 0.049

Body of corpus callosum / AD Skew 0.047
Superior fronto-occipital fasciculus L RD Skew 0.047

Superior corona radiata R FA Mean 0.045
Superior fronto-occipital fasciculus L RD Kurtosis 0.042

Anterior limb of internal capsule L FA Skew 0.042

Middle cerebellar peduncle / FA Mean 0.041
Cingulum L FA Mean 0.040

Anterior limb of internal capsule L MD Standard deviation 0.039

Superior cerebellar peduncle R FA Mean 0.039
Body of corpus callosum / AD Kurtosis 0.038

Tapetum R FA Mean 0.037

Genu of corpus callosum / MD Mean 0.037
Cingulum R MD Standard deviation 0.034

Cerebellar peduncle / MD Mean 0.032

Superior longitudinal fasciculus L AD Standard deviation 0.030
Superior longitudinal fasciculus L AD Mean 0.029

Corticospinal tract L FA Skew 0.028

Superior longitudinal fasciculus L AD Kurtosis 0.022
Superior longitudinal fasciculus R RD Kurtosis 0.019

Posterior corona radiata R MD Standard deviation 0.017

Superior longitudinal fasciculus R MD Mean 0.016

Abbreviations: L, left hemisphere; R, right hemisphere; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity.
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increased interhemispheric connection during SD.6 In line with these studies, the current study further verified the role
that microstructural properties of the corpus callosum has in maintaining cognitive stability after SD.

The present study has several limitations. First, in the current study, participants were median-split into SD-resistant
or SD-vulnerable group according to the number change of PVT lapse (SD-RW). This approach enabled us to build
a model that predicts a binary outcome (resilient or vulnerable). However, it is of great importance to note that the
vulnerability to sleep deprivation is actually continuous, and the decision to split the dataset by the median was arbitrary.
The number of lapse change in the “most resistant” vulnerable subjects were similar to that in the “most vulnerable”
resistant subjects, which influences the actual accuracy of the classification model. Second, we only calculated the
number of lapses in two sessions (RW and SD), which can not rule out the effects brought by random variability in
performance, future studies are needed to verify whether the obtained vulnerability was reproducible across multiple
sessions. Third, the age distribution of participants recruited was relatively narrow and the sample size is relatively small,
further studies with larger sample size and wider age range will be necessary to confirm the present results. Finally, we
only used WM properties to build the discrimination model, the combination of other structural measures, such as
cortical surface area or cortical thickness derived from high-resolution T1 images should be investigated in the future.

Conclusion
Our study demonstrated that microstructural properties derived from diffusion tensor imaging combined with cutting-
edge machine algorithms have the potential to predict cognitive vulnerability to SD. Classification accuracy was driven
primarily by (1) commissural fiber tracts within the frontal-parietal attention network, (2) projection fiber tracts linking
the thalamus to the prefrontal cortex, and (3) association fiber tracts that facilitate interhemispheric communication.
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