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SUMMARY

Gene expression is thought to be affected not only by the concentration of transcription factors 

(TFs) but also the dynamics of their nuclear translocation. Testing this hypothesis requires direct 

control of TF dynamics. Here, we engineer CLASP, an optogenetic tool for rapid and tunable 
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translocation of a TF of interest. Using CLASP fused to Crz1, we observe that, for the same 

integrated concentration of nuclear TF over time, changing input dynamics changes target gene 

expression: pulsatile inputs yield higher expression than continuous inputs, or vice versa, 

depending on the target gene. Computational modeling reveals that a dose-response saturating at 

low TF input can yield higher gene expression for pulsatile versus continuous input, and that 

multi-state promoter activation can yield the opposite behavior. Our integrated tool development 

and modeling approach characterize promoter responses to Crz1 nuclear translocation dynamics, 

extracting quantitative features that may help explain the differential expression of target genes.

Graphical Abstract

In Brief

CLASP is a modular optogenetic strategy to control the nuclear localization of transcription 

factors (TFs) and elicit gene expression from their cognate promoters. CLASP control of Crz1 

nuclear localization, coupled with computational modeling, revealed how promoters can 

differentially decode dynamic transcription factor signals. The integrated strategy of CLASP 

development and modeling presents a generalized approach to causally investigate the 

transcriptional consequences of dynamic TF nuclear shuttling.
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INTRODUCTION

Transcription factors (TFs) are key mediators in the transmission of information from the 

internal and external environment of the cell to its genome. Understanding how TFs encode 

information about the environment in order to coordinate transcriptional programs remains 

one of the most pressing problems in molecular and systems biology. Many studies have 

explored how modulation of TF concentration, TF post-translational modifications, and 

combinatorial TF control can yield differential gene regulation (Czyz et al., 1993; Sadeh et 

al., 2011; Springer et al., 2003), therefore explaining many important aspects of TF function 

and their information encoding capacity. These mechanisms, however, may not fully account 

for the complexity of signal multiplexing that is carried out by TFs. As a result, it has been 

proposed that TFs might also encode information in their spatiotemporal dynamics.

A number of studies have attempted to elucidate this TF dynamic encoding hypothesis by 

eliciting different TF dynamic patterns using various environmental inputs and assessing the 

consequences (Batchelor et al., 2011; Covert et al., 2005; Gotoh et al., 1990; Hoffmann et 

al., 2002; Nelson et al., 2004; Nguyen et al., 1993; Purvis and Lahav, 2013; Purvis et al., 

2012; Tay et al., 2010; Traverse et al., 1992; Werner et al., 2008; Lane et al, 2017; Yissachar 

et al., 2013). For example, it was shown that p53 exhibits fixed concentration pulses in 

response to gamma radiation, but implements only one amplitude- and duration-dependent 

continuous pulse in response to UV (Batchelor et al., 2011). These two pulsing regimes have 

different physiological outcomes, with the former leading to cell cycle arrest and the latter 

leading to cell death (Purvis et al., 2012). Other studies programmed different TF nuclear 

translocation patterns by gaining control of a signaling node upstream of the TF. A 

prominent example of this approach is the modulation of Msn2 dynamics using an analog-

sensitive protein kinase A (PKA) allele (Hansen and O’Shea, 2013, 2015a, 2015b; Hao and 

O’Shea, 2011; Hao et al., 2013). With this method, it was shown that genes in the Msn2 

regulon can be differentially modulated by the amplitude, duration, and frequency of Msn2 

nuclear translocation pulses.

In the budding yeast Saccharomyces cerevisiae, there are approximately 200 known TFs, 

two-thirds of which are constitutively localized to the nucleus; the remaining one-third are 

located in the cytoplasm during exponential growth in complete media (Chong et al., 2015). 

At least nine of these basally cytoplasmic TFs transiently localize into the nucleus in 

response to various stress conditions (Dalal et al., 2014). Furthermore, different 

environmental conditions elicit a range of pulsing characteristics for these TFs that differ in 

their duration, amplitude, and frequency (Dalal et al., 2014 and Figure S1), suggesting that 

reversible TF nuclear localization may encode regulatory information. This information may 

then be decoded by downstream target genes in order to produce an appropriate response 

(Granados et al., 2018).

Control of TF localization through modulation of upstream regulators with small molecules 

or chemicals has been an essential method to put forward such a hypothesis of TF dynamic 

encoding (AkhavanAghdam et al., 2016; Cai et al., 2008; Hansen and O’Shea, 2013, 2015a, 

2015b; Hao and O’Shea, 2011; Lin and Doering, 2016; Purvis et al., 2012; Sen et al, 2020). 

However, this method produces pleiotropic effects that can be hard to untangle. For example, 
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PKA controls many transcriptional regulators in addition to Msn2. As a result, modulating 

its activity with a small molecule may yield gene-expression changes that are not solely 

caused by Msn2 translocation dynamics, but are instead the result of combinatorial gene 

regulation by other PKA-responsive TFs such as Msn4 (AkhavanAghdam et al., 2016; 

Garmendia-Torres et al., 2007) and Dot6 (Pincus et al., 2014).

Therefore, to causally and quantitatively probe the relationship between TF nuclear 

localization dynamics and transcriptional activity, a method by which TFs can be 

specifically, quickly, and reversibly localized to the nucleus is needed. Specificity is 

necessary to allow direct regulation of TF nuclear localization without pleiotropic effects, 

while speed and reversibility are necessary to recapitulate the minutes-level resolution with 

which TFs translocate into and out of the nucleus in response to environmental inputs. 

Ideally, this method would also work modularly with many TF cargos, including TFs that 

are basally nuclear. Optogenetic strategies are ideally suited for this purpose.

There are many general optogenetic tools to control the activity of molecules (Shimizu-Sato 

et al., 2002; Strickland et al., 2012; Toettcher et al., 2011,2013), as well as published 

optogenetic strategies to translocate protein cargos to the nucleus (Niopek et al., 2014; 

Redchuk et al., 2017; Yumerefendi et al., 2015; Gautier et al., 2010). A number of these 

tools utilized LOV2, a light-responsive protein often isolated from A. sativa, to uncage a 

nuclear localization sequence (NLS) in response to blue light and translocate the optogenetic 

molecule to the nucleus along with any appended protein cargo. Light-activated nuclear 

shuttle (LANS) is an example of this strategy (Yumerefendi et al., 2015) (Figure 1A). The 

architecture of this class of optogenetic tools may cause leaky nuclear localization based on 

the protein cargo. An example is the TF Msn2, which when fused to LANS, in many cells 

exhibited constitutive nuclear localization in the absence of light stimulation (Figure S2A). 

Moreover, tools such as LANS cannot be used to regulate the localization of basally nuclear 

TFs.

A different optogenetic tool, LOVTRAP, a LOV2-based tool for protein sequestration, could 

be used for rapid translocation of cargo with less leaky basal localization. LOVTRAP is 

composed of a LOV2 fused to the mitochondria and Zdk1, a small peptide that is fused to 

the protein cargo. The interaction of LOV2 and Zdk1 in the dark sequesters the cargo to the 

surface of the mitochondria (Wang et al., 2016) (Figure 1A). However, LOVTRAP alone 

does not contain targeting information, and hence cannot direct the cargo to the nucleus on 

demand. Therefore, to enable both robust and targeted optogenetic control of many different 

cargos, we sought to use LOVTRAP in concert with LANS. The idea of combining 

optogenetic sequestration and nuclear localization was previously investigated (Redchuk et 

al., 2017; Yumerefendi et al., 2018). However, the resulting tools either required complex 

dual-color stimulation (Redchuk et al., 2017), thereby limiting the number of fluorescent 

proteins that could be used in a cell, or did not demonstrate modularity for different cargos 

(Yumerefendi et al., 2018). These tools also lacked optimization for use in yeast.

Here, we present CLASP, an optimized optogenetic tool that can exert precise, modular, and 

reversible control of TF localization. CLASP uses two LOV2 light-responsive domains 

derived from Avena sativa to sequester a cargo at the plasma membrane in the dark and 
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target it to the nucleus in response to blue light. We demonstrate how CLASP can be used as 

a general strategy to control many TF cargos without any further optimization.

With CLASP and the use of computational modeling, we investigate the consequences of TF 

translocation dynamics and delineate the quantitative principles by which these dynamics 

are interpreted by different promoters. This paper, therefore, contributes an integrated 

approach through which optogenetic technology development and refinement is coupled 

tightly to computational modeling in order to answer fundamental questions about promoter 

principles that allow decoding of dynamic TF inputs. Due to the modularity of CLASP, our 

integrated approach provides a general strategy for investigating these principles in many 

systems.

RESULTS

Construction and Optimization of CLASP, a Dual-LOV2 Optogenetic Strategy for Control of 
Nuclear Shuttling

To construct a modular and specific tool for yeast protein nuclear translocation, we first 

tackled optimization of the published LANS and LOVTRAP constructs. Fluorescently 

tagged (mCherry) LANS (Yumerefendi et al., 2015) displayed only a moderate increase 

(3.4%) in nuclear over cytoplasmic enrichment in response to blue light (Figure 1B, upper 

left panel). This increase was much weaker than that seen for TFs in response to stress 

inputs (Figure S1B, 20%–50% increase). Additionally, the published LOVTRAP tool used a 

TOM20 mitochondrial targeting tag that caused a strong growth defect in yeast at high 

expression levels (Figure 1B, lower panel). LOVTRAP sequestration had previously been 

shown to perform best when the mitochondria-bound LOV2 trap was expressed in excess of 

the Zdk1; as a result, these high expression levels were necessary for trapping many protein 

cargos and made the growth defect a concrete concern (Wang et al., 2016).

To improve LANS localization properties, we replaced the published LANS NLS with a 

small library of yeast NLS peptides (Kosugi et al., 2009; Table S1). We then screened blue 

light-induced nuclear localization of mCherry-LANS constructs that had any one of these 

different NLS sequences. We identified a number of NLS sequences that showed an 

improvement in nuclear/cytoplasmic enrichment in response to blue light (Figure S2B), 

including an NLS that increased the fold change by eight-fold. We chose this NLS sequence 

to move forward as a yeast enhanced LANS (yeLANS) (Figure 1B). Next, to rectify the 

growth defect associated with LOVTRAP sequestration to the mitochondria, we swapped the 

mitochondrial TOM20 tag with a plasma membrane Hs-RGS2 tag (Heximer et al., 2001) to 

create pm-LOVTRAP. This modification rescued the growth defect of LOVTRAP even at 

high expression levels (Figure S2C).

Finally, we combined yeLANS and pm-LOVTRAP to form CLASP (controllable light-

activated shuttling and plasma membrane sequestration), a construct composed of two 

AsLOV2 domains. The first AsLOV2 domain is fused to the plasma membrane and 

sequesters a Zdk1 fused to the N terminus of the cargo (for example, a TF). The second 

AsLOV2 domain is fused to the C terminus of the cargo. This AsLOV2 domain is preceded 

by a nuclear export sequence (NES) and has a nuclear localization sequence (NLS) 
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embedded in the Jα helix. Blue light causes a conformational change in both AsLOV2 

domains, yielding the simultaneous unlocking of cargo and its targeting to the nucleus 

(Figure 1A). Strains harboring CLASP did not experience any measurable growth defect 

(Figure S2D).

We first tested CLASP with a red fluorescent protein (mScarlet) as a cargo. Confocal 

microscopy showed that mScarlet-CLASP was successfully sequestered at the membrane in 

the dark and translocates to the nucleus in response to blue light. Furthermore, widefield 

microscopy showed that nuclear localization could be maintained stably for at least 80 min 

(Figure 1C). Varying the duration of the light input demonstrated that CLASP could also 

track shorter light inputs (Figures S2E-S2G). On average, mScarlet-CLASP nuclear 

localization extended 4 min longer than the duration of the input light pulse, illustrating its 

rapid shut-off time (Figures 1D and S2E). The maximum nuclear/cytoplasmic enrichment 

achieved by mScarlet-CLASP was also graded as a function of light amplitude; when 

subjected to one min pulses of increasing amplitude (64–1,024 a.u.), enrichment increased 

commensurately for a wide range and saturated after 256 a.u. of light (Figure 1D; Table S4).

Finally, to test the ability of CLASP to respond to repeated light pulses and probe its 

dependence on their period, we subjected the cells to 1 min pulses of blue light repeated 

every 2–9 min (Figure 1E, left 3 panels to show 1 min pulses every 9, 5, or 2 min). These 

experiments revealed that mScarlet-CLASP followed these pulses faithfully until the pulses 

became too rapid, that is when the next light pulse occurred during the time required for 

nuclear exit (~4 min). This effect occurred when pulses were repeated every 2 min, at which 

point nuclear localization became almost continuous at a high level. The mean peak-to-

trough difference in the amplitude of nuclear localization of single-cell traces for different 

periodic light inputs showed a clear dependence on the period of the light pulse (Figure 1E).

Overall, our data indicate that mScarlet-CLASP could be rapidly, reversibly, and repeatedly 

localized to the nucleus as frequently as every 5 min and that the duration and the magnitude 

of this translocation could be robustly controlled.

CLASP Achieves Precise, Modular Control of TF Nuclear Translocation and Activation of 
Target Genes

The usefulness of CLASP depends on its ability to successfully control the translocation of 

TF cargos while maintaining their function. Our next step was, therefore, to test the ability 

of CLASP to quickly and reversibly control the translocation of three basally cytoplasmic 

TFs to the nucleus. We chose a synthetic transcription factor, SynTF, constructed from Cys2-

His2 zinc finger domains and a VP16 activation domain (Khalil et al., 2012), as well as 

Msn2, the principal TF in the environmental stress response (Gasch et al., 2000), and Pho4, 

the principal TF in the phosphate starvation response (Vardi et al., 2014). Both Msn2 and 

Pho4 have been known to translocate to the nucleus in response to stress (Dalal et al., 2014; 

Vardi et al., 2014). The three-TF cargos were also tagged with a C-terminal RFP (mScarlet) 

for visualization.

For all three TFs, TF-CLASP achieved its maximal nuclear localization in response to light 

within 1 min of blue light exposure. Like the mScarlet cargo, the TF cargos reversibly 
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translocated to the nucleus as frequently as every 5 min when induced with a 1 min pulse of 

light. Furthermore, a sustained light input produced continuous nuclear localization of the 

TFs, indicating that CLASP was capable of maintaining robust nuclear localization of 

associated TF cargos for an extended period of time (Figure 2A). The maximum nuclear/

cytoplasmic enrichment fold change achieved with CLASP for Msn2 as cargo was similar to 

that of Msn2 with a strong osmotic shock using 0.95 M Sorbitol (Figure S1B; Hoffmann et 

al., 2002).

