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VISTA: VIsual Semantic Tissue 
Analysis for pancreatic disease 
quantification in murine cohorts
Luke Ternes1,2,6, Ge Huang1,6, Christian Lanciault3, Guillaume Thibault1, Rachelle Riggers1, 
Joe W. Gray1,4, John Muschler1,5* & Young Hwan Chang1,2,4,5*

Mechanistic disease progression studies using animal models require objective and quantifiable 
assessment of tissue pathology. Currently quantification relies heavily on staining methods which 
can be expensive, labor/time-intensive, inconsistent across laboratories and batch, and produce 
uneven staining that is prone to misinterpretation and investigator bias. We developed an automated 
semantic segmentation tool utilizing deep learning for rapid and objective quantification of histologic 
features relying solely on hematoxylin and eosin stained pancreatic tissue sections. The tool segments 
normal acinar structures, the ductal phenotype of acinar-to-ductal metaplasia (ADM), and dysplasia 
with Dice coefficients of 0.79, 0.70, and 0.79, respectively. To deal with inaccurate pixelwise manual 
annotations, prediction accuracy was also evaluated against biological truth using immunostaining 
mean structural similarity indexes (SSIM) of 0.925 and 0.920 for amylase and pan-keratin respectively. 
Our tool’s disease area quantifications were correlated to the quantifications of immunostaining 
markers (DAPI, amylase, and cytokeratins; Spearman correlation score = 0.86, 0.97, and 0.92) in 
unseen dataset (n = 25). Moreover, our tool distinguishes ADM from dysplasia, which are not reliably 
distinguished with immunostaining, and demonstrates generalizability across murine cohorts with 
pancreatic disease. We quantified the changes in histologic feature abundance for murine cohorts 
with oncogenic Kras-driven disease, and the predictions fit biological expectations, showing stromal 
expansion, a reduction of normal acinar tissue, and an increase in both ADM and dysplasia as disease 
progresses. Our tool promises to accelerate and improve the quantification of pancreatic disease in 
animal studies and become a unifying quantification tool across laboratories.

Advances in deep learning technologies are creating opportunities for the rapid and objective assessment of both 
normal tissue and pathologic processes in biologic specimens. Computer-aided interrogation of medical imaging 
is being applied to accelerate and improve diagnosis in human patients1–4. Similarly, deep learning technologies 
can greatly improve analyses in animal disease models which require the measurement of disease progression in 
large numbers of tissue samples resulting either from pharmacological or genetic manipulations. The extensive 
and growing use of murine models in disease studies creates a significant need for tissue assessment methods 
that are rapid, objective and quantifiable in order to permit statistically validated disease measurements among 
animal cohorts, free of technical variability and investigator bias.

The challenge of objective quantification of tissue changes among animal cohorts is significant. Evaluation of 
tissue by either histochemical stains or antigen-specific immunohistochemistry offers distinct and sometimes 
overlapping information, but both have limitations. Hematoxylin and eosin (H&E) staining is a rapid, reliable 
and inexpensive method; however, lack of molecular specificity and requirement for manual segmentation have, 
thus far, limited its use for extraction of quantifiable data. Consequently, disease assessments by H&E staining 
are typically qualitative and vulnerable to inter-observer variation and bias5–7. Immunohistochemical stains 
offer a degree of specificity, but immunostaining can be labor- and time-intensive, expensive and results are 
often challenging to objectively quantify over broad tissue regions. In addition, tissue features of interest are not 
always cleanly distinguishable by immunostaining markers, and so tissue assessments can be limited by reliance 
on the molecular specificity of antibodies.
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Using murine models of pancreatic cancer progression and pancreatitis, we are working to develop and 
validate deep learning approaches that enable the rapid, reliable, and automated quantification of disease pro-
gression over large tissue areas, solely based on H&E staining. Murine models of pancreatic cancer were chosen 
as they have proven useful for mechanistic investigations of pancreatic cancer progression, modeling well the 
human disease both genetically and phenotypically, particularly during the evolution of pre-cancerous lesions8,9. 
The murine models have produced an explosion of studies including pre-clinical drug tests and evaluation of 
additional genetic perturbations that expose tumor-suppressing and tumor-promoting disease modifiers10–12.