To test whether nuclear localization of the TFs led to concomitant gene expression, we built 

yeast strains in which YFP was expressed from promoters that were responsive to SynTF 

(pSYNTF-YFP), Msn2 (pHSP12-YFP), and Pho4 (pPHO84-YFP). We exposed these strains 

to fixed-amplitude light inputs (Figure S3A) of increasing duration (0.5–2 h) and measured 

YFP fluorescence via flow cytometry. For all three TFs, increasing the duration of the light 

input led to increased downstream reporter gene expression, illustrating that the TF was still 

functional despite its fusion to CLASP. Notably, SynTF-CLASP yielded more than 20-fold 

activation of pSYNTF-YFP with only 2 h of light activation (Figure 2B). Gene expression in 

the dark downstream of the three TF-CLASP constructs was similar to basal expression and 

was also commensurate after light induction to gene expression generated by a constitutively 

nuclear TF (Figures S3B-S3D; STAR Methods “Measuring the basal and constitutively 

nuclear gene expression of TFs”).

Next, we explored whether CLASP could control the localization of TFs such as Gal4, 

which was basally nuclear. Gal4-CLASP was successfully sequestered to the plasma 

membrane in the dark and reversibly translocated to the nucleus in response to light. Nuclear 

translocation of Gal4-CLASP also activated expression from pGAL1, a Gal4-responsive 

promoter (Figures S3E-S3G), indicating that CLASP was able to control TFs irrespective of 

their endogenous nuclear localization.

Finally, we sought to demonstrate that different TF dynamic translocation patterns generated 

with CLASP could yield different gene-expression outputs. Several TFs, such as Pho4 

following phosphate starvation, translocate into the nucleus in response to a stress input and 

reside there continuously until the response is completed (Vardi et al., 2014). Others, 

including Msn2 following a 0.4% glucose input, have been known to translocate into the 

nucleus with episodic and repeated pulses in response to an activating input (Dalal et al., 

2014). Moreover, Msn2 has also been known to translocate with sustained pulses in response 

to osmotic shock (Figure S1B). As a result, we sought to explore the gene-expression 

consequences of pulsing relative to continuous localization of the three CLASP-fused TFs 

(SynTF, Msn2, and Pho4). We delivered two light inputs that had different dynamic patterns 

but the same cumulative light duration of 40 min. In the first case, the light was switched 

ON for 40 min, and in the second, the light was given in 20 episodic pulses (2 min ON/10 

min OFF) (Figure 2C). Delivery of the same cumulative light input and measurement at the 

end of the time course were necessary controls to compare the response efficiency of the 

promoters for pulsed input relative to continuous inputs. YFP fluorescence was measured for 

both inputs after 5 h using flow cytometry. These data showed unambiguously that 

continuous nuclear input of SynTF-CLASP, Msn2-CLASP, and Pho4-CLASP produced 

higher gene expression than pulsed inputs. This directly demonstrates that TF nuclear 
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translocation dynamics could affect downstream reporter gene expression, an idea that we 

wanted to explore in more depth.

CLASP Control of the Crz1 TF Reveals that Its Target Genes Differ in Their Response 
Efficiency to Short Pulses

To further explore the modes of decoding of TF dynamics by promoters in a biologically 

meaningful setting, we chose to focus on Crz1, the main TF in the calcineurin-Crz1 

signaling pathway that responds to calcium stress. Crz1 has been shown to exhibit two 

modes of pulsatile nuclear translocation in response to calcium chloride (CaCl2) stress—a 

single long initial pulse (40–60 min) and subsequent episodic repeated pulsing (1–4 min) 

(Figure S4A). We reasoned that continuous nuclear localization and pulsing of Crz1 could 

be interpreted differently by different target genes, a behavior that could be revealed and 

studied by controlling its localization using CLASP.

Crz1 has been shown to undergo phosphorylation on multiple residues to activate gene 

expression in calcium stress (Figure S4B, Stathopoulos-Gerontides et al., 1999). Therefore, 

to survey the response of Crz1 target genes to dynamic inputs using CLASP, we needed to 

adopt a variant of Crz1 that bypassed this regulation, an endeavor that could be necessary for 

studying the effects of many TFs with CLASP. We therefore, built a strain expressing Crz1*, 

an alanine mutant with 19 S/T to A substitutions of Crz1, that was basally nuclear (data not 

shown) and circumvented the post-translational modification requirements for nuclear 

localization (Figure S4B, Stathopoulos-Gerontides et al., 1999). To verify that Crz1* 

preserved the transcriptional profile of wild type Crz1, we carried out mRNA sequencing of 

cell populations in which the wild type allele of Crz1 was knocked out and Crz1* was 

expressed from a constitutive pADH1 promoter. We compared the up-regulated genes of the 

Crz1* strain (where Crz1* is basally nuclear) with genes upregulated by Crz1-yeLANS 

under CaCl2 stress. We found similar gene-expression patterns between these two gene sets 

as shown in the heatmap of genes that cluster together (Figure S4C). By probing individual 

Crz1 target genes with fluorescent reporters, we also found that light-induced Crz1*-

CLASP, but not light-induced Crz1-CLASP, was able to elicit appreciable gene expression 

(Figure S4D). For example, Crz1*-CLASP driving pPUN1-YFP, a canonical Crz1-

responsive promoter, achieved similar gene-expression fold change as pPUN1-YFP in 

calcium stress (fold change of 1.8 versus 1.7) (Figure S4E). Importantly, Crz1*-CLASP did 

not cause increased gene expression in the absence of light, indicating that CLASP was able 

to successfully sequester the nuclearly localized Crz1* outside of the nucleus in the dark 

(Figure S4F).

We next identified six Crz1 gene targets (Yps1, Ena1, Mep1, Put1, Cmk2, and Gyp7) for 

follow up studies. We used the promoters of these genes, which have also been used in 

previous studies (Stathopoulos and Cyert, 1997; Yoshimoto et al., 2002), to build YFP-

expressing promoter fusions, each in a strain with Crz1*-CLASP tagged with mCherry for 

visualization (Figure 3A). We subjected these cells to two distinct types of inputs that mimic 

natural Crz1 translocation: 2 min short repeated pulses with different periods or one 

continuous pulse of varying duration (Figure 3A). We confirmed that extended light 

exposure did not cause a growth defect in the Crz1 overexpression strain (Figure S4G). We 
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then measured the nuclear fluorescence of mCherry-tagged Crz1*-CLASP continuously at 

30-s intervals. We also measured gene expression from all six YFP promoter fusions at 5 h 

for all inputs given (Figure 3A). Every input (pulsatile or continuous) has a given nuclear 

fluorescence AUC, which we calculated as the integral of the measured mCherry-tagged 

Crz1*-CLASP nuclear fluorescence time traces and is a proxy for nuclear concentration. A 

given nuclear fluorescence AUC was associated with a commensurate gene expression value 

(measured at 5 h), and these values were plotted against each other for the two input regimes 

for each of the six promoters. The resulting plot for all nuclear fluorescence AUC values are 

referred to as the gene output-nuclear fluorescence plot (output-fluorescence plot for short). 

Exploration of gene expression as a function of nuclear fluorescence AUC allowed a 

comparison on an equal footing of the overall integrated responses to pulsed and continuous 

inputs.

The Crz1-responsive promoters showed a spectrum of qualitative and quantitative behaviors 

in the output-fluorescence plots (Figures 3A-3C and S4H-S4J). For pGYP7-YFP, like the 

promoters shown in Figure 2, a pulsed input generated lower gene-expression output than a 

continuous input of the same nuclear fluorescence AUC for all values tested (Figure 3B). 

For pCMK2-YFP, pulsed, and continuous inputs generated almost identical gene-expression 

output. However, for pYPS1-YFP, pulsed inputs produced higher gene-expression output at 

all Crz1*-CLASP nuclear fluorescence AUC values tested. These phenotypes were 

qualitatively reproducible despite the slight quantitative day to day variability in gene 

expression between experiments (Figures S4H-S4J). The difference in output between 

pulsed and continuous inputs as a function of nuclear fluorescence AUC was quantified as 

the ratio of the slopes of the two lines in the output-fluorescence plot (termed the slope ratio) 

(Figure 3A). This metric showed that the six Crz1-responsive promoters spanned a range 

that is bracketed by pYPS1-YFP (slope ratio > 1) and pGYP7-YFP (slope ratio <1), going 

from higher gene expression for pulsed than continuous inputs to the opposite phenotype 

(Figure 3C) . Since all promoter fusions generated the same YFP as the protein output, these 

pheno-types must reflect different promoter properties as well as any differential influences 

of the promoters on mRNA stability. We next turned to data-backed computational modeling 

to systematically explore and interpret these behaviors.

A Simple Two-State Computational Model of the Promoter Explains pYPS1-YFP and 
pCMK2-YFP Slope Ratio Data

To better understand the difference in slope ratios for pYPS1-YFP and pCMK2-YFP, we 

represented each gene with a simple two-state promoter computational model. The promoter 

model (Figure 4A) has an ON state pon and an OFF state poff, with pon + poff = 1. The time-

dependent nuclear concentration of the TF Crz1 is given by the function TF(t). The time-

dependent equation for the promoter activity pon in response to nuclear localization of Crz1 

can be written as

dpon
dt = konpoffTF (t) − koffpon

= kon(1 − pon)TF (t) − koffpon
(Equation 1)
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The rate constants kon and koff are used to describe the transition between the two promoter 

states. Here, kon*(1 − pon)*TF(t) is the ON rate and is nonlinear due to the input TF(t), while 

the OFF rate, koff*pon, is linear. The time-dependent equations for mRNA and Protein are 

then given by:

dmRNA
dt = β0 + β1pon − γ1mRNA (Equation 2)

dProtein
dt = β2mRNA − γ2Protein (Equation 3)

From a wide parameter search across kon and koff, we were able to find parameter regimes 

that qualitatively captured the phenotypes (slope ratio > 1 and slope ratio close to one) 

observed in the output-fluorescence plots for pYPS1-YFP and pCMK2-YFP in Figure 3 

(Figure S5A; example solutions plotted in Figures 4E and S5D). We also found that the 

quantitative value of the slope ratio obtained from the output-fluorescence plot is dependent 

on three model parameters—mRNA and protein half-lives, the ratio kd (kd = koff/kon), and 

the absolute values of kon and koff. We explore these relationships below.

For a Two-State Computational Model of the Promoter, Slope Ratio Increases with 
Decreasing mRNA Half-Lives but Differences in Half-Lives Cannot Fully Explain the 
Measured Slope Ratio

Our numerical results indicate that both mRNA and protein degradation values affect slope 

ratio. Protein degradation of YFP in yeast has been shown to be slow with a value around γ2 

= 0.0083 min−1 (Christiano et al., 2014). This value cannot be different among different 

promoters since they all produce the same protein (YFP). Therefore, the degradation 

parameter for YFP cannot explain the effects of slope ratio we are studying, and we will not 

explore its effects any further.

The mRNA degradation rate, on the other hand, can depend on the identity of the promoter 

(Bregman et al., 2011; Trcek et al., 2011). The physiological range of mRNA degradation 

rates in yeast has been experimentally determined to vary between γ1 = 0.025–10 min−1 

(Wang et al., 2002). For values of kon, koff, and kd that span a wide range (kon from 0.005 to 

9.2 min−1a.u.−1, koff from 0.23 to 4.6 min−1, kd from 0.5–46 a.u.), changing γ1 alone cannot 

span the range of slope ratios we observe for pCMK2-YFP and pYPS1-YFP (Figure S5B). 

We therefore conclude that while the mRNA degradation rate affects the slope ratio, with 

increasing slope ratio as the mRNA degradation rate increases, it alone cannot explain the 

difference between the slope ratios of pCMK2-YFP and pYPS1-YFP without additional 

differences in the promoter characteristics. We, therefore, turn to investigate the role of 

promoter dynamics in the slope ratio phenotype.

For a Two-State Computational Model of the Promoter, Slope Ratio Increases with 
Decreasing kd

Model simulations for different values of kd between 0.5 and 46 a.u. revealed that decreasing 

kd increases the slope ratio (Figure 4B). To build intuition about this relationship, we first 
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consider an asymptotic regime of extremely fast promoter dynamics, relative to TF 

dynamics, in which kon and koff are large. This results in fast pon and poff that equilibrate to a 

quasi-steady state on the timescale of the TF dynamics. In this regime, pon ≃ TF(t)/(TF(t) + 

kd), where kd= koff/kon. This expression for pon can then be used in the equation that 

describes the dynamics of mRNA to determine the number of transcripts made. If kd is very 

large compared with the maximum TF concentration (e.g., kd = 46 a.u. in our system where 

TFmax = 2.6 a.u.), then pon is approximately linear as a function of TF and pon changes 

proportionally to the TF input (Figure 4C). For a smaller kd (e.g., kd = 2.3 a.u.), pon rises 

more rapidly as a function of TF because the smaller kd dictates that this Michaelis-Menten 

function should saturate faster to 1 as a function of TF.

The fact that pon grows non-linearly with TF concentration means that there is excess 

promoter activity derived from the repeated turn-on and shut-off of the pulsed TF input 

(Figure 4D, excess activity denoted by the light red shading). This allows the promoter to 

activate more over time than for the continuous input where there is only one activation and 

shut-off. Therefore, for the continuous input, pon cannot fully benefit non-linearly from the 

TF concentration. As a result, for a small kd, the integral of pon (its accumulated area as a 

function of time) is larger for the pulsed input than for the continuous input (Figure 4D, an 

equivalent area of pon is denoted by gray shading), therefore resulting in the production of 

more mRNA. On the other hand, for large kd (kd= 46 a.u.), pon follows TF in a linear way, 

and hence the difference between its integral for the pulsed and continuous inputs is minimal 

(Figure S5C). We provide an analytical exposition of the relationship between slope ratio 

and kd for a kon and koff of any value in STAR Methods (sections “Derivation of expressions 

of total transcripts from Equation 1 in the main text,” “Derivation of Np/Nc > 1 in the regime 

of a fast promoter relative to TF(t)”, and “Derivation of Np/Nc > 1 for general values of kon 

and koff” with specific examples presented in Figures S8 and S9). We also explore these 

relationships for smaller kon and koff numerically below.

For a Two-State Computational Model of the Promoter, Slope Ratio Increases with Slow kon 

and koff

The results in Figures 4C and 4D represent a promoter that is fast relative to TF(t) (e.g., 

large kon and koff). Next, we explored the slope ratio for small values of kon and koff that 

span different kd values (Figures 4B and S5B). For a small kd (kd = 2.3 a.u.), as kon and koff 

decreased simultaneously (e.g., kon = 2, koff = 4.6 versus kon =.2, koff =.46), the slope ratio 

increased (Figure 4E). This is because, for a pulsed input, a slower koff implies that the 

promoter stays ON for a period of time beyond the duration of the input. When repeated for 

every pulse, this residual activity could counteract the amplitude deficiency caused by the 

decrease in kon and koff (Figure 4F). On the other hand, as kon and koff increase, pon follows 

the input TF(t) pulses more faithfully, minimizing the gains from a pulsed input compared 

with a continuous one even in the regime of small kd (Figure 4G). Finally, and as discussed 

above, for a large value of kd (e.g., kd= 46 a.u.), the slope ratio is necessarily close to 1 and 

is therefore relatively insensitive to the promoter dynamics (see STAR Methods, “Derivation 

of Np/Nc>1 in the regime of a fast promoter relative to TF(t)” and Figure S8). As a result, in 

this regime, slowing kon and koff will have minimal effects on slope ratio for a value of kd 

that is large relative to TFmax (Figure S5D).
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Taken together, these analyses indicate that both kd and the absolute values of kon and koff 

modulate the slope ratio. A small kd is necessary for higher gene expression in response to 

short pulses, and a slow kon and koff further increase the slope ratio. These conclusions, 

therefore, point to the necessity of measuring the kd of these promoters. To do so, we 

constructed strains that expressed Crz1*-CLASP from constitutive promoters of varying 

strengths. In each of these strains, we localized Crz1*-CLASP to the nucleus with a 

continuous light input for 4 h and measured pYPS1-YFP and pCMK2-YFP (Figure 4H), 

therefore compiling a dose response. Fitting this data to a Michaelis-Menten function, we 

found that the experimental dose response of pYPS1-YFP had a kd of 2.3 a.u. (Figure 4I) 

while the dose response of pCMK2-YFP had a kd of 12.8 a.u. (Figure 4J).

The small kd value for pYPS1-YFP and its large slope ratio is in agreement with our analysis 

showing that small kd can allow the promoter to differentiate between short pulses and 

continuous inputs. It also positions the promoter in a regime where the individual values of 

kon and koff might have an important influence on its slope ratio. Moreover, the relatively 

large kd for pCMK2-YFP and its slope ratio near 1 is in agreement with our analysis 

showing that larger kd restricts the ability of the promoter to differentiate between short 

pulses and continuous input. Additionally, this relatively large kd positions the promoter in a 

regime where the individual values of kon and koff have little bearing on its slope ratio. To 

explore these hypotheses further, we turned to the measurement of protein dynamics in order 

to further constrain the values of kon and koff.

pYPS1 Promoter Dynamics Are Constrained to Be Faster than Its mRNA Decay

To constrain individual parameter values of kon, koff, and relate them to the mRNA 

degradation rate γ1, we measured protein dynamics for pYPS1-YFP and pCMK2-YFP in 

response to 2 h of continuous light illumination (Figure 5A). We then used the model to fit 

these dynamic data by sampling within a wide range of kon, koff and γ1 values (kon from 

0.00–10 (min × a.u.)−1, koff from 0.000007–100 min−1, and γ1 from 0.01–10 min−1; Figure 

5A, left and right panels, fits sought to maximize fit through the data points within the error 

bars; model fitting discussed in detail in STAR Methods “Model equations and sampling 

details of the pYPS1-YFP and pCMK2-YFP phenotypes”). The protein dynamic data 

revealed a relationship that must exist between kon×TF+koff and γ1 for the data to be 

explained by the model (Figure 5B). An analysis of mRNA dynamics in the two-state 

promoter model revealed that this relationship captures an important timescale Ts of the 

system, which we term the “settling time.” Assuming a very small degradation rate of the 

protein, Ts is the approximate time at which the mRNA level reaches steady state and the 

protein production rate becomes constant (see STAR Methods, “Asymptotic Analysis of 

mRNA Dynamics for the Simple Promoter to a Step Function Input” for analytical 

derivations of Ts). The Ts relationship captures two characteristic timescales of the system, 

that of the promoter given by 1/(kon × TF + koff) and that of the mRNA, given by 1/γ1. Their 

sum determines the timescale of the system (assuming that protein degradation is slow and 

hence has negligible contribution). Two asymptotic regimes occur if either the promoter or 

mRNA dynamics dominate the timescale of the system. These asymptotes serve to put a 

lower bound on the values of kon×TF + koff and γ1. At one extreme where kon and koff are 

large and γ1 is small, Ts ≃ 1/γ1 (the asymptote as kon × TF + koff goes to infinity in Figure 
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5B lower-right data points in each panel). Therefore, the protein dynamics data would 

strongly constrain the values of γ1 but not kon and koff. In the other extreme, for small kon 

and koff and large γ1, Ts ≃ 1/(kon×TF +koff) (the asymptote as γ1 goes to infinity in Figure 

5B, upper left data points in each panel). In this regime, kon×TF +koff is well constrained by 

the protein dynamics data but γ1 is not constrained. These asymptotes are useful for putting 

bounds on the parameters.

Ts can be determined from the protein dynamics data using the mean of the parameter fits. 

Since Ts has a given value for each gene that can be computed from the protein time course, 

the relationships between kon, koff, and γ1 are correspondingly constrained for each gene. 

We found that Ts = 23.8 min (with a range of 18 to 32.8 min) for pYPS1-YFP and Ts = 7.7 

min for pCMK2-YFP (with a range of 6.9 to 9 min) (Figure 5B), indicating that the pYPS1 

mRNA reaches steady state approximately 3 times slower than the pCMK2 mRNA. These 

Ts values and their corresponding asymptotes put a lower bound for kon to be 0.001 min
−1a.u.−1, for koff to be 0.006 a.u.−1 and for γ1 to be 0.03 min−1 for pYPS1-YFP. These lower 

bound values for pCMK2-YFP are 0.001 min−1a.u.−1 (kon), 0.05 a.u.−1 (koff) and 0.11 min
−1(γ1). Therefore, these constraints predict that all three parameter values might differ 

between the two promoters, including the mRNA decay rate. However, as we have shown 

above (Figure S5B), the potential difference in γ1 values between pYPS1-YFP and pCMK2-

YFP contributes to but cannot fully explain the difference in the slope ratio between the two 

genes.

To further constrain the parameter values for pYPS1-YFP and pCMK2-YFP, we subjected 

the parameter sets constrained by the protein time course in response to a continuous input 

to the additional constraint of fitting the output-fluorescence data (Figures 5C and 5D). For 

pYPS1-YFP, these data constrained kon×TF + koff to be larger than 1 and less than 56, and 

constrained kon and koff values to be greater than 0.16 min−1a.u.−1 and 0.6 a.u.−1, 

respectively. As a result, the γ1 values were constrained to be between 0.03 and 0.05 min−1, 

which is approximately an order of magnitude smaller than kon and koff (Figure 5D, left 

panel). For pCMK2-YFP, however, the output-fluorescence data did not further constrain the 

range of parameters beyond the protein time course data (continuous input) (Figure 5D, right 

panel). Importantly, the parameters fit to the protein time course (continuous input) and 

output-fluorescence data for each gene had kd values comparable to those measured 

experimentally, which provides a measure of validation for these fits. For pYPS1-YFP, the 

median kd for the parameter fits was 1.6 a.u., and for pCMK2-YFP the median kd value was 

14 a.u.

Therefore, for pYPS1-YFP, promoter kinetics (kon and koff) are fast relative to mRNA decay 

(γ1), indicating that mRNA decay dominates protein dynamics. Taken together with the 

analyses of the effect of kd, kon, and koff on slope ratio, the small kd value for this promoter 

indicates that its slope ratiometric can be strongly affected by its kon and koff values and that 

the large slope ratio is likely the result of the small kd and large kon and koff relative to γ1. 

On the other hand, the dynamics and small slope ratio (close to 1) of pCMK2-YFP could be 

generated by many combinations of parameters γ1, kon and koff that satisfy the Ts 

relationship (Figure 5D). This finding agrees with the fact that the slope ratio of pCMK2-

YFP is minimally affected by the values of kon and koff because of its measured large kd.
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Finally, to further cross-validate these insights, we asked whether the parameters identified 

above, and the accompanying model could predict the outcome of an additional time course 

experiment on which the model was not trained. In this experiment, protein time course data 

are collected for cells induced with a pulsed (2 min ON/4 min OFF) light input for 100 min 

(Figure 5E, data plotted in red as circles and error bars, model predictions plotted in red as 

lines). As a comparison, the data for the continuous input, which these parameters were fit to 

previously, are also plotted (data plotted in blue as circles and error bars, model predictions 

plotted in blue as lines). The output-fluorescence plots show that pYPS1-YFP displays 

higher gene expression in response to pulsed TF inputs than pCMK2-YFP, given that both 

inputs have the same area. In this time course, the continuous input has a much greater area 

than the pulsed input. It is expected that the difference between the protein outputs for the 

continuous and pulsed inputs would be smaller for pYPS1-YFP than for pCMK2-YFP. 

Furthermore, it is expected that the parameters identified will be able to predict the gene-

expression dynamics for the pulsed input as a result of being fit to the continuous input 

protein time course data. For both pYPS1-YFP and pCMK2-YFP, the parameter fits 

produced computational predictions that qualitatively recapitulated the protein outputs in 

response to pulsed TF inputs for both pYPS1-YFP and pCMK2-YFP (Figure 5E).

Higher Gene Expression in Response to Continuous Inputs by Promoters Can Be 
Explained by a Model with a Thresholded Transition between the Non-transcribing 
Promoter States

The simple model from the previous analysis could not produce the pGYP7-YFP phenotype 

(Figure S6A). In the simple model, even as the output difference between the pulsed and 

continuous inputs decreased (which occurred when kon << koff), the output of the pulsed 

input was always higher than the continuous input. This is because while decreasing kon 

reduced the output of the pulsed input, it also reduced the dynamic range of the output in 

response to a continuous input. This continued until to a point where kon was so small that 

the promoter was barely activated and the much faster koff quickly shut-off promoter 

activity, resulting in a promoter that was essentially unresponsive to both continuous and 

pulsed inputs (Figure S5E).

In order to identify a minimal model that explains the pGYP7-YFP phenotype, we explored 

eight elaborations of the simple promoter switching model from Figure 4 using a sequence 

of fitting and cross-validation (Detailed descriptions of all models and their exploration can 

be found in STAR Methods “Model exploration and sampling details for the pGYP7-YFP 

phenotype: List of models” and Figure S6). In this process, each model was first fit to the 

output-fluorescence data in Figure 3; one of the eight models failed to fit. Models that fit the 

output-fluorescence data were further fit to the dose response of pGYP7-YFP, which was 

collected in the same way as for pCMK2-YFP and pYPS1-YFP. The pGYP7-YFP dose 

response was remarkably linear, and four models failed to fit it (Figures S6B-S6E). For the 3 

remaining models, the dose-response data served to further constrain parameter sets. For 

those refined parameters, we cross-validated the models on the data from an additional 

experiment in which we expressed Crz1*-CLASP from a stronger promoter (pTEF1 versus 

pADH1), and measured gene expression following a cumulative light induction of 40 min 

administered either as pulsed or continuous input. Following these rounds of fitting and 
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cross-validation (Figures S6A-S6I), only two of the models surveyed were able to explain all 

the data we collected (Figures 6A-6E, S6H, and S6I).

The two models were structurally similar—they both extended the simple two-state model to 

contain another promoter state, thereby requiring transition through an unproductive 

promoter state (poff) before the promoter can be fully activated. Therefore, in these models, 

the first transition occurred reversibly between promoter state p0 and a non-transcribing state 

poff with rate constants ron and roff, while a second transition stage occurred between poff and 

pon with rate constants kon and koff. Both models also involved a linear dependence on TF in 

the second transition stage, whose effect was to prevent the dose response from exhibiting a 

thresholded behavior. Finally, the two models necessitated a thresholded interaction in the 

first promoter transition stage, but differed in where it was applied—in one model, ron was a 

thresholded function of TF, while in the other model, it was roff that was thresholded by TF 

(Figures 6A, S6H, and S6I). The threshold on either ron or roff acted as a “reset” for short 

pulses such that the system quickly returns to the starting p0 state. Since these two models 

were able to recapitulate the data gathered for pGYP7-YFP in slightly different parameter 

regimes, we analyzed the features common to both models rather than focusing on 

individual values of the model parameters (kon, koff, ron, roff, γ1) for pGYP7-YFP.

First, we examined one of these two models, the 3-state roff-threshold model, in more depth 

(Figure 6A). To do so, we fixed ron and kon to values that fit the data from Figures 6B-6D 

and varied roff and koff within a range of four logs. We then generated output-fluorescence 

plots for every parameter set and computed its corresponding slope ratio metric, which we 

plotted in the log10(kon/koff) −log10(ron/roff) plane (Figure 6E). Overall, we found that this 

model can generate both higher expression with a continuous input (slope ratio <1, black 

region in Figure 6E, left panel) and higher expression with short pulses (slope ratio> 1, a 

colored region on Figure 6E, left and right panels).

Quantitatively, there seemed to be three-parameter constraints for this promoter model to 

elicit higher gene expression in response to a continuous input than a pulsed one. First, the 

rate of transition from p0 to poff should be slow; second, roff should be fast relative to ron; 

third, koff should be fast relative to kon. An analysis of the 3-state ron threshold model 

demonstrated similar requirements (Figures S7A and S7B). When ron and roff were increased 

10-fold, there were no parameter combinations that generated higher expression for 

continuous inputs than short pulses (Figure 6E, right panel, Figures 6F and 6G, top panel). 

The difference in the protein outputs between the pulsed and continuous inputs was 

determined by the amplitude differences of promoter activity pon (Figures 6F and 6G, 

bottom panel), which was in turn dictated by the amplitudes of depletion from p0 for the 

short-pulsed and continuous inputs (Figures 6F and 6G, middle panel). A slow transition 

from p0 prevented the quick and full depletion of this state before a short pulse ended, while 

p0 was fully depleted for the continuous input (Figure 6F, middle panel). By contrast, when 

ron and roff were fast, this difference disappeared as the transition from p0 was now able to 

reach the same maximal amplitude in the duration of the short input (Figure 6G, middle 

panel). Hence, the incomplete depletion of the p0 state in the duration of the short-pulsed 

input accounted for the difference in protein outputs between the short-pulsed and 

continuous inputs.
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The requirement that the value of roff be large relative to ron was motivated by the fact that 

roff dictated how quickly the promoter state transitioned back to the initial OFF state p0 after 

the end of a short pulse. When the value of roff decreased relative to ron (Figure S7C), the 

depletion of p0 could proceed to completion during a short pulse (Figure S7C, middle 

panel), and the resulting maximum amplitudes of the active promoter state pon were more 

comparable for a pulsed or continuous input (Figure S7C, bottom panel). Lastly, as koff was 

decreased while keeping all other parameters constant, the pon to poff switching also slowed, 

and promoter activity continued unabated between two pulses, hence maximizing the gain of 

promoter activity from every input pulse and causing stronger gene expression from pulses 

than from a continuous input (Figure S7D). This was in essence the same mechanism as 

described in Figures 4E-4G. In summary, slow transition from the initial OFF state (p0) to 

the intermediate OFF state (poff) prevented the short-pulsed input from achieving a quick 

depletion of the initial OFF state (p0), essentially creating a filter for short inputs.

Finally, in addition to the constraints above, we found that a threshold of log10(kon/koff) ≈> 

−1.5 seemed to demarcate the transition between a linear and nonlinear promoter dose 

response in the parameter regime probed (light gray points, Figure 6E, left panel), therefore 

imposing quantitative bounds on this promoter model to exhibit a graded dose response as 

seen in the data.