The early stages of pancreatic cancer evolution are well described in the mouse models8,9. The normal pancreas 
consists predominantly of acinar and ductal epithelial cells forming the exocrine compartment, along with islet 
cells of the endocrine compartment, vasculature and the varied fibroblasts of the stromal compartment. The 
earliest stages of oncogene-induced pre-cancer evolution are marked by an expansion of ductal cells or by the 
conversion of the acinar cells to a ductal phenotype in an adaptive process known as acinar-to ductal metaplasia 
(ADM)13. ADM is also characteristic of acute and chronic pancreatitis, inflammatory conditions that can pre-
dispose to cancer13. The next stage in cancer evolution is the development of low-grade dysplasia, also referred 
to as pancreatic intraepithelial neoplasias (PanINs 1 and 2). Low-grade dysplasia is a pre-invasive neoplasia 
that can evolve to high-grade dysplasia (PanIN 3) and then progress to invasive pancreatic ductal adenocarci-
noma (PDAC)14. Both ADM and dysplasia are accompanied by a prominent stromal reaction and immune cell 
infiltrate13. The stages of ADM and dysplasia evolution are believed to encompass a long phase of pre-cancer 
evolution that is a valuable window for early intervention14.

Here we describe the model training workflow and application of deep learning on H&E stained samples of 
murine pre-cancerous lesions, segmenting the normal acini, the ductal phenotype of ADM, and dysplasia. With 
the rapid growth of computer vision, more specifically deep learning, novel image analysis architectures have 
been developed for accessing image information that is not readily observed through traditional methods. Several 
research groups have worked towards inter-modality image translation and have developed tools that attempt 
to convert medical images such as H&E stained tissue and brightfield microscopy to more detailed ones such as 
fluorescent immunostains15–18. The target of such models has been the direct translation of stain intensities for 
the purpose of constructing entirely new images. Our developed tool seeks to go further, predicting binarized 
masks of positive staining area and augment immunostaining by segmenting key histologic features that current 
stains cannot reliably differentiate.

Results presented here demonstrate a well validated segmentation tool that can automatically, rapidly, and 
objectively quantify pancreatic tissue and disease progression in mice, relying solely on easily replicated and 
low-cost H&E staining of whole pancreas tissue sections, free of experimental variability and investigator bias. 
Our work provides a tool that is immediately applicable to the improvement and acceleration of pancreatic dis-
ease studies in animal cohorts, and provides workflows for similar tool development in other disease models. 
Moreover, the ease of use and availability allows for this tool to be a common thread for comparing different 
studies performed throughout the world.

Results
In order to predict the histologic feature distributions and immunofluorescent stain positivity in murine pan-
creatic pre-cancerous tissues, several UNet models19 were trained using intensity normalized H&E image tiles 
paired with annotated ground truth tiles (Supplemental Fig. 1). All pancreas tissue sections in training, valida-
tion, and testing sets were stained with H&E (Table 1). First testing was conducted by evaluating spatial overlap 
of predictions and expert annotations for normal acinar, ADM, and dysplasia. A second test was performed by 
correlating predictions to binarized immunofluorescence staining (IF): amylase (AMY), labeling normal acini, 
pan-keratin (panK), labeling primarily the oncogenic Kras-transformed epithelial population, and DAPI, labeling 
all nuclei. A third test was performed qualitatively analyzing predictions in pancreatitis and normal samples, 
and comparing to biological expectations.

To ensure that UNet19 model predictions were able to generalize well and overcome staining differences within 
and between tissue sections, Dice Coefficient were calculated comparing model predictions to expert annotations 
made in Cytomine20 after training with several different normalization techniques (Reinhard21, Vahadane22, and 
Macenko23). As observed in Table 2, the models implementing Reinhard normalization achieved better scores 
on average, relative to Vahadane and Macenko. Furthermore, the models achieved the best scores when the 

Table 1.   Datasets used.

Sample size H&E IF Annotations Used for

KC (2 months) 12 x x IF correlation
Area evaluations in pre-cancer histopathology

KC (5 months) 16 x x (n = 13) x (n = 3)

Training and validation
Dice evaluation (H&E based prediction vs annotations)
IF Spearman correlations
Area evaluations in pre-cancer histopathology
SSIM evaluation (H&E based prediction vs IF stain)
Synthetic stain generalizability

Induced pancreatitis 6 x New tissue generalizability

Normal tissue 3 x New tissue generalizability
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normalization process was applied on intermediate crops rather than across the whole image. This is because 
staining can be uneven within a single section, and normalizing crops helps to overcome these differences in 
intensity; whereas, normalizing across a whole section only helps overcome differences between images.