Mechanistically, we hypothesized that the additional promoter state (p0) and the transition 

through a non-transcribing promoter state (poff) of the multi-state models could represent 

transitions induced by chromatin remodeling at the promoter. This hypothesis was further 

supported by analysis of previously published nucleosome occupancy data for Crz1 target 

genes, which showed a negative correlation between nucleosome occupancy and slope ratio 

(Figures S7E and S7F). To test this hypothesis more specifically, we measured H3 

nucleosome occupancy of the pGYP7 and pYPS1 promoter fusions (Figure 6H). H3 

occupancy was much greater in pGYP7-YFP than pYPS1-YFP, which recapitulates the 

nucleosome occupancy profile at the native promoter-ORF junctions previously cited in the 

literature. This result lends credence to the proposed multi-state model of pGYP7 activation 

by Crz1.

DISCUSSION

In this work, we devised an integrated approach that combines engineering CLASP, a precise 

and modular optogenetic tool, with computational modeling and experimentation to 

investigate the transcriptional consequences of dynamic TF nuclear shuttling. Through 

precise perturbations afforded by CLASP, we were able to collect data of sufficient 

resolution to formulate quantitative hypotheses that can explain promoter behaviors. This 

productive dialog between the technology, the modeling, and the biological findings allowed 

us to constrain both underlying mechanisms and quantitative parameter relationships in the 

decoding of dynamic TF signals. Specifically, we showed that some target promoters of 

Crz1, a naturally pulsatile TF, had higher gene expression in response to short-pulsed inputs 

compared with a continuous input of the same area. We demonstrated that this behavior 

could be explained by a two-state promoter model and delineated its quantitative 

requirements of an easily saturable dose response, fast activation, and slow inactivation. By 
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contrast, pGYP7, which had higher gene expression in response to continuous inputs than 

pulsed inputs of the same area and also had a linear-dose response, required a more elaborate 

multi-state model with thresholded activation steps and a dependence on the TF at each step. 

These insights constitute general principles that would not have been possible without the 

combined development of CLASP and the organization of the resulting data into 

computational models.

The quantitative principles delineated by our experiments have clear biological implications. 

Recent studies have used a 3-state promoter model similar to that used for pGYP7 to 

recapitulate the decoding of NF-κB dynamics (Sen et al, 2020). The multi-state promoter 

model we built therefore generated a robust hypothesis that the chromatin structure of 

pGYP7 was different from the other Crz1 target genes we profiled. To test this hypothesis, 

we measured nucleosome occupancy for pYPS1-YFP and pGYP7-YFP and analyzed 

available occupancy data for Crz1 target genes. We found that genes that respond with 

higher expression to short pulses exhibited lower nucleosome occupancy (Figures 6H, S7E, 

and S7F). These correlative data suggest the presence of additional promoter regulation, 

such as a TF-gated promoter transition between non-transcribing promoter states, for 

promoters that have lower gene expression for short inputs. Phenomenologically, the TF-

thresholded transitions between non-transcribing states can represent TF interactions with 

chromatin remodelers or nucleosomes (Dillon and Festenstein, 2002; Spitz and Furlong, 

2012; Lickwar et al., 2012; Platt et al., 2013; Cheng et al., 2011; Gaupel et al., 2014; 

Steinfeld et al., 2007). However, mechanistic studies, such as direct observation of promoter 

dynamics, are needed to pinpoint the exact biochemical mechanisms (Cho et al, 2018). 

Additionally, eukaryotic endogenous gene regulation can be controlled by multiple TFs, 

phosphorylation, and other factors. Therefore, the study of multiple TF-promoter 

relationships is needed to reflect the full complexity of gene regulation.

What biological function may differential interpretation of TF dynamic inputs carry for the 

Crz1 stress response? Under stress, Crz1 undergoes an initial 40–60-min nuclear 

localization, followed by pulsing in the “maintenance” phase of the calcium response. 

Cohorts of genes could activate strongly only in the first long pulse, while other genes 

maintain high expression even in the short pulsing phase of Crz1 response to calcium, 

therefore programing a staggered response. Moreover, since Crz1 pulses exhibit different 

amplitudes in the “maintenance” phase (Figure S4A), a 2-state promoter with a dose 

response that saturates quickly as a function of TF, like pYPSI, would turn on strongly for 

all pulse amplitudes. By contrast, promoters with a linear-dose response like pCMK2 would 

activate in a graded fashion, presenting yet another mechanism by which dynamic inputs 

could be differentially interpreted.

Finally, while our studies focused on the decoding of TF inputs at the promoter level, other 

modes of differential decoding can be implemented. For example, modulation of translation 

and degradation of mRNA and protein are alternative strategies for differential decoding. As 

we discovered for pYPS1-YFP and pCMK2-YFP, different mRNA degradation rates 

additionally contribute to differential decoding. It will be fascinating to study the bounds of 

dynamic decoding explored by endogenous genes.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Hana El-Samad (hana.el-

samad@ucsf.edu).

Materials Availability—To request reagents, please submit a form to UCSF at https://

ita.ucsf.edu/researchers/mta. Key plasmids have been deposited on Addgene and can be 

requested from there. For other plasmids (all plasmids listed in Table S3), please contact the 

Lead Contact.

Data and Code availability—All original microscopy, flow cytometry, RNA-seq, ChIP-

qPCR data, and modeling results (except for those for Figures S6A-S6I) have been deposited 

at Mendeley Data: https://doi.org/10.17632/jxjnjmmj83.1. Raw microscopy images 

supporting the current study and modeling results for Figures S6A-S6I have not been 

deposited in a public repository due to file size constraints, but are available from the Lead 

Contact on request. All code necessary to generate the figures is available via Github at 

https://github.com/lindseyo/CLASP-Crz1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Saccharomyces Cerevisiae

Plasmid and Strain Construction: Hierarchical golden gate assembly was used to 

assemble plasmids for yeast strain construction using the method in Lee et al. Bsal, BsmBI, 

and NotI cut sites were removed from individual parts to facilitate downstream assembly and 

linearization. Parts were either generated via PCR or purchased as gBlocks from IDT. For 

promoters, these parts incorporate the 1000 bp upstream of the open reading frame. These 

parts were then assembled into transcriptional units (promoter-gene-terminator) on cassette 

plasmids. These cassettes were assembled together to form multi-gene plasmids for insertion 

into the yeast genome at the TRP, URA, or LEU locus. Cassette plasmids were grown and 

prepared from either DH5alpha or Mach1 competent cells (Macrolab, Berkeley, CA). 

Cassettes were digested with NotI and then transformed into yeast as described in Lee et al. 

(2013) or (2015).

Yeast Strains, Media, and Growth Conditions: The base S. cerevisiae strain used for 

experimentation was W303α or BY4741. Base strain for each engineered strain is noted in 

the strain list. From these base strains, knockout of endogenous transcription factors was 

done with a one-step replacement using a plasmid that contains 40 base pair overlaps in the 

5’ and 3’ UTR of the transcription factor (Gardner and Jaspersen, 2014). The 40 base pair 

overhangs flank the Candida Albicans HIS selectable marker.

Single colonies were picked from auxotrophic SD (6.7 g/L Bacto-yeast nitrogen base 

without amino acids, BD Difco, Franklin Lakes, NJ; 2 g/L supplement amino acid mix 

minus necessary amino acids, MP Biomedical, Irvine, CA; 20 g/L dextrose, Sigma-Aldrich, 

St Louis, MO) agar plates. For microscopy and growth measurement studies, colonies were 
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picked into 1 ml SDC media. For flow cytometry studies, colonies were picked into 1 ml 

YPD (yeast extract, Alfa Aesar, Haverhill, MA; peptone, BD Biosciences, Franklin Lakes, 

NJ; 2% glucose, Sigma-Aldrich, St Louis, MO) or SDC (6.7 g/L Bacto-yeast nitrogen base 

without amino acids, BD Difco, Franklin Lakes, NJ; 2 g/L complete supplement amino acid 

mix, MP Biomedical, Irvine, CA; 20 g/L dextrose, Sigma-Aldrich, St Louis, MO) media. 

Colonies were grown overnight from 30°C to saturation. Prior to the start of an experiment, 

cells were diluted into 1-3 ml of SDC and grown for 4 h to an OD of 0.05-0.1 prior to the 

start of an experiment. A TECAN Spark 10M plate reader (TECAN, Mannedorf, 

Switzerland) was used for growth measurements.

METHOD DETAILS

Microscopy and Blue Light Delivery—Cells were imaged in 96-well Matriplates 

(MGB096-1-2-LG-L; Brooks Life Science Systems, Spokane, WA). For widefield 

microscopy, blue light optogenetic stimulation of samples was done using a custom built 

“optoPlate” as described in Bugaj et al (Bugaj et al., 2018). Individually addressable LEDs 

(in 96-well format) were controlled by an Arduino Micro microcontroller and programmed 

with different dynamic light patterns using custom Arduino IDE scripts. Custom adapters for 

fitting optoPlate on to 96-well matrix plates were designed in AutoCad and 3D printed. For 

confocal microscopy, blue light stimulation was done using GFP laser illumination. A Nikon 

Ti inverted scope, with mercury arc-lamp illumination using RFP (560/40 nm excitation, 

630/75 nm emission; 572/35 nm excitation, 632/60 nm emission; both manufactured by 

Chroma, Bellows Falls, VT) and near-infrared FP (640/30 nm excitation, 690/50 nm 

emission; Chroma, Bellows Falls, VT) filters, was used for widefield microscopy imaging of 

samples. Images were taken with an Andor EMCCD camera. Automated imaging was 

controlled and coordinated by custom Matlab (MathWorks, Natick, MA) software interfaced 

with the μmanager software suite (Edelstein et al., 2014). Confocal microscopy of samples 

took place on a Nikon Ti inverted scope with a Yokogawa CSU-22 spinning disk confocal 

scanner unit; cells were excited with laser illumination for Cy3 (561 nm, 100 mW Coherent 

OBIS; ET610/60nm emission filter) and Cy5 (640 nm,100 mW Coherent OBIS; 

ET700/75nm emission filter). Imaging was controlled with Nikon Elements 5.02 build 1266 

(Nikon Instruments, Melville, NY).

Flow Cytometry—Blue light optogenetic stimulation of samples was done using a custom 

built “optoPlate” as described in Bugaj et al (Bugaj et al., 2018). Analysis of fluorescent 

protein reporter expression was performed with a BD LSRII flow cytometer (BD 

Biosciences, Franklin Lakes, NJ) equipped with a high-throughput sampler. For steady-state 

measurements, cultures were diluted in TE before running through the instrument. Cultures 

were run on the instrument 1 h (+/− 20 min) after optical stimulation using the optoPlate, to 

allow for YFP maturation. YFP (Venus) fluorescence was measured using the FITC channel 

and RFP (mCherry/mScarlet) was measured using the PE-Texas Red channel. For steady-

state measurements, a maximum of 10,000 events were collected per sample.

Growth Assays—Growth was measured using a TECAN Spark 10M plate reader 

(TECAN, Mannedorf, Switzerland) using 600nm excitation. Cultures were plated into 
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Corning 3904 96-well assay plates (Corning, Corning, NY) and grown at 30°C while 

shaking until saturation.

Treatment with CaCl2 Stress—Cells were grown at 30°C in YPD medium to saturation 

overnight. Cells were then diluted prior to the start of an experiment and grown for 4 h to an 

OD of 0.05-0.1. For microscopy experiments, cells were plated in SDC with concanavalin A 

(conA; Sigma-Aldrich, St Louis, MO) for 15 min to adhere them to the bottom of the glass 

imaging plate. Prior to imaging, the SDC was removed and replaced with a solution of SDC 

with 0.2M CaCl2 (Fisher Scientific, Waltham, MA). For flow cytometry experiments, cells 

in SDC were diluted to OD 0.1 in a media of SDC with 0.2M CaCl2 and grown in the media 

for the duration of the experiment. Prior to measurement, the 0.2M CaCl2 media was 

removed by centrifugation with 3 washes in 1X TE (Fisher Scientific, Waltham, MA).

Automated Flow Cytometry—Cells were grown at 30°C in YPD medium to saturation 

overnight. Cells were then diluted prior to the start of an experiment to 0.15 OD and grown 

for 4 h in SDC media. Cells were then back diluted to 0.2 OD into SDC media with 0.5X 

Penicillin-Streptomycin to prevent culture contamination (Thermo Fisher Scientific, 

Waltham, MA; 10,000 U/mL). Cells were then outgrown for 1 h at 30°C while shaking on 

the automated flow cytometer setup (described in Harrigan et al, 2018). Following the 

outgrowth, cells were illuminated with 40 mA pulsed or continuous blue light (455 nm) and 

sampled every 8 min for 6 h using custom LabView scripts.

Chromatin Immunoprecipitation—Chromatin Immunoprecipitation (ChIP) followed by 

qPCR was performed as described in Greenstein et al (2018) with the following 

modifications. S.cerevisiae cells were grown at 30°C in YPD overnight to saturation. Cells 

were then diluted prior to experiment to 0.2 OD and then grown for 4 h in SDC media. To 

fix cells, 1% formaldehyde (Thermo Fisher Scientific, Waltham, MA) was added directly to 

the media and cultures were incubated with shaking for 15 min at 30°C. Fixation was 

quenched with 0.25M glycine (Fisher Scientific, Waltham, MA) for 5 min at 30°C. Cell 

pellets were washed twice with cold 1xTBS(Teknova, Hollister, CA) and flash frozen prior 

to lysis. Cells were lysed using a Mini Bead-Beater (Biospec, Bartlesville, OK) with 7 

rounds of 1 min ON followed by 2-minute incubations on ice. Sonication was performed 

using a Diagenode BioRuptor Standard machine (Diagenode, Liege, Belgium) for 30 rounds 

of 30s ON/30s rest at 4°C. The insoluble fraction was removed by centrifugation and then 

pre-cleared with Protein A Dynabeads (Thermo Fisher Scientific, Waltham, MA) for 3 h 

with rotation. Beads were then removed with a magnetic stand (Dynal/Thermo Fisher 

Scientific, Watham, MA). 2.1 μg of H3 antibody (Active Motif, Carlsbad, CA; 39064) was 

added per ChIP sample after a 25% was set aside as Input/WCE. Following overnight 

incubation with antibody, immune complexes were collected with Protein A Dynabeads 

(Invitrogen) and washed as described (Greenstein et al, 2018) with the exception that the 

wash buffer step was performed twice. DNA was quantified by RT-qPCR and %IP (ChIP 

DNA / Input DNA) was calculated as described (Greenstein et al, 2018). %IP values for each 

qPCR target were normalized to the %IP value for ACT1, an internal positive control.
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RNA-Seq of Crz1 19A and 5A Mutant—Single colonies were picked and grown to 

saturation in YPD at 30°C overnight. Cells were then diluted in SDC and grown for 4 h to an 

OD of 0.3. Cells were harvested by centrifugation and frozen with liquid nitrogen. RNA was 

extracted using phenol chloroform (Sambrook and Russell, 2006; Thermo Fisher Scientific, 

Waltham, MA). RNA quality was assessed using the Agilent RNA Pico kit (Agilent, Santa 

Clara, CA). The Lexogen Quantseq 3’ mRNA-Seq Library Prep Kit (Lexogen, Vienna, 

Austria) was used for RNA preparation. mRNA libraries were quantified using Qubit 

dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA) and subject to single-end 

sequencing on an Illumina HiSeq 4000.