The models were trained using 80% of the training dataset, and 20% of that training dataset was held out for 
cross-validation to evaluate and tune the models’ performance with unbiased data. The unseen labeled test data, 
comprising 20% of the annotated dataset was used for final evaluation of the models. The best models yielded 
Dice Coefficients of ~ 0.79, ~ 0.70, and ~ 0.79 on the hold-out set for normal acinar tissue, ADM, and dysplastic 
features, respectively (Table 2). The segmentations match the expert annotations with a high degree of qualitative 
accuracy (Fig. 1a). The reason that the models’ Dice scores are lower than expected from successful models is 
because the models actually refined approximations in the experts’ annotations leading to discrepancies between 
prediction and annotation (Fig. 1b). Due to the limitations of the annotation method used, entire lesions (includ-
ing empty lumina, mixed morphologies (Supplemental Fig. 2E), and additional negative space) were labeled as 
one type of tissue (i.e., ADM or dysplasia). The models, however, accurately differentiate between the tissue types 
within a lesion and avoid labeling lumina. Despite these results being biologically correct, they are different than 
the experts’ manual annotations, resulting in a negative impact on the measured Dice Coefficients.

To test the accuracy of the trained models further, a comparison was made between quantified model predic-
tions and a second unseen test set of immunostained images that have been binarized. Quantification of the tissue 
area occupied by normal acinar cell and transformed pancreatic epithelial cells was achieved by immunostaining 
for amylase and pan-keratin, respectively, with DAPI staining of nuclei used to detect all cellular regions. The 
comparable calculation was then made using tool predictions on adjacent H&E stained tissue sections. For the 
tool prediction, ADM and dysplasia predictions were grouped into the panK stain because pan-keratin immu-
nostaining does not distinguish ADM and neoplastic tissues. Because stain area is specific and more biologically 
targeted than the rough annotations that incorporate empty lumens and mislabeled features, the models’ immu-
nostain Spearman correlation scores are much more reflective of their overall accuracy and sensitivity. When 
the prediction masks are compared qualitatively and quantitatively to the stained images, the models are able 
to predict the spatial localization of the immunostaining (Fig. 2a and Supplemental Fig. 3). Prediction accuracy 
was evaluated against biological truth using immunostaining and structural similarity (SSIM) (Supplemental 
Fig. 3), in addition to the area correlations (Fig. 2). SSIM was chosen as our metric to evaluate against because 
it would be more robust than Dice against differences between serial sections. Note that H&E and IF stained 
samples were acquired from adjacent serial sections.

There are minor differences between the immunostained and the predicted segmentations, which reflects 
slight tissue variations between the adjacent, but separate, sections used for H&E and IF staining. Quantitatively, 
three models also have high Spearman correlations (Fig. 2b) with the immunostained sections despite these sec-
tions (n = 25) being unseen during training, with Spearman correlation values of 0.97, 0.92, and 0.86 for AMY, 
panK, and DAPI stained other tissue, respectively. These correlations are very strong, despite the assumption 
that the serial section have true correlation values of close to 124. The good qualitative spatial localization and 
strong correlations validate that the models have been successfully trained and are capable of replicating known 
biological data.

Not only can these models replicate immunostaining data, they can extract more information than can be 
gained via immunostaining. In the second unseen testing dataset consisting of 25 IF/H&E image pairs, the pan-
keratin immunostain labels both metaplasia and dysplasia, restricting the disease features that can be segmented. 
The model predictions, however, can distinguish these features (Fig. 3a). This allows for deeper and more nuanced 
quantification of disease progression than can be achieved by immunostaining alone. Across a whole section 
of unseen test tissue, it can be observed that each predicted feature corresponds with the correct morphology.

Because this process of prediction is deterministic, it is also a faster and less biased than manually annotating 
histologic features, and less expensive and less error-prone than immunostaining (Fig. 4). Standard binarization 
of whole slide IF stains often leaves dimmer regions of the tissue with inaccurate predictions of stain positiv-
ity. This process of setting a threshold for stain binarization is also a subjective process that will have different 
results depending on the expert looking at the image, and performing regional thresholding throughout the 
image demands more time and introduces more thresholds that can be biased by the evaluator. By comparison, 
the trained models are deterministic and are able to overcome staining differences in a consistent manner. Fur-
thermore, the process of staining an IF section takes two days following standard protocol, with additional time 

Table 2.   Evaluation of model performances. Bold shows best performance result.

Normalization method Metric Normal acinar ADM Dysplasia

Reinhard normalization of intermediate crops
Dice 0.78691 0.70239 0.79403

BCE 0.16131 0.17112 0.22374

Reinhard normalization21
Dice 0.71750 0.60303 0.76210

BCE 0.20561 0.16635 0.21966

Vahadane normalization22
Dice 0.69311 0.58241 0.73684

BCE 0.20753 0.18726 0.24471

Macenko normalization23
Dice 0.70686 0.56660 0.77210

BCE 0.21784 0.18370 0.19711



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20904  | https://doi.org/10.1038/s41598-020-78061-3

www.nature.com/scientificreports/

spent image processing and binarizing the image afterwards. By comparison, the deep learning models take less 
than an hour depending on section size and graphics process unit (GPU) performance. Human annotation of the 
data is even slower, taking days to weeks for a single section and can have high variability between annotators. 
In addition, it can be difficult to get access to an expert with pathology certification necessary for differentiating 
the morphologies.

Using the tissue sections from the second unseen testing dataset isolated from P48+/Cre; LSL-KRASG12D (KC) 
mice at 2 and 5 months of age (n = 12, n = 13), the model was able to quantify tissue changes reflecting disease 
progression by predicting immunostain from H&E stain images (Fig. 3b,c). The observed age-dependent transi-
tions from normal acinar to ADM and dysplasia, and the increase in other tissue area (DAPI stained), is con-
sistent with biological expectations, illustrating the practical, objective use of this tool to quantitatively assess 
pre-cancerous disease development.

To test the models’ robustness and generalizability, we evaluated images from pancreata exhibiting his-
topathology associated with acute pancreatitis instead of histopathology induced uniquely by oncogenesis. 
Acute pancreatitis is characterized by prominent ADM and an inflammatory stromal response, but does not 

Figure 1.   Predictions compared to annotations. (a) Model Predictions closely align with the manually 
annotated ground truth regions that was used for training. (b) Close inspection of the ducts shows consistent 
discrepancies regarding the lumen and split histologic features within single ducts. Manual annotations were 
made by circling whole ducts, but the models’ predictions are actually more reflective of biology, wherein, stain 
does not mark for the lumen. The Predictions can also distinguish histologic features differences that the manual 
annotations combined.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20904  | https://doi.org/10.1038/s41598-020-78061-3

www.nature.com/scientificreports/

promote neoplastic lesions13. Acute pancreatitis was induced in mice by injection of the pro-inflammatory agent 
caerulein13, then tissue sections exhibiting acute pancreatitis or normal pancreas (n = 6, n = 3 respectively) were 
analyzed by the model (Fig. 5). This was performed on a third test dataset not seen by the models during training. 
Because neither annotations nor stains exist for this third dataset, model prediction localizations were evaluated 
qualitatively. Despite not being trained to analyze the particular disease states of pancreatitis, the models were 
able to accurately label pancreatitis features (i.e. ADM) with minimal error, regardless of whether the ADM was 
sporadic or clustered within the tissue (Fig. 5a). The model’s quantified tissue assessments show the significant 
presence of ADM by pixel area in the pancreatitis samples compared to normal tissues, which matches biological 
expectations. The near-absence of significant ADM and dysplasia in normal pancreas samples is also consistent 
with expectations, as is the near-absence of dysplasia in the pancreatitis samples (Fig. 5b). The small quantities 
of ADM and dysplasia predictions in the normal tissues are errors introduced primarily by pixel level noise and 
are insignificant compared to the size of the samples. Within this dataset we do not see large heterogeneity in 
the histologic features across disease states, and as a result the model performs consistently across all disease 
states shown.

Figure 2.   Comparing model predictions to stained tissue. (a) Stain masks and predicted segmentation masks 
are qualitatively highly similar. Differences can be seen in the high-level architecture of the tissues, which is 
indicative of the fact that the predictions were made from serial sections to the stains. There are also dim regions 
of the stained image that are lost from the global thresholding technique. These regions are successfully captured 
by the models. "Other" stain is the DAPI stain minus regions overlapping with AMY and panK. (b) Correlations 
were made by comparing the percent of area coverage for each stain mask. The high Spearman correlations 
illustrate the models’ ability to replicate straining using only H&E images. These regions are successfully 
captured by the models. "Other" stain is the DAPI stain minus regions overlapping with AMY and panK.
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Discussion
The computational tool developed here is intended to augment and accelerate disease research performed in 
animal models by allowing for simple stain prediction and histologic feature labeling from H&E images without 
the need for expensive and time-consuming immunostaining and biased image interpretation. It can be used 
to both mark the localization of tissue features and quantitatively to measure the extent of disease based on 
multiple histologic features (Supplemental Fig. 2). Such rapid and unbiased quantification of disease states in 
animal models is critical to enabling efficient and accurate disease assessments among large study cohorts, as 
well as provide a common method to compare finding across different studies. The ability of this tool to accu-
rately predict histologic features among 25 unseen pancreatic pre-cancer samples from multiple time points 
and 9 unseen samples comprising other disease states demonstrates the robustness of the models when analyz-
ing new datasets. The fact that the models generalize well, despite being trained with a relatively small dataset 
(Supplemental Fig. 4 and Table 3), illustrates the effectiveness of this workflow for tool development. Using this 
workflow (Supplemental Fig. 4) makes niche tool development plausible for small working groups that might 
have less access to the resources needed to produce large batches of annotated data. This pipeline is also faster, 
cheaper, and more generalizable than immunostaining, which can take days and be prone to investigator bias. 
This will allow working groups to digitally process many samples within hours instead of spending days immu-
nostaining individual samples.