Delivery of Stress Inputs for Microscopy—For each environmental perturbation, cells 

were grown overnight to saturation in YPD, diluted in SDC prior to the experiment, and 

grown to an OD of 0.1. 200ul cells were plated with conA. Just before imaging, the SDC 

media was removed from the microscopy well and the appropriate environmental stress 

media was applied to the cells.The media for glucose depletion consisted of 0.67% YNB 

w/o AA w/ ammonium sulfate, 0.79% CSM, 0.05% glucose. The media for osmotic shock 

was composed of 0.67% YNB w/o AA w/ ammonium sulfate, 0.79% CSM, 2% glucose, and 

0.95M sorbitol (Gasch et al., 2000; Sigma-Aldrich, St Louis, MO).

Measuring Basal and Constitutively Nuclear Gene Expression of TFs—To 

further assess how TF-CLASP-induced expression compares to endogenous gene 

expression, we measured the level of reporter gene expression when the TFs were 

constitutively localized to the nucleus by C-terminally tagging them with the same NLS 

used in yeLANS (TF-NLS), or in their basal localization by C-terminally tagging them with 

only mScarlet. All TF-NLS, TF-mScarlet, and TF-CLASP constructs were expressed from 

pRPL18b. We compared this value to expression achieved when TF-CLASP was induced 

with 2 h of blue light. SynTF-CLASP achieved 52% of pSYNTF-YFP expression produced 

through constitutive nuclear localization of SynTF (Figure S3B). Furthermore, the mean 

SynTF-CLASP-induced gene expression in the dark (.09) was similar to the mean basal gene 

expression in a strain in which the SynTF was only tagged with mScarlet (.07) (Figure S3B). 

Pho4-CLASP activated pPHO84-YFP to 14% of the gene expression achieved with 

constitutive nuclear localization (Figure S3C) while Msn2-CLASP was more efficient at 

inducing pHSP12-YFP gene expression than constitutive Msn2 nuclear localization (23% 

greater expression, Figure S3D). Since Msn2 is subject to faster degradation in the nucleus 

(Chi et al., 2001; Durchschlag et al., 2004), transient localization with CLASP may be more 

efficient at inducing gene expression. For both pHSP12-YFP and pPHO84-YFP, reporter 

expression in the dark was lower in a strain that had either Msn2-CLASP or Pho4-CLASP 

than in their respective controls with either Msn2 or Pho4 when only tagged with mScarlet 

(28% and 88% lower, respectively). In fact, pPHO84-YFP showed basal bimodal expression 

in the constitutively expressed Pho4 strain, but not in the Pho4-CLASP strain (Figure S3C). 

These data suggest that CLASP can potently sequester TFs in the dark.

Effect of Protein and mRNA Half-Lives on Slope Ratio—Large degradation rates 

(hence short half-lives) of mRNA and protein result in large slope ratio, which decreases as 

these rates decrease (Figure S5B). This is not unexpected given that the continuous input 
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ends before the pulsed input. Since the slope ratio is a comparison of the continuous and 

pulsed inputs measured one hour after the experiment ends, with larger degradation rates, the 

protein output of the continuous input is reduced more than the output of the pulsed input.

Computational Modeling—Ordinary differential equation (ODE) models of gene 

expression focusing on promoter kinetics were constructed. For the simple kinetic model 

that described higher gene expression in response to short pulses, a model was constructed 

with three state variables and seven parameters. Nine models were constructed and tested for 

higher gene expression in response to continuous pulses. These models either contained 

three or five state variables with up to ten parameters. Latin hypercube sampling was done to 

randomly sample parameters. ODE solvers 45 and 113 in Matlab were used. Least squared 

error and fit within the error bars of the data were metrics used to obtain model fits. More 

details of the modeling methods are below.

Model Equations and Sampling Details of the pYPS1-YFP and pCMK2-YFP 
Phenotypes

Simple Two-State Promoter Model: This model described the higher gene expression in 

response to short pulses for pYPS1-YFP. The model described a two-state promoter that 

activates mRNA production which then activates protein production and is depicted in 

Figure 4A. We modeled these interactions using Equations S1, S2, and S3, which are 

detailed in the main text as Equations 1, 2, and 3:

dpon
dt = konTF (1 − pon) − koffpon (Equation S1)

dmRNA
dt = β0 + β1pon − γ1mRNA (Equation S2)

dProtein
dt = β2mRNA − γ2Protein (Equation S3)

In these equations, pon represented promoter activity due to increased nuclear localization of 

Crz1*, while mRNAand Protein represented concentration of mRNA and protein, 

respectively. Here we assumed that promoter activity was conserved such that 1 = pon + poff. 

TF represented the concentration, or nuclear fluorescence, of nuclear transcription factor. 

The model was characterized by 7 parameters. Most of the activation/inactivation and 

production/degradation terms were modeled by first-order mass action kinetics. The 

parameter β0 was zeroth-order, to reflect basal promoter activity. We chose this simple 

model form because we were interested in a parsimonious model that could explain the 

experimental phenotype of pYPS1-YFP. Note that the rate of promoter activation was 

dependent on TF concentration because Crz1 has been shown to activate genes through 

binding of a known promoter element, the calcineurin-dependent response element (CDRE), 

through its zinc finger domain (Stathopoulos-Gerontides et al., 1999). The input to the 
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model was the concentration, or nuclear fluorescence, of nuclear transcription factor (TF), 

while the output represented protein concentration (Protein).

Dose Response Fitting - The experimental dose response was fit to the equation protein 

output = C*TF/(TF + kd) where TF = amplitude of transcription factor input, C = scaling 

factor, and kd = koff/kon. The model fit showed a kd of 2.3 for pYPS1-YFP (with a squared 

error of prediction (SSE) of 5.8e-03) and a kd of 12.8 for pCMK2-YFP (with an SSE of 

2.9e-09).

Parameter Search for Figure S5: The equations were numerically solved by the ODE 

solver ode113 for nonstiff differential equations via MATLAB. Parameters kon, koff, β0,and 

β1 were sampled over 4-5 orders of magnitude systematically and randomly using Latin 

Hypercube Sampling (LHS). kon and koff varied from 1e-1 to 1e2. β0 was varied from 1e-6 

to 1e-2. β1 was varied from 1e-4 to 1e1. Parameters β2 = 0.06, γ1 = 0.06, and γ2 =0.0083 

were fixed to values according to literature (Hansen and O’Shea, 2013; Wang et al., 2002). 

From the parameter sets sampled, the slope ratio (defined in Figure 3), a summary metric for 

the degree of efficiency in response to short pulses, was calculated for each parameter set. 

The parameter search yielded model outputs that qualitatively recapitulate the pYPS1-YFP 

and pCMK2-YFP slope ratios.

Model Fitting: The model was used to fit the experimental data. Fits of the experimental 

data to the simple two-promoter state model (Figure 4) were obtained by the following 

procedure: 1. 10000 parameters were randomly sampled using LHS with the aforementioned 

parameter ranges (Figure S5A) or more comprehensively sampled using 33,000 parameter 

sets varying kon, koff, and γ1, (kon was varied from 0.001-10, koff from 0.000007-100, and 

γ1 from 0.01-10, Figure 5). 2. Fits were determined to be model outputs that fit through ten 

or more data points within error of the dynamic protein time course data (Figure 5B) or 

seven or more data points within error of the Output-Fluorescence data (Figure 5D). Note 

that the ability of the model to fit the data was the same regardless of the criteria of fit used – 

whether the criteria was the model output fit within the error bars of the data or least squared 

error of the model to the best fit line to the data. 3. Cross-validation of parameter fits to the 

dynamic protein time course for light input of 2 minute ON/4 minutes OFF was done. From 

this procedure, we identified parameter sets that recapitulated all of the experimental data for 

both pYPS1-YFP and pCMK2-YFP.

Derivation of Expressions of Total Transcripts from Equation 1 in the Main 
Text—In this section, we derive expressions for the total mRNA produced by the promoter. 

Using these expressions, we then study properties of total transcripts produced from pulsed 

and continuous inputs. Starting with the mRNA equation

dmRNA
dt = β1pon − γ1mRNA (Equation S4)

where there is an instantaneous transcript creation rate β1pon, with β1 being the maximum 

transcription rate. The instantaneous mRNA loss rate is γ1mRNA. We will calculate the total 

integrated output of the promoter, that is the total number of transcripts produced over the 
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entire experiment. By comparing this output for pulsed and continuous inputs that have the 

same Nuclear Fluorescence AUC, we will be able to link the promoter properties to the 

ability of producing more transcripts from either pulsed or continuous inputs.

The expression for the total number of transcripts, N, produced over the entire experiment 

for a given finite input function TF(t) is described by the equation

N = ∫
0

5
β1pondt (Equation S5)

In the particular setting of our experiments, light input of constant amplitude is administered 

either continuously (with TF input denoted by TFc(t), and maximum TF input reaching 

TFmax) or pulsed (with TF input denoted by TFp(t)) for a period of time (a maximum of 4 

hours), after which the light is shut-off and the output is measured at 5 hours. For the pulsed 

experiment, light is given in pulses, which yields a TF input of approximately triangular 

pulses. Each triangular pulse reaches a maximum amplitude of TFmax after which the light is 

shut-off. By design, for a given Nuclear Fluorescence AUC value, the integrals of TFc(t) and 

TFp(t) are the same, i.e. ∫0
5TFp(t)dt = ∫0

5TFc(t)dt. Dynamic protein measurements (Figure 

5B) indicate that the combined timescales of promoter and mRNA decay are faster than 25 

minutes (for pYPS1-YFP and pCMK2-YFP). Therefore, pon and mRNA levels will have 

decayed to zero at the time of measurement. In addition, prior to any inputs at t = 0, we 

assume that pon is zero. As a result, pon(5) = 0 and pon(0) = 0.

Equation 1 in the main text indicates that:

dpon
dt = kon(1 − pon)TF (t) − koffpon (Equation S6)

Integrating this equation from t = 0 to t = 5 hours:

∫
0

5 dpon
dt dt = ∫

0

5
kon(1 − pon)TF (t)dt − ∫

0

5
koffpondt (Equation S7)

Now, ∫0
5 dpon

dt dt = pon(5) − pon(0) = 0. Thus, setting the two terms on the right side equal to 

each other and multiplying by β1/koff we get

N = ∫
0

5
β1pondt = ∫

0

5 β1
kd

(1 − pon)TF (t)dt (Equation S8)

where kd = koff/kon. The left two expressions are Equation S5 while the rightmost expression 

describes how pon negatively impacts N, for a given input TF(t), through the term (1 − pon).

To assess the value of N, we use the rightmost expression of Equation S8. We further denote 

the total number of transcripts generated by TFp(t) to be Np and that generated by TFc(t) to 
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be Nc. Before we delve into the thorough mathematical treatment, we make two arguments. 

The first is an intuitive illustration of why the ratio Np/Nc is larger than 1 for the two-state 

promoter model and the second with respect to how the ratio of total transcripts can be 

extrapolated to the analysis of the slope ratio we measure, which is that of the protein.

Intuitive Explanation of Np/Nc > 1 for Two-State Promoter Model: Irrespective of the 

input, pon starts at zero and cannot exceed the steady-state solution of pon from Equation S6 

evaluated at TFmax. This steady-state for pon is given by TFmax/(TFmax + kd). Fora non-zero 

TFc(t), after the initial rise, TFc(t) is primarily equal to TFmax (Figure 4G (blue shading)) 

and pon is primarily equal to TFmax/(TFmax + kd) (Figure 4G (blue curve)). This is of course 

assuming that the promoter dynamics allow for reaching steady-state well before the input 

shuts off. On the other hand, for the pulsed input, the transcription factor input will spend 

more of its time in the state where TFp (t)<TFmax (Figure 4G (red shading)) and therefore, 

pon will satisfy pon<TFmax/(TFmax + kd) (Figure 4G (red curve)) for more of the time course. 

Accordingly, the (1 − pon) term on the right hand side of Equation S8 will predominantly be 

greater for the pulsed input than the continuous input when TF(t) is non-zero. Taken together 

with the fact that ∫TFp(t)dt = ∫ TFc(t)dt, then, according to Equation S8, one might 

postulate that Np is larger than Nc. We also prove this to be mathematically true in STAR 

Methods Sections "Derivation of Np/Nc>1 in the regime of a fast promoter relative to TF(t) 
"(fast promoter) and "Derivation of Np/Nc>1 for general values of kon and koff" (general 

case). A limiting scenario occurs when TFmax ℚ kd, where TFmax/(TFmax + kd), the upper 

bound of pon, remains much smaller than one (heat map of Np/Nc in Figure S8A). In this 

case, the right hand side of Equation S8 dictates that Np/Nc will be close to one independent 

of the magnitudes of the rate constants kon and koff (see Figure S8B, kd = 46).

Np/Nc Can Be Used to Understand Slope Ratio: We can use the ratio of N for the pulsed 

input to N for the continuous input, i.e. Np/Nc, to infer the characteristics of the protein slope 

ratio, which is the quantity experimentally measured (compare Figures 4B and S8A). This is 

not surprising since transcripts are causal to proteins. This correlation between Np/Nc and 

protein slope ratio can also be gleaned from the plot of N as a function of nuclear 

fluorescence AUC by comparing Figure S8B with the plot of protein as a function of nuclear 

fluorescence AUC data (Figure 4E (kd = 2.3) and Figure S5D (kd = 46)). Furthermore, for all 

parameters of the model that fit pYPS1-YFP and pCMK2-YFP experimental data, we 

computed Np/Nc and the slope ratio of the protein output to compare their relationships. The 

results in Figures S8A and S8B show that much like for proteins, pulsed inputs yield more 

transcripts per nuclear fluorescence AUC than continuous inputs. Furthermore Np/Nc 

linearly correlates with slope ratio for both pYPS1-YFP and pCMK2-YFP (Figure S8C). 

Fitting both plots to a line shows that the value of Np/Nc is generally smaller than slope 

ratio. Thus, protein and mRNA degradation increase the slope ratio for the protein output.

Derivation of Np/Nc >1 in the Regime of a Fast Promoter Relative to TF(t)—In 

the case that the promoter dynamics are much faster than those of the transcription factor 

nuclear dynamics, pon reaches pseudosteady state on the timescale of TF(t) such that 

pon ≈ TF (t)
TF (t) + kd

. Using this equation, we can write the middle expression in Equation S8 as
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β1∫
0

5
pondt = β1∫

0

5 TF (t)
TF (t) + kd

dt (Equation S9)

And the right side of Equation S8 is

β1
kd∫0

5
(1 − pon)TF (t)dt = β1

kd∫0

5
(1 − TF (t)

TF (t) + kd
)TF (t)dt

= β1
kd∫0

5
(TF (t) + kd
TF (t) + kd

− TF (t)
TF (t) + kd

)TF (t)dt

= β1
kd∫0

5 kd
TF (t) + kd

TF (t)dt

= β1∫
0

5 TF (t)
TF (t) + kd

dt

(Equation S10)

Accordingly, Equation S9 is identical to Equation S10 as is required by Equation S8.