There have been many efforts to recreate advanced staining images using more common input modalities15–18, 
and although they are useful for visualizing potential stain and intensity distributions, the algorithms are limited 
to predicting staining patterns of existing markers. If the user wants to analyze specific biological features for 

Figure 3.   Discerning features beyond immunostaining. (a) In test images the predicted histologic features 
visually align with what is expected from the H&E images. This shows the models’ utility in discerning novel 
information regarding ductal features that cannot be detected via staining. The models were used to predict 
the changes stain distributions (b) and cancer histologic features (c) in murine models with induced cancer. 
Predictions show significant changes in all stains and features between time points, and quantifies specific 
features that were not discernable in immunostaining alone. Mann–Whitney U test was used to test for 
statistical analyses.
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which there is no specific stain; however, simple stain translation will not suffice. The tool created here, how-
ever, can create objective binary interpretations of H&E images that segment histologic features of developing 
pancreatic cancer for which there is no reliable conventional immunostain. Although this methodology uses 
a conventional UNet architecture19, we present a novel and useful application of this technology for studies 
of pancreatic pre-cancers, classifying and distinguishing the histological features of ADM and PanIN lesions, 
which have seen few applications before and are important for quantifying pancreatic disease progression. These 
features, as previously described, are not easily distinguished by any other methods besides manual annotation. 
Previous studies have attempted to use computer-aided analyses for duct detection in pancreatic cancer25, and 
although the results are good, they are limited in their scope and do not cover a range of subtly different features 
or early disease hallmarks such as ADM and dysplasia. This illustrates the capacity for modern deep learning 
methods to provide a broader range of information and perform more complex tasks with comparable accuracy.

Although this tool enables easy, rapid, and accurate binary stain prediction and feature labeling in the early 
stage disease models employed here, there are several limitations to its predictive capacity. The most prominent 
source of error for the tool currently is the way it handles unlearned tissue types, such as lymph nodes, pancre-
atic islets, the desmoplastic stroma, and the occasional presence of neighboring gastrointestinal tissue. Lymph 
nodes and gastrointestinal tissue are highly irregular compared to the pancreatic features that were present in the 
training data, leading to completely arbitrary labeling of the unrecognized tissue areas. To overcome this, these 
regions can simply be cropped prior to analysis, as performed for our analyses. Islets comprise a small fraction of 
the pancreatic tissue area, and were labeled by the model as “other” (i.e. neither normal, ADM, or dysplasia), and 
therefore introduced only minor errors. In addition, the desmoplastic stroma is a prominent and histologically 
distinct feature of pancreatic disease that is currently unlearned and labeled as "other" tissue.

Greater limitations arise with the appearance of high-grade neoplasia and adenocarcinoma, both of which 
can adopt ductal or disorganized structures more closely resembling ADM. It should also be noted that the tool 
currently labels all non-neoplastic ductal structures as ADM, whether they originate from acinar cells or from 
ductal cells, and this contributes some error for the quantification ADM of acinar origin. At this stage of the tool’s 
development, no label for fully developed adenocarcinoma features were used, so lesions that have progressed 
beyond high grade dysplasia would likely be mislabeled as either ADM or “other”. With future work, it should 
be possible to train models to identify these additional tissue features and predict them accurately alongside 
the existing models. The final limitation of the tools is its failure to make accurate predictions in areas of tissue 

Figure 4.   The problems with manual thresholding. The quality of the full stained image varies region to region, 
as some regions have dimmer staining than others. Because of this uneven staining quality, a single global 
threshold will not accurately represent true positives and negatives because dimmer regions will be neglected. 
When regions are thresholded independently, the quality of the segmentation masks improves; however, even 
regional dim spots are still dropped from the segmentations. The developed models, however, are able to 
overcome this limitation because it utilizes H&E images and is able to analyze the histologic features beyond just 
the intensity of the stain. “Other” stain is the DAPI stain minus regions overlapping with AMY and panK.
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folding or out of focus imaging, but these are obstacles for any image-based measurement tool (including human 
annotators) and are avoidable with good technique.

Further work is in progress to reduce error and allow for a broader range of tissue interrogations, including 
training the tool to recognize a greater diversity of cell types and tissue features such as islets of Langerhans, neu-
ral tissue, desmoplastic stroma, adenocarcinoma, and peripheral elements such as lymph nodes or gastrointestinal 
tissue. The model’s quantitative capabilities can also be applied to other disease states that share similar histologic 
features, such as pancreatitis. Continued development can yield a single comprehensive tool for predicting and 
labeling all histologic features in pancreatic tissue without the need for complex staining.