To begin, for the continuous TF input, the initial rise of TFc(t) ends at t = τr,c (‘r’ 

corresponds to rise, and ‘c’ corresponds to continuous). After this rise, TFc(t) = TFmax until 

the input starts shutting off at t = τf,c (Figure S8D) (where ‘f’ corresponds to fall). We will 

divide Nc into three parts as follows

Nc = β1∫
0

τr, c TFc(t)
TFc(t) + kd

dt + β1∫τr, c

τf, c TFc(t)
TFc(t) + kd

dt + β1∫τf, c

5 TFc(t)
TFc(t) + kd

dt
= Nr + Nc, m

+ Nf

(Equation S11)

where Nr is the transcriptional contribution due to the rise of the TF pulse, Nf is the 

transcriptional contribution during the fall of this pulse, and Nc,m is the contribution in 

between where TF assumes its maximum value TFmax (where ’m’ in Nc,m corresponds to 

middle).

The maximum amplitude for the pulsed input TFp(t) is also TFmax. The initial rise of TFp(t) 
is the same as that of TFc(t), and the final decay of the continuous and pulsed inputs are also 

the same (Figure S8D). If τr,p is the initial rise time of TFp(t) and τf,p is the time at which 

the final pulse starts decaying, then ∫0
τr, cTFc(t)dt = ∫0

τr, pTFp(t)dt and 

∫τf, c
5 TFc(t)dt = ∫τf, p

5 TFp(t)dt.

We again divide Np into three parts:

Np = β1∫
0

τr, p TFp(t)
TFp(t) + kd

dt + β1∫τr, p

τf, p TFp(t)
TFp(t) + kd

dt + β1∫τf, p

5 TFp(t)
TFp(t) + kd

dt
= Nr + Np, m

+ Nf

(Equation S12)
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Where Np,m is the contribution of the series of pulses occurring between τr,p and τf,p. 

Therefore, in order to show that Np/Nc> 1, we just have to show that Np,m/Nc,m>1.

To begin, it is important to note that

∫τr, c

τf, p
TFc(t)dt = ∫τr, p

τf, p
TFp(t)dt (Equation S13)

For the continuous input, TFc(t) = TFmax between τr,c≤t≤τf,c. Accordingly,

Nc, m = β1∫τr, c

τf, c TFc(t)
TFc(t) + kd

dt

= β1∫τr, c

τf, c TFc(t)
TFmax + kd

dt

= β1
TFmax[τf, c − τr, c]

TFmax + kd

(Equation S14)

In the steps above we left TFc(t) in the numerator of the integrand term without replacing it 

with TFmax in the middle step from Equation S14 in order to use the equality in Equation 

S13 such that Nc,m becomes:

Nc, m = β1∫τr, c

τf, c TFc(t)
TFmax + kd

dt

= β1∫τr, p

τf, p TFp(t)
TFmax + kd

dt
(Equation S15)

On the other hand, the expression for Np,m is given by:

Np, m = β1∫τr, p

τf, p TFp(t)
TFp(t) + kd

dt (Equation S16)

Since TFp(t) + kd≤TFmax + kd for every value of t, then 
TFp(t)

TFp(t) + kd
≥

TFp(t)
TFmax + kd

 for every 

value of t. In particular, since TFp(t) is pulsing, then TFp(t) + kd<TFmax + kd for most of 

τr,p≤t≤τf,p. We can therefore write down the inequality

Np, m = β1∫τr, p

τf, p TFp(t)
TFp(t) + kd

dt > β1∫τr, p

τf, p TFp(t)
TFmax + kd

dt = Nc, m (Equation S17)

As a result, 
Np, m
Nc, m

> 1 and thus 
Np
Nc

> 1. It should be noted that an important requirement for 

Equation S17 and all following expressions is that the pulses in TFp(t) transition from zero 

to TFmax at a finite speed (e.g, less than infinitely fast). This allows finite integral 

contributions to the left side of Equation S17 during this transition when 0<TFp(t)<TFmax. 
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This ensures the inequality. However for rectangular pulses with no transition time, i.e 

TFp(t) jumps infinitely fast from zero to TFmax, the left side of Equation S17 will equal the 

right side and thus Np = Nc, for this special case.

The ratio 
Np
Nc

 is a monotonically decreasing function of kd and approaches 1 as kd 

becomes very large compared to TFmax: One can see on the left side of Equation S17 that 

the 
TFp(t)

TFp(t) + kd
 term becomes larger in magnitude as kd decreases for all t when TFp(t)>0. 

This implies that Np,m increases for decreasing kd for a given TFp(t). Likewise, Nc,m 

increases for decreasing kd. We will next show however that 
Np
Nc

 itself decreases and 

approaches the value of 1 as kd increases and becomes large relative to TFmax. Under this 

constraint Equation S17 becomes

Np, m = β1∫τr, p

τf, p TFp(t)
TFp(t) + kd

dt ≈ β1∫τr, p

τf, p TFp(t)
kd

dt

≈ β1∫τr, p

τf, p TFp(t)
TFmax + kd

dt = Nc, m

(Equation S18)

Therefore Np,m≈Nc,m and hence Np ≈ Nc

As mentioned above, the contribution to Nc from the initial rise and final fall of TFc(t) 
corresponds to one full pulse of a pulsed input TFp(t). Therefore, since 

Np = β1∫0
5 TFp(t)

TFp(t) + kd
dt, then if TFp(t) consists of M pulses, then one pulse would be the 

equivalent of 1
M β1∫0

5 TFp(t)
TFp(t) + kd

dt. Furthermore, as also explained above: Nr,c = Nr,p and Nf,c 

= Nf,p and we will refer to both as Nr and Nf, respectively. We will therefore represent Nc as:

Nc = Nr + Nc, m + Nf

= 1
M β1∫

0

5 TFp(t)
TFp(t) + kd

dt + β1∫τr, c

τf, c TFc(t)
TFmax + kd

dt
(Equation S19)

where we have used Equation S14. Similarly, we represent Np as

Np = Nr + Np, m + Nf

= 1
M β1∫

0

5 TFp(t)
TFp(t) + kd

dt + β1∫τr, p

τf, p TFp(t)
TFp(t) + kd

dt

= 1
M β1∫

0

5 TFp(t)
TFp(t) + kd

dt + M − 1
M β1∫

0

5 TFp(t)
TFp(t) + kd

dt

(Equation S20)

The derivative of Nc with respect to kd would be
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dNc
dkd

= dNr
dkd

+ dNc, m
dkd

+ dNf
dkd

= − 1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt − β1∫τr, c

τf, c TFc(t)
(TFmax + kd)2dt

(Equation S21)

Therefore,

dNr
dkd

= dNf
dkd

= − 1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt (Equation S22)

and

dNc, m
dkd

= − β1∫τr, c

τf, c TFc(t)
(TFmax + kd)2dt

= − Nc, m
(TFmax + kd)

(Equation S23)

Likewise, the derivative of Np with respect to kd would be

dNp
dkd

= dNr
dkd

+ dNp, m
dkd

+ dNf
dkd

= − 1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt − β1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt

= − 1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt − M − 1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt

(Equation S24)

where

dNp, m
dkd

= − β1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt

= − M − 1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt

(Equation S25)

We will next compute the derivative of Np/Nc with respect to kd, and use the expressions 

above to assess its sign, demonstrating that it is negative. The derivative of Np/Nc with 

respect to kd is given by:
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dNp
Nc

dkd
=

dNp
dkd

Nc

Nc
2 −

dNc
dkd

Np

Nc
2

= 1
Nc

2 (dNp, m
dkd

+ d[Nr + Nf]
dkd

)(Nc, m + [Nr + Nf]) − (dNc, m
dkd

+ d[Nr + Nf]
dkd

)(Np + [Nr + Nf])

= 1
Nc

2
dNp, m

dkd
Nc, m + d[Nr + Nf]

dkd
Nc, m + dNp, m

dkd
[Nr + Nf]

+ d[Nr + Nf]
dkd

[Nr + Nf]

− dNc, m
dkd

Np, m − d[Nr + Nf]
dkd

Np, m − dNc, m
dkd

[Nr + Nf]

− d[Nr + Nf]
dkd

[Nr + Nf]

= 1
Nc

2
dNp, m

dkd
Nc, m + d[Nr + Nf]

dkd
Nc, m + dNp, m

dkd
[Nr + Nf]

− dNc, m
dkd

Np, m − d[Nr + Nf]
dkd

Np, m − dNc, m
dkd

[Nr + Nf]

(Equation S26)

We will now analyze different pairs of terms from the right hand side of Equation S26. We 

will start with

dNp, m
dkd

Nc, m − dNc, m
dkd

Np, m = − Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt + Np, mβ1∫τr, c

τf, c TFc(t)
(TFmax + kd)2dt

= − Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt + Np, m

TFmax + kd
β1∫τr, c

τf, c TFc(t)
TFmax + kd

dt

= − Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt + Np, m

TFmax + kd
Nc, m

= − Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt + Nc, m

Np, m
TFmax + kd

= − Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt

+ Nc, mβ1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)(TFmax + kd)dt

(Equation S27)
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where in the third line we have used the relationship Nc, m = β1∫τr, c
τf, c TFc(t)

TFmax + kd
dt from 

Equation S14. In the last line we used the relationship Np, m = β1∫τr, p
τf, p TFp(t)

TFp + kd
dt from 

Equation S20. When TFp(t) is non-zero, 
TFp(t)

(TFp(t) + kd)2
>

TFp(t)
(TF(p) + kd)(TFmax + kd)  for all t 

except when TFp(t) = TFmax which occurs only at the peak of the pulse. Therefore, 
dNp, m

dkd
Nc, m −

dNc, m
dkd

Np, m < 0. Next, the second pair of terms is

d[Nr + Nf]
dkd

Nc, m − d[Nr + Nf]
dkd

Np, m

= −Nc, m + Npm
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt

(Equation S28)

Where we have used the expression for 
dNr + dNf

dkd
 from above. Finally, the third pair is

dNp, m
dkd

Nr + Nf − dNc, m
dkd

Nr + Nf

= Nr + Nf −β1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt + β1∫τr, c

τf, c TFc(t)
(TFamx + kd)2dt

= Nr + Nf −β1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt

+ Nc, m
(TFmax + kd)

= 1
M Np −β1∫τr, p

τf, p TFp(t)
(TFp(t) + kd)2dt

+ Nc, m
(TFmax + kd)

= 1
M Np − M − 1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt

+ Nc, m
(TFmax + kd)

= − M − 1
M Np

1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)2dt + 1

M Np
Nc, m

(TFmax + kd)

= − Np, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt + 1

M Np
Nc, m

(TFmax + kd)

= − Np, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt + Nc, m

1
M

Np
(TFmax + kd)

= − Np, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt

+ Nc, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)(TFmax + kd)dt

(Equation S29)

where in the second line we have used the relationship β1∫τr, c
τf, c TFc(t)

(TFmax + kd)2
dt =

Nc, m
(TFmax + kd)

from Equation S23. In the fourth line we have used the relationship 
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−β1∫τr, p
τf, p TFp(t)

(TFp(t) + kd)2
dt = − M − 1

M β1∫0
5 TFp

(TFp(t) + kd)2
dt from Equation S25. In the last line 

we used the relationship Np = β1∫0
5 TFp(t)

TFp(t) + kd
dt. We can now add Equations S28 and S29 to 

get

d[Nr + Nf]
dkd

Nc, m − d[Nr + Nf]
dkd

Np, m + dNp, m
dkd

[Nr + Nf] − dNc, m
dkd

[Nr + Nf]

= −Nc, m + Np, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt

− Np, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt + Nc, m

1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)(TFmax + kd)dt

= − Nc, m
1

M β1∫
0

5 TFp(t)
(TFp(t) + kd)2dt + Nc, m

1
M β1∫

0

5 TFp(t)
(TFp(t) + kd)(TFmax + kd)dt

> 0

(Equation S30)

since 
TFp(t)

(TFp(t) + kd)2
>

TFp(t)
(TFp(t) + kd)(TFmax + kd)  for all t and when TFp(t) is non-zero, except 

when TFp(t) = TFmax which occurs only at the peak of the pulse. Thus, from the results in 

Equations S27 and S30, we can conclude that 
d

Np
Nc

dkd
< 0, Therefore, Np/Nc is a monotonically 

decreasing function of kd as is demonstrated in Figures 4 and S4 in the main text.

Derivation of Np/Nc >1 for General Values of kon and koff—Below we derive the 

result that Np, the total transcripts for the pulsed input TFp(t), is always greater than Nc, the 

total transcripts for the continuous input TFc(t). The first section below (STAR Methods 

Section "Treatment of a Class of Inputs whose Decreasing Edge Proceeds through Steps") 

introduces a class of inputs and subsequent analysis and simulation results that form the 

foundation of this proof. This section continues at a high level to describe the construction of 

more complex classes of inputs, related analysis, and simulation results. The extremes of 

these classes represent the continuous and pulsed inputs. We leave the detailed mathematical 

derivations, analysis, and technical formulation of the proof for later sections, but each 

derivation is referenced in the appropriate area in STAR Methods Section "Treatment of a 

Class of Inputs whose Decreasing Edge Proceeds through Steps". This serves as a road-map 

to understand the complete proof for those interested. Otherwise, STAR Methods Section 

"Treatment of a Class of Inputs whose Decreasing Edge Proceeds through Steps" by itself 

serves as a high level intuitive summary of the proof that is aimed to be accessible to a more 

general audience.

Treatment of a Class of Inputs whose Decreasing Edge Proceeds through Steps: We first 

consider an ensemble of inputs TF(t) that will become instrumental in the general 

demonstration, and derive properties generated by the two-state promoter model when 

stimulated with these inputs. The first class of inputs is shown in the top panel of Figure 

S9A. After an initial rise of the pulse, all the inputs decrease by a step except one which 

remains constant (Figure S9A, top plot, blue), reminiscent of the continuous input. The other 

inputs then remain constant for a duration and then decrease by a step except for one which 
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remains constant (Figure S9A, top plot, red). This behavior repeats itself until the last 

remaining input step decreases to zero and remains at zero (Figure S9A, top plot, light blue), 

representing a single pulse. This produces a series of inputs, where each plateaus 

(indefinitely) at a different value. Simulation results of the model with this input ensemble 

show that each input’s corresponding pon trajectory maintains the same relative order to the 

other inputs’ pon trajectories as the inputs do with each other (Figure S9A, second panel 

from the top, compare for example light blue and green traces). This is a general property of 

the system regardless of the values of kon and koff. We provide a proof in STAR Methods 

Section "Proof showing that pon(t, α1)>pon(t, α2) for t>t0 and α1>α2" using the analytical 

results derived in STAR Methods Section "Derivation of an Expression for pon(t) in 

Response to a Step Input Starting from an Initial Condition pon(t0)".

Then we plot pon versus accumulated TF area (defined as ∫0
tTF (v)dv) for each input. This 

plot (Figure S9A, second panel from the bottom) shows that the relative order is the same as 

it was for pon versus accumulated time. We derive these results in STAR Methods Section 

"Proof showing that pon(t0 + σ, α1) > pon(t0 +
α1
α2

σ, α2) for σ>0, where σ is proportional to 

accumulated TF area". These results are then used to prove, as we observe in our 

simulations, that for accumulated transcripts versus accumulated TF area, the relative order 

is reversed from the first three panels (Figure S9A, bottom plot). Intuitively this makes sense 

since total transcripts from the right hand side of Equation S8 is a function of 1 – pon 

(multiplied by TF(t)) and not pon. Overall, these results show that the lower the plateau value 

is for this class of inputs, the higher the accumulated transcripts as a function of 

accumulated area (see STAR Methods Section "Deriving relationships for the number of 

transcripts, specifically ΔNα2(σ)>ΔNα1 (σ) for σ>0" for derivation).