Despite the current limitations discussed above, the tool developed here demonstrates clear advantages and 
superiority to immunostaining for disease quantification in pancreatic pre-cancers. By relying on H&E staining 
alone, the data acquisition is not only faster and cheaper, but less vulnerable to variable and uneven staining 
across tissue sections. This consistency and stability of H&E staining eliminates a primary source of error and 
bias in feature quantification because of manual adjustments needed to threshold immunostained tissues; tissue 
immunostaining quality varies significantly within single tissue sections and among the many tissues acquired 

Figure 5.   Predicting histologic features in pancreatitis. The model predicted histologic features match what in 
expected in both normal and pancreatitis samples. (a) Predicted images show that tissue is dominated by normal 
acinar with pockets of clear ADM localization. In normal tissue ADM and dysplasia are sparse predictions 
comprised primarily of arbitrary single pixels, and in pancreatitis this is true for just dysplasia. (b) In normal 
tissues, ADM and dysplasia predictions are negligible, and in pancreatitis there is a significant spike in ADM 
coverage with negligible dysplasia. Mann–Whitney U test was used to test for statistical analyses. Erroneous 
predictions of ADM and dysplasia in these samples are primarily driven by noise.

Table 3.   Number of training annotations.

Normal acinar ADM Dysplasia

Number of annotations

Image 1 119 1722 1659

Image 2 1342 597 70

Image 3 463 263 3

Total # 1924 2582 1732

Annotation area (mm2)

Image 1 0.05 0.59 1.22

Image 2 0.70 0.17 0.12

Image 3 0.10 0.12 0.02

Total area 0.85 0.88 1.36
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and stained from animal cohorts, typically stained on different days, months, and even years. This tool’s exploi-
tation of H&E staining not only enables easy quantitative comparisons between tissues collected and stained 
across broad time periods, but also enables such comparisons among tissues collected and stained in different 
laboratories around the world. This unifying aspect will improve collaboration and cross-validation between 
experiments conducted by different groups.

Being computer driven, the tool easily quantifies whole pancreatic tissue sections, allowing greater volumes 
of data acquisitions and avoiding the selection of “representative” regions for quantification, which introduces 
further bias. Furthermore, as an automated, machine-driven measurement tool, potential investigator bias is 
excluded from the data quantification pipeline. Finally, and importantly, tool has been demonstrated to identify 
and segregate key histologic features which immunostaining methods cannot reliably distinguish (i.e. ADM 
and dysplasias), significantly extending the power of available tissue analytics. This genre of tool will certainly 
enhance, and conceivably fully replace immunostaining in many animal studies.

Methods
Dataset.  Murine pancreatic tissues displaying a range of pre-cancerous lesions were isolated from the 
P48+/Cre; LSL-KRASG12D mice (KC) mouse pancreatic cancer model. This a widely used genetically engineered 
mouse model of oncogenic Kras-driven pancreatic adenocarcinoma that closely models the evolution of the 
human disease, displaying the early hallmarks of ADM, Dysplasia, and desmoplasia, and eventually invasive 
adenocarcinoma after more than one year of age8. Tissue sections from 3 whole pancreases were acquired from 
KC mice at 5 months for models training. This labeled dataset was split into training (80%), validation (20% 
held out from training), and a first testing dataset (20%). Whole pancreas sections from an additional 25 mice 
were collected at 2 and 5 months of age (n = 12, n = 13) for IF Spearman correlation testing on a second unseen 
dataset. Collected pancreases displayed abundant pre-cancerous lesions but were preceding the development of 
adenocarcinoma. Acute pancreatitis (induced in mice by injection of the pro-inflammatory agent) and normal 
pancreas sections (n = 6, n = 3) were also collected for generalizability testing on a third unseen dataset. All pan-
creas tissue sections were stained with H&E and the second testing set was also stained by immunofluorescence 
for amylase, labeling normal acini, pan-keratin, labeling primarily the oncogenic Kras-transformed epithelial 
population, and DAPI, labeling all nuclei. These stains were chosen as they are known and well-established 
markers in the pancreas. Amylase (AMY) is a secretory product of acinar cells, cytokeratins (panK) are well 
characterized pancreatic ductal lineage markers26, and DAPI stains cell nuclei which is used as whole tissue area 
marker. We use AMY, panK and DAPI combination to identify acinar cells from ADM and PanIN tissues. Aci-
nar cells are positive on AMY but negative for panK; ADM tissues are negative for AMY but positive for panK; 
PanIN tissues are negative for AMY but positive for panK. Normal acini, ADM, and PanINs have nuclei and can 
be stained with DAPI.

H&E staining and immunofluorescence.  The pancreatic tissues were paraffin-embedded, sectioned 
at 5 μm thickness, and H&E stained by standard protocols at the OHSU Histopathology Core. For immuno-
fluorescence staining of amylase and pan-keratin, antigen retrieval was performed using Dako Target Retrieval 
Solution at pH 9 (Aligent: S236784-2) according to manufacturer’s instructions. Specimens were blocked with 
blocking buffer (1X PBS/5% normal serum/0.3% Triton X-100) for 1 h at room temperature. The anti-amylase 
(Santa Cruz: sc-12821) and anti-pan-Cytokeratin (Santa Cruz: sc-15367) primary antibodies were incubated 
overnight at 4 °C, then washed and incubated with secondary antibodies (Invitrogen: A10042 and A32814) for 
1.5 h at room temperature. Slides were covered by coverslips with DAPI’s Prolong gold anti-fading agent (Invit-
rogen: P36931). Fluorescent images of amylase (A), pan-cytokeratin (B), and DAPI (C) staining were acquired 
using a Carl Zeiss Axioscan Z1 slide scanner at a resolution of 0.2 microns/pixel and converted to BigTiff format.

Immunofluorescence images were quantified using ImageJ software. The threshold tool was applied manually 
to select the amylase-, pan-cytokeratin, or DAPI-positive tissue regions by trained experts. Lymph nodes were 
manually cropped and excluded.

Despite all data coming from internal sources, steps were taken to better ensure and test the generalizability 
of models. Each sample of H&E and IF were collected and stained on different days over the course of several 
month, and samples were taken at different stages of disease progression. Although H&E samples were stained 
by the same Histopathology Core, it is likely that staining was done by different operators and used different 
machines. Following model development, generalizability and robustness to H&E staining differences were tested 
using synthetically altered H&E stains to show model consistency (Supplemental Fig. 5). Synthetic HE stains 
were created by randomly shifting the R, G, and B channels by up to ± 25% and applying Gaussian noise. Dice 
scores were calculated against the unperturbed model predictions. The high mean dice scores support that the 
model is self-consistent across stains.

Expert annotation.  Annotations for pancreatic tissue features were constructed in Cytomine20 by three 
trained experts, and affirmed by a pathologist. These annotations came from 5 regions across 3 images (Supple-
mental Fig. 4) and included at total of 1924 normal acinar, 2582 ADMs, and 1732 Dysplasia (Table 3).

Training image preparation.  In order to make the images more amicable to training for the Deep Learn-
ing algorithms, they were trained with intensity normalization to make them appear more consistent with each 
other. To overcome differential staining across an H&E image, various normalization approaches were applied 
on intermediate sized (5000 × 5000 pixel) overlapping crops prior to tiling (512 × 512 pixel). Background intensi-
ties were also ignored from the normalization process to reduce drastic changes on edge regions, isolating only 
the areas of interest for normalization. Background area was selected by thresholding pixels where all RGB val-
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ues were greater than 200. The best normalization method was shown to be Reinhard normalization21 (Table 2), 
so it is used in the implementation of the models.

UNet training.  A separate UNet model was trained for each annotated ductal tissue type (normal acinar, 
ADM, and Dysplasia)19. To make each model specific to its respective tissue type, each model’s training set was 
made to incorporate small portions of the other tissue types as negative controls. The training sets were made 
using 80% of the total relevant tissue tiles and ~ 5–10% of the total of other tissue tiles. Tiles were augmented 
during training with flips, rotations, and shears to overcome the small dataset size. Training for all three mod-
els lasted for 50 epochs, used a batch size of 32 tiles and had a learning rate of 7e-4, implementing the Adam 
optimizer. Binary cross entropy (1) was used as the loss function during training. Dice Coefficient (2) was used 
following training to select the best models.

Model integration.  As a standard, models produced through Deep Learning packages will call anything 
with a prediction value ≥ 0.5 as positive and anything < 0.5 as negative. This threshold, however, might not be the 
ideal and can be subject to optimization and tuning. Within the training and validation datasets, it was noticed 
that the standard thresholds led to pixel level false positive noise and predictions that bleed into surrounding 
ductal lumen. To make the models more accurate, thresholds were chosen based on the Receiver Operating 
Characteristic (ROC) curves (Supplemental Fig. 6)—sensitivity and specificity, and were manually adjusted to 
reduce the observed errors qualitatively. This step would help to ensure that the models would better general-
ize to the testing dataset with minimal noise, taking only predictions the model was most confident in. Within 
the testing a validation set, the following thresholds were chosen for each model respectively, and the chosen 
thresholds were carried forward to be used in subsequent testing: Normal Acinar Threshold = 0.3, ADM Thresh-
old = 0.5, and Dysplasia Threshold = 0.7.