Towards the construction of multiple pulses, in STAR Methods Section "Analysis of a class 

of inputs that relate the number of transcripts of the continuous input TFc(t) to that of pulsed 

input TFp(t) for the two pulse case" we extend our analysis to a class of inputs that initially 

follow the same trajectories as Figure S9A (top plot), where each plateaus at a different 

value, but then rise again to TFmax before shutting off (Figure S9B, top plot). Here the input 

with the highest valued plateau represents the continuous input TFc(t) while the input with 

the lowest valued plateau represents the pulsed input TFp(t) (two pulses). Importantly, all 

inputs share the same total TF area. Through a similar analysis as above, we show that the 

lower the plateau value of an input, the more total transcripts that are produced (Figure S9B, 

inputs (top panel), transcripts (bottom panel)). Finally, in STAR Methods Section 

"Extending the Approach to a Higher Number of Pulses" we extend this approach first to 

three pulses and then to arbitrary numbers of pulses to demonstrate the generality of the two 

pulse result (examples in Figure S9C, inputs (top panel), accumulated transcripts (bottom 

panel), and Figure S9E, inputs (left panel), accumulated transcripts (right panel)).

Finally, in our examples we used I = 6 inputs to visually demonstrate our approach. As I gets 

larger, each step change is smaller and better represents a smooth input, but the conclusions 

of our proof do not change. Thus, we can take the limit of steps becoming infinitesimally 

small to represent smooth pulses with large I to prove that for smooth inputs, Np>Nc.
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Derivation of an Expression for pon(t) in Response to a Step Input Starting from an 
Initial Condition pon(t0): For the two-state promoter model that experiences a step input 

TF(t) = α1TFmax for t ≥ t0 and where 0 ≤ α1 ≤ 1, and starting from an initial condition 

pon(t0), the dynamic equations for t ≥ t0 are given by:

dpon
dt = konTF (t)(1 − pon) − koffpon

= konα1TFmax(1 − pon) − koffpon
= − [konα1TFmax + koff]pon + konα1TFmax

(Equation S31)

We seek the time dependent solution of this equation, which we denote by pon(t, α1). This is 

a linear first order ordinary differential equation, whose solution takes the form pon = a0 + a1 

exp(−[konα1TFmax + koff][t – t0]) for t≥t0. Following standard procedure, we solve for the 

constants a0 and a1 by evaluating the system at t = t0 and t = ∞. At t = ∞, 
dpon

dt = 0 therefore 

dictating that a0 =
konα1TFmax

konα1TFmax + koff
. At t = t0 to the solution must equal the initial condition, 

that is a0 + a1 = pon(t0). Thus, a1 = pon(t0) −
konα1TFmax

konα1TFmax + koff
 and the full solution becomes:

pon(t, α1) = konα1TFmax
konα1TFmax + koff

+ pon(t0) − konα1TFmax
konα1TFmax + koff

exp( −
[konα1TFmax + koff][t − t0])

= konα1TFmax
konα1TFmax + koff

+ pon(t0) − konα1TFmax
konα1TFmax + koff

exp( −
[konα1TFmax + koff][t − t0])

+ pon(t0) − pon(t0)
= pon(t0) + ( konα1TFmax

konα1TFmax + koff
− pon(t0)) × (1 − exp( − [konα1TFmax

+ koff][t − t0]))

(Equation S32)

Proof Showing that pon (t, α1) >pon (t, α2) for t>t0 and α1 >α2: Simulation results of the 

model with the input ensemble in Figure S9A (top panel) show that each input’s 

corresponding pon time trajectory maintains the same relative order to the other inputs’ pon 

trajectories as the inputs do with each other (Figure S9A, second panel from the top, 

compare for example light blue and green traces). This is a general property of the system 

regardless of the values of kon and koff. We now provide a proof of this observation. First, for 

any pair of inputs with adjacent plateaus (Figure S9A (top plot), blue/red, red/orange, 

orange/purple, purple/green, green/light blue), the point in time where they diverge we’ll 

denote as t = t0. Like-wise, since the pair have identical input behavior up until t = t0, the 

value of pon(t) at t = t0 will be the same for both. We’ll denote this shared value as pon(t0). 

For t>t0, the first (upper) input has TF(t) = α1TFmax while the second (step down, lower) 

input has TF(t) = α2TFmax. Accordingly, α1>α2. We’ll apply the analytical solution from 

STAR Methods Section "Derivation of an Expression for pon(t) in Response to a Step Input 

Starting from an Initial Condition pon(t0)" to compare the solutions of pon(t) for the upper 

and lower inputs, which we’ll refer to as pon(t, α1) and pon(t, α2), respectively. We’ll then 
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prove that pon(t, α1)>pon(t, α2) for t>t0. We begin by subtracting the analytical solution of 

pon(t, α2) from that of pon(t, α1) to get

pon(t, α1) − pon(t, α2) = pon(t0) + ( konα1TFmax
konα1TFmax + koff

− pon(t0)) × (1
− exp( − [konα1TFmax + koff][t − t0]))

− pon(t0) − ( konα2TFmax
konα2TFmax + koff

− pon(t0)) × (1 − exp( −
[konα2TFmax + koff][t − t0]))

= ( konα1TFmax
konα1TFmax + koff

− pon(t0)) × (1 − exp( − [konα1TFmax

+ koff][t − t0]))
− ( konα2TFmax

konα2TFmax + koff
− pon(t0)) × (1 − exp( − [konα2TFmax

+ koff][t − t0]))

(Equation S33)

There are three cases to consider depending on the value of the initial condition pon (t0).

1. konα1TFmax
konα1TFmax + koff

− pon(t0) >
konα2TFmax

konα2TFmax + koff
− pon(t0) > 0: In this case, pon(t, 

α1) – pon(t, α2)>0 for t>t0. This is because 

1 − exp( − [konα1TFmax + koff][t − t0]) > 1 − exp( − [konα2TFmax + koff][t − t0]), 
since by definition α1>α2.

2. konα1TFmax
konα1TFmax + koff

− pon(t0) > 0 and 
konα2TFmax

konα2TFmax + koff
− pon(t0) < 0: In this case, all 

terms are positive, thus, pon(t, α1) – pon(t, α2)>0 for t> t0.

3. 0 >
konα1TFmax

konα1TFmax + koff
− pon(t0) >

konα2TFmax
konα2TFmax + koff

− pon(t0). For this case, we will 

present a more detailed analysis.

To simplify notation, we will rewrite Equation S33 as:

pon(t, α1) − pon(t, α2) = b2(1 − exp( − c2[t − t0])) − b1(1 − exp( − c1[t − t0
])) (Equation S4)

where b1 = pon(t0) −
konα1TFmax

konα1TFmax + koff
 and b2 = pon(t0) −

konα2TFmax
konα2TFmax + koff

, with b2>b1>0. 

Also, c1 = [konα1TFmax + koff] and c2 = [konα2TFmax + koff], with c1>c2>0.

Since the initial conditions for both inputs is the same, the initial condition of their 

difference in Equation S34 is zero at t = t0. We therefore need to show that the slope of 

Equation S34 evaluated for t≥t0 is positive.

Taking the derivative of Equation S34 we get:

d[pon(t, α1) − pon(t, α2)]
dt = b2c2 exp( − c2[t − t0]) − b1c1 exp( − c1[t − t0]) (Equation S5)
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We evaluate this expression at t = t0 to get:

d[pon(t, α1) − pon(t, α2)]
dt t = t0 = b2c2 − b1c1 (Equation S36)

We now use the expressions for b1, c1, b2, c2 in the above equation, to get that:

d[pon(t, α1) − pon(t, α2)]
dt ∣t = t0 = konTFmax(1 − pon(t0))(α1 − α2) (Equation S37)

Which is positive since α1>α2. Furthermore, exp(−c2t) decays slower than exp( – c1t), and 

thus exp( –c2t)>exp( −c1t) for all t. Therefore, it follows that b2c2>b1c1, and that b2c2 exp( − 

c2t)>b1c1 exp( − c1t). This concludes our proof that pon(t, α1) − pon(t, α2)>0 for t>t0. As 

discussed above, in Figure S9A (top plot), this result applies to any pair of inputs with 

adjacent plateaus (blue/red, red/orange, orange/purple, purple/green, green/light blue). That 

is, for a given pair, pon(t) due to the upper input (α1) remains higher over time relative to 

pon(t) due to the lower input (α2). Now for the sequence of plateaued input pairs, the lower 

input in one pair is the upper input for the next pair (e.g., blue/red then red/orange in Figure 

S9A). Thus, this observation combined with the analytical results implies that the observed 

order of inputs (Figure S9A, top plot) must be shared by their corresponding pon trajectories 

(Figure S9A, second panel from the top). Furthermore, this means that the input with the 

highest valued plateau (Figure S9A, top plot, blue, continuous-like input) produces the 

highest pon(t), and the input with the lowest-valued plateau (zero) input (Figure S9A, top 

plot, light blue, single pulse input) produces the lowest.

Furthermore, since all times of t0 and values of αi are arbitrary in the analytical treatment, 

these conclusions hold for input sequences that step down with any resolution, and therefore 

for any input that has a decreasing edge. We use I = 6 inputs to visually demonstrate our 

approach (Figure S9A). As I gets larger, where each step change is smaller and better 

represents a smooth input, the conclusions of our proof do not change. Our results are 

invariant to I. Thus, we can represent smooth pulses with large I.

Proof Showing that pon(t0 + σ, α1) > pon(t0 +
α1
α2

σ, α2) for σ>0, where σ Is Proportional to 

Accumulated TF Area: In Figure S9A (second panel from the bottom), we plot pon versus 

accumulated TF area for each input. This plot shows that the relative order is the same as it 

was for pon versus accumulated time. To understand this, we will prove that this observed 

result must hold for any pair of inputs with adjacent plateaus (Figure S9A (top plot), blue/

red, red/orange, orange/purple, purple/green, green/light blue) regardless of the values of kon 

and koff. With the same definitions for pon(t0), t0, α1, and α2 as in STAR Methods Section 

"Proof showing that pon(t, α1)>pon(t, α2) for t>t0 and α1>α2" we now proceed.

For the α1TFmax input, over the duration t0<t<t0 + σ, the accumulated TF(t) area, denoted as 

Aα1(σ), can formally be written in integral form as
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Aα1(σ) = ∫t0

t0 + σ
α1TFmaxdt

= α1TFmaxσ
(Equation S38)

Similarly, for the α2TFmax input, over the duration t0<t<t0 + σ′, the accumulated TF(t) area 

is α2TFmaxσ′. If we required that the two inputs have equal accumulated area then 

α1TFmaxσ = α2TFmaxσ′. Accordingly, σ′ =
α1
α2

σ, i.e. σ′ must be larger than σ in order to 

have the same area since the transcription factor amplitude is lower.

Here one can see that σ is a variable that can be used to transform both inputs (α1 and α2) 

from time to equal accumulated TF(t) area. This allows us to analyze quantities such as 

pon(t) and accumulated transcripts as a function of σ. Now, we derive a relationship between 

the value of pon evaluated at t0 + σ for an input α1TFmax input (which we denote pon (t0 + σ, 

α1)) and its value evaluated at t0 +
α1
α2

σ for an input α2TFmax (which we denote by 

pon(t0 +
α1
α2

σ, α2)). These two pon values are therefore generated by two inputs of identical 

area.

Using the analytical solutions derived above, we can write:

pon(t0 + σ, α1) − pon(t0 + α1
α2

σ, α2) = pon(t0) + ( konα1TFmax
konα1TFmax + koff

− pon

(t0)) × (1 − exp( − [konα1TFmax + koff]σ))
− pon(t0) − ( konα2TFmax

konα2TFmax + koff
− pon(t0)) × (1 − exp( −

[konα2TFmax + koff]
α1
α2

))

= ( konα1TFmax
konα1TFmax + koff

− pon(t0)) × (1 − exp( −
[konα1TFmax + koff]σ))

− ( konα2TFmax
konα2TFmax + koff

− pon(t0)) × (1 − exp( −

[konα2TFmax + koff]
α1
α2

σ))

(Equation S39)

There are 3 possibilities for the relationship between pon(t0 + σ, α1) and pon(t0 +
α1
α2

σ, α2).

1. konα2TFmax
konα2TFmax + koff

− pon(t0) <
konα1TFmax

konα1TFmax + koff
− pon(t0) < 0: Here, the expression 

in Equation S39 is greater than zero. This is because 

1 − exp −[konα2TFmax + koff]
α1
α2

σ > 1 − exp( − [konα1TFmax + koff]σ) for t>t0.
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2. konα1TFmax
konα1TFmax + koff

− pon(t0) > 0 and 
konα2TFmax

konα2TFmax + koff
− pon(t0) < 0: Here, all terms 

in Equation S39 are positive and thus greater than zero.

3. konα1TFmax
konα1TFmax + koff

− pon(t0) >
konα2TFmax

konα2TFmax + koff
− pon(t0) > 0: For this case, we will 

present a more detailed analysis.

To begin we’ll differentiate Equation S39 with respect to σ. We get

d pon(t0 + σ, α1) − pon(t0 + α1
α2

σ, α2)
dσ =

d ( konα1TFmax
konα1TFmax + koff

− pon(t0)) × (1 − exp( − [konα1TFmax + koff]σ))
dσ

−
d ( konα2TFmax

konα2TFmax + koff
− pon(t0)) × (1 − exp( − [konα2TFmax + koff]

α1
α2

))
dσ

= [konα1TFmax + koff](
konα1TFmax

konα1TFmax + koff
− pon(t0)) × exp(

− [konα1TFmax + koff]σ)
− [konα2TFmax + koff]

α1
α2

( konα2TFmax
konα2TFmax + koff

− pon(t0)) × exp(

− [konα2TFmax + koff]
α1
α2

σ)
= (konα1TFmax − [konα1TFmax + koff]pon(t0)) × exp( −

[konα1TFmax + koff]σ)
− (konα1TFmax − konα1TFmax + α1

α2
koff pon(t0)) × exp( −

[konα2TFmax + koff]
α1
α2

σ
)

(Equation S40)

Because 
α1
α2

> 1, then 

konα1TFmax − [konα1TFmax + koff]pon(t0) > konα1TFmax − konα1TFmax +
α1
α2

koff pon(t0) > 0 and 

also exp( − [konα2TFmax + koff]
α1
α2

σ) is smaller than exp(−[konα1TFmax + koff]σ) for all σ 

greater than zero. Therefore, the expression in Equation S40 is greater than zero. This taken 

together with the fact that the initial condition in Equation S39 at σ = 0 is equal to zero 

dictates that Equation S39 is greater than zero for σ>0. Thus, pon(t0 + σ, α1) > pon(t0 +
α1
α2

σ, α2)

for σ>0. Thus, this analytical result implies that the observed order of inputs (Figure S9A, 

top plot) which are shared by their corresponding time-dependent pon trajectories (Figure 

S9A, second panel from the top) must also be shared by the corresponding σ -dependent pon 

trajectories. Indeed, when we plot pon versus accumulated TF area for each input (Figure 

S9A, second panel from the bottom) the relative order is the same as it was for pon versus 

accumulated time.