After manual parameter tuning, the determined thresholds remain within a reasonable range, as observed 
by the ROC curves. Once each model made its prediction for a given tissue, the background white pixels were 
again removed from prediction by ignoring all pixels where all RGB values were greater than 200. Total tissue 
(DAPI positive) region was also calculated by finding all pixels where RGB values were lower than 200. To com-
bine all four tissue masks, normal acinar predictions override metaplasia and dysplasia predictions; metaplasia 
predictions override dysplasia predictions; normal acinar, metaplasia, and dysplasia predictions all override 
DAPI predictions.

Validation and testing.  Because no foreign tissue was used for negative controls during training (primar-
ily lymph nodes and GI tissue), regions of testing images containing these tissues had to be cropped out prior to 
testing and analysis. Testing and analysis were performed through a similar pipeline as training, incorporating 
intermediate crop normalization and tile level prediction. These overlapping tiles were stitched back into a full 
image and an average was taken to get pixel level predictions for each model. In validation, models were com-
pared to annotations from the held-out dataset of labeled images. In testing, model predictions were compared 
to three unseen datasets: the first comprised of labeled tiles, the second comprised of immunostained serial 
sections that were thresholded by an expert, and a third comprised of normal and pancreatitis whole tissue 
sections. To compare with immunostaining, ADM and dysplasia predictions were combined to make a general 
pan-keratin prediction mask. Predictions were then paired with their respective serial section and correlated to 
determine model accuracy. Correlation was chosen as the metric for this test over Dice or sensitivity because 
serial sections have a 5 µm offset which causes the H&E used for predictions and the IF used for ground truth to 
be spatially unaligned. Although correlation of abundances remains high between serial section24, the errors in 
alignment have strong negative biases on metrics like Dice even after attempts at registration. Using IF as ground 
truth also adds biological credibility to the metrics while annotated ground truths were found to be prone to 
annotator error.

Like what is done with other virtual staining method that have been deployed on tissue sections27–29, we also 
evaluated our predictions against IF staining was also done with structural similarity30:

where x and y are input images, μx and μy are the mean intensities, σx
2 and σy

2 are the variances, σxy is the covari-
ance, k1 and k2 are constants, and L is the dynamic range. SSIM was calculated using the scikit-image library 
with all default parameters31: sliding window size = 7 pixels; k1 = 0.01; k2 = 0.03; and data range estimated from 
images. The SSIM between two images is calculated over pixel neighborhoods in the images and provides a more 
coherent measure of image similarity than pixel-wise measures. We chose SSIM as the metric for comparison 
because it would be more robust than Dice against differences between the serial H&E and IF sections, and 
small Gaussian blurs were applied to account for tissue differences at the pixel level. The range of SSIM values 
extends from − 1 to + 1, and only equals 1 if the two images are identical. Values close to one are indicative of 
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good reconstruction and strong model performance. Four ROIs from two whole slide test sections that had high 
correspondence between H&E and IF were used for analysis.

The amylase, pan-keratin and DAPI area were measured in pixels, and the percentage of positive areas were 
calculated as a percent of the total all measured cellular regions.

Statistical analyses.  Since datasets were continuous, independent, and had no tied values, after checking 
the assumption and conditions were met, and since the datasets were small, non-Gaussian, and contained outli-
ers, the non-parametric Mann–Whitney U test was used to access statistical differences in means. Since datasets 
were small and had outliers, the correlation tests for all models were conducted using Spearman correlation.

Animal models.  This work was performed in accordance with Institutional Animal Use and Care Commit-
tee (IACUC) guidelines of the Oregon Health and Science University (OHSU). All work involving mice received 
approval by the IACUC at OHSU. The KC mice were all backcrossed at least 5 generations into the C57Bl6/J 
background. Acute pancreatitis was induced in 6-week old C57Bl6/J mice by intraperitoneal injection of 50 µg 
caerulein (Sigma:C9026) per kg body weight, with a total of 7 consecutive treatments at 1hour intervals. Pancre-
atic tissues were harvested 3 days following caerulein treatment. Caerulein was dissolved in PBS at a concentra-
tion of 10 µg/ml.

Code availability
The tool’s code for making predictions is provided on GitHub at the following link: https​://githu​b.com/Gelat​
inFro​gs/MiceP​an-Segme​ntati​on. Images needed to run the tool can be found in the following google drive: https​
://drive​.googl​e.com/drive​/folde​rs/1ipgk​jPawk​uoLqt​LENjH​vSVC7​hcZKW​bRJ?usp=shari​ng.
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