Deriving for the Number of Transcripts, Specifically ΔNα2 (σ)>ΔNα1 (σ) for σ>0: With 

the same definitions for σ, pon(t0), t0, α1 and α2, we now calculate the number of transcripts 

produced for a given value of σ. We will denote ΔNα1 (σ) as accumulated transcripts for the 

α1TFmax input. We will also denote by ΔNα2 (σ) the number of accumulated transcripts for 

the α2TFmax input over the same input area as for the α1TFmax input. Applying the right 

hand side of Equation S8 to the α1TFmax input we get
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ΔNα1(σ) = ∫t0

t0 + σ β1
kd

(1 − pon(t, α1))α1TFmaxdt

= ∫t0

t0 + σ β1
kd

(1 − pon(t0) − ( konα1TFmax
konα1TFmax + koff

− pon(t0))

× (1 − exp( − [konα1TFmax + koff](t − t0))))α1TFmaxdt

= β1
kd

α1TFmaxσ − pon(t0)α1TFmaxσ

− ( konα1TFmax
konα1TFmax + koff

− pon(t0))

× (α1TFmaxσ − 1 − exp( − [konα1TFmax + koff]σ)
konα1TFmax + koff

α1TFmax)

(Equation S41)

Likewise, ΔNα2 (σ) is given by:

ΔNα1(σ) = ∫t0

t0 + σ β1
kd

(1 − pon(t, α1))α1TFmaxdt

= ∫t0

t0 + σ β1
kd

(1 − pon(t0)

− ( konα1TFmax
konα1TFmax + koff

− pon(t0))
× (1 − exp( − [konα1TFmax + koff](t − t0))))α1TFmaxdt

= β1
kd

α1TFmaxσ − pon(t0)α1TFmaxσ

− ( konα1TFmax
konα1TFmax + koff

− pon(t0))

× (α1TFmaxσ − 1 − exp( − [konα1TFmax + koff]σ)
konα1TFmax + koff

α1TFmax)

(Equation S42)

Next we must show that ΔNα2 – ΔNα1>0. Explicitly this expression (divided by 
β1
kd

) is
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kd
β1

[ΔNα2(σ) = ΔNα1(σ)] = ( konα1TFmax
konα1TFmax + koff

− pon(t0))

× (α1TFmaxσ − 1 − exp( − [konα1TFmax + koff]σ)
konα1TFmax + koff

α1TFmax)

− ( konα2TFmax
konα2TFmax + koff

− pon(t0))

× (α1TFmaxσ −
1 − exp( − konα2TFmax + koff

α1
α2

σ)
konα2TFmax + koff

α2TFmax)

= α1TFmax ( konα1TFmax
konα1TFmax + koff

− pon(t0))

× (σ − 1 − exp( − [konα1TFmax + koff]σ)
konα1TFmax + koff

)

− ( konα2TFmax
konα2TFmax + koff

− pon(t0))

× (σ −
1 − exp( − konα2TFmax + koff

α1
α2

σ)

konα2TFmax + koff
α1
α2

)

(Equation S43)

At α = 0, Equation S43 is zero as it should be. We just need to show that the slope of 

Equation S43 is positive with respect to σ. The expression for the slope is

kd
β1

d[ΔNα2(σ) − ΔNα1(σ)]
dσ = α1TFmax ( konα1TFmax

konα1TFmax + koff
− pon(t0))

× (1 − exp( − [konα1TFmax + koff]σ))

− ( konα2TFmax
konα2TFmax + koff

− pon(t0))

× (1 − exp( − konα2TFmax + koff
α1
α2

σ)) =

= α1TFmax pon(t0) + ( konα1TFmax
konα1TFmax + koff

− pon(t0))
× (1 − exp( − [konα1TFmax + koff]σ))

− pon(t0) − ( konα2TFmax
konTFmax + koff

− pon(t0))

× (1 − exp( − konα2TFmax + koff
α1
α2

σ))

= α1TFamx pon(t0 + σ, α1) − pon(t0 + α1
α2

σ, α2)
> 0

(Equation S44)

This is because for σ > 0, pon(t0 + σ, α1) − pon(t0 +
α1
α2

σ, α2) > 0 as demonstrated above. Thus, 

ΔNα2(σ) − ΔNα1 (σ)>0 for σ> 0. This inequality verifies that more transcripts are produced 

from an input TF whose amplitude is reduced (α2TFmax input) and which extends more in 

time relative to a shorter but higher TF amplitude input (α1TFmax input) when the TF input 

area is equal between the two inputs. These results imply that given the relative order of the 
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inputs (Figure S9A, top plot) the associated order of accumulated transcripts versus 

accumulated TF area must be reversed (compare the top plot in Figure S9A to the bottom 

plot). Overall, these results show that the lower the plateau value is for this class of inputs, 

the higher the accumulated transcripts as a function of accumulated area.

Analysis of a Class of Inputs that Relate the Number of Transcripts of the Continuous 
Input TFc (t) to that of Pulsed Input TFp(t) for the Two Pulse Case: Here, we will start 

using all the properties derived above to establish relationships between the number of 

transcripts generated by a continuous input TFc(t) and that of a pulsed input TFp(t) for M = 2 

pulses. Figure S9B (top plot) shows the classes of inputs we will consider here. These are 

similar to those in Figure S9A (top plot), in that the inputs descend to their respective 

plateaus in exactly the same manner, but later rise to TFmax and then shut off. Here the input 

with the highest valued plateau represents the continuous input TFc(t) (Figure S9B (top plot, 

dark blue)) while the input with the lowest valued plateau represents the pulsed input TFp(t) 
(Figure S9B (top plot, light blue, two pulses)). Importantly, the inputs are constructed such 

that the total TF area is the same for all inputs. As we did for the analysis above, we analyze 

each pair of inputs with adjacent plateau values (Figure S9B (top plot, blue/red, red/orange, 

orange/purple, purple/green, green/light blue)) where the input with the higher plateau value 

will be called TFα1 (t) and the input with the lower plateau value is TFα2 (t). Similar to the 

above analysis, we’ll denote the corresponding pon for each these inputs as pon(t, α1) and 

pon(t, α2), respectively. To begin, we will first consider a continuous input that rises, 

plateaus to a value α1TFmax, (α1 = 1 in this case for illustration purposes) and then shuts off 

(Figure S9B (top middle plot), dark blue, TFα1 (t)). The input with a plateau value adjacent 

to the continuous input (Figure S9B (top middle plot), red, TFα2 (t)) rises in the same 

fashion, plateaus, and then drops at time t0 to a lower plateau value of α2TFmax, staying 

there until time t0 +
α1
α2

σ∗. The input then jumps up to TFmax and then shuts off. The total 

accumulated TF area for TFα1 (t) at t = t0 + σ* is identical to that for TFα2(t) at 

t = t0 +
α1
α2

σ∗. The shut-off for the two TF inputs are identical, albeit shifted in time with 

respect to each other. That is, TFα1(t0 + σ∗ + τ) = TFα2(t0 +
α1
α2

σ∗ + τ) = TFoff(τ) for τ>0.

We know from our discussion and derivations above that the total transcripts produced from 

TFα1 (t) at t = t0 + σ* is less than that of TFα2(t) at t = t0 +
α1
α2

σ∗. To analyze the transcripts 

produced from the shut-off of the input for each case, we will begin by first showing that for 

the identical shut-off of the TF inputs, pon(t0 +
α1
α2

σ∗ + τ, α2) for TFα2(t0 +
α1
α2

σ∗ + τ) is always 

less than the pon(t0 + σ* + τ, α1) for TFα1 (t0 + σ* + τ) at every τ for τ>0. Let us first model 

TFoff (τ) for τ>0 as a series of step changes with arbitrary resolution. This allows us to apply 

our analytical solutions over the duration of each step for two different initial conditions 

where we will show that the lower initial condition will remain lower over the duration of 

the step. To derive this result, consider pon(t, α) which has the initial condition pon(t0) at t = 

t0, and which has the solution for the input TF(t) = αTFmax for 0≤α≤1 and for t>t0 is
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pon(t, α) = pon(t0) + ( konαTFmax
konαTFmax + koff

− pon(t0)) × (1 − exp( −
[konαTFmax + koff][t − t0]))

(Equation S45)

Likewise consider pon(t, α) which has initial condition pon(t0) at t = t0 and where 

pon(t0) < pon(t0). The solution for pon(t, α) would be

pon(t, α) = pon(t0) + ( konαTFmax
konαTFmax + koff

− pon(t0)) × (1 − exp( −
[konαTFmax + koff][t − t0]))

(Equation S46)

Now, pon(t, α) − pon(t, α) is given by:

pon(t, α) − pon(t, α) = pon(t0) + ( konαTFmax
konαTFmax + koff

− pon(t0)) × (1 − exp
( − [konαTFmax + koff][t − t0]))

− pon(t0) − ( konαTFmax
konαTFmax + koff

− pon(t0)) × (1 − exp( −
[konαTFmax + koff][t − t0]))

= [pon(t0) − pon(t0)][1 − (1 − exp( − [konαTFmax + koff][t
− t0]))]

(Equation S47)

Now recall that we are modeling TFoff (τ) for τ>0 as a series of step changes with arbitrary 

resolution. This analytical result implies that the function with the lower initial condition at 

τ = 0, pon(t0 +
α1
α2

σ∗ + τ, α2), will remain lower over the series of steps in TFoff (τ) for τ>0. 

This is simply because at the end of a given step, the lower valued function at this point in 

time represents the lower initial condition for the next step and will remain lower over that 

step. Thus, the lower valued function must remain lower through the whole series of steps 

until the input shuts off. To reiterate, since pon(t0 + σ∗ + τ, α1) > pon(t0 +
α1
α2

σ∗ + τ, α2) at τ = 0, 

and since both are experiencing TFoff(τ), our results above imply that 

pon(t0 + σ∗ + τ, α1) > pon(t0 +
α1
α2

σ∗ + τ, α2) for τ>0. Importantly, this is independent of the 

shape of TFoff (τ).

We are now poised to determine which input, TFα1 (t) or TFα2 (t), produces more total 

transcripts. For the TFα1 (t) input, applying the right hand side of Equation S8, we have
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Nα1 = ∫
0

5 β1
kd

(1 − pon(t, α1))TFα1(t)dt

= ∫
0

t0 + σ∗ β1
kd

(1 − pon(t, α1))TFα1(t)dt + ∫t0 + σ∗
5 β1

kd
(1 − pon(t, α1))TFα1

(t)dt

= Nα1(t0 + σ∗) + ∫
0

5 − [t0 + σ∗] β1
kd

(1 − pon(t0 + σ∗ + τ, α1))TFoff(τ

)dτ

(Equation S48)

And for the TFα2(t) input we have

Nα2 = ∫
0

5 β1
kd

(1 − pon(t, α2))TFα2(t)dt

= ∫
0

t0 +
α1
α2

σ∗ β1
kd

(1 − pon(t, α2))TFα2(t)dt + ∫t0 +
α1
α2

σ∗
5 β1

kd
(1 − pon

(t, α2))TFα2(t)dt

= Nα2 t0 + α1
α2

σ∗ + ∫
0

5 − t0 +
α1
α2

σ∗ β1
kd

1 − pon t0 + α1
α2

σ∗ + τ, α2

TFoff(τ)dτ

(Equation S49)

We have previously shown that Nα2(t0 +
α1
α2

σ∗) > Nα1(t0 + σ∗) (Equation S44). Since 

pon(t0 + σ∗ + τ, α1) > pon(t0 +
α1
α2

σ∗ + τ, α2) for τ> 0, this means that 

1 − pon(t0 + σ∗ + τ, α1) < 1 − pon(t0 +
α1
α2

σ∗ + τ, α2) for τ>0. Thus, the integral term on the last 

line of the Nα2 equation, Equation S49, will be greater than that of the Nα1 equation, 

Equation S48. We can therefore conclude that Nα2 >Nα1 for α1 > α2. Additionally, analysis 

of the next pair of inputs with adjacent plateau values (Figure S9B (bottom middle plot), red 

(TFα1 (t)) and orange (TFα2 (t))) follows exactly the same logic and will yield the same 

result. This remains true for every subsequent pair of inputs with adjacent plateau values 

from Figure S9B (top plot) where the TFα2 (t) input always produces more total transcripts 

than the TFα1 (t) input. Thus, for this class of inputs, the lower an input’s plateau value, the 

more total transcripts that are produced (Figure S9B (bottom plot)), with the continuous 

input TFc(t) producing the least and the pulsed input TFp(t) producing the most.
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Extending the Approach to a Higher Number of Pulses: This analysis also applies to 

inputs with larger numbers of pulses. We’ll first start with the three pulse input (Figure 

S9C). We extend the analysis from the two pulse input for the first two adjacent input pairs 

(Figure S9B (middle plots)) to accommodate the three pulse input (Figure S9C (middle 

plots)). As above with the two pulse input, t = t0 represents the time at which divergence of 

the inputs TFα1 and TFα2 occurs, and where TFα2 drops to its plateau value. Additionally, at 

t = t0, both TFα1 (t) and TFα2 (t) have the same TF area. As above with the two pulse input, 

at t = t0 +
α1
α2

σ∗, TFα2 (t) jumps back up to TFα1 (t), and where TFα1 (t) at t = t0 + σ* has the 

same corresponding accumulated TF area as TFα2 (t) does at t = t0 +
α1
α2

σ∗. For the three 

pulse input, unlike the two pulse input, TFα2 (t) then drops a second time to its plateau value 

at t = t1(α2). Correspondingly, the TF area at t = t1(α1) for TFα1 (t) is the same as the TF 

area at t = t1 (α2) for TFα2 (t). For the first adjacent input pair, t0 +
α1
α2

σ∗ happens to share the 

same value as t1 (α1) (Figure S9C (top middle plot)). This is the result of the particular 

choice we make– i.e. triangular pulses, that we are modeling with steps. However, the 

second adjacent input pair does not exhibit this equality (Figure S9C (bottom middle plot)) 

nor would any succeeding pair.

Given the analysis above for the two pulse input, we already know that for the three pulse 

input, the total transcripts produced from TFα1 (t) at t = t0 + σ* is less than that of TFα2(t) at 

t = t0 +
α1
α2

σ∗ (Figure S9C (middle plots)). Then, similar to the two pulse input, the inputs are 

identical but shifted, i.e. TFα1(t0 + σ∗ + τ) = TFα2(t0 +
α1
α2

σ∗ + τ), but only over the duration 

0 < τ ≤ t1(α1) − [t0 + σ∗] = t1(α2) − t0 +
α1
α2

σ∗  (Figure S9C (middle plots)). From the general 

implications of Equation S47, we know that since pon(t0 + σ∗, α1 + τ) > pon(t0 +
α1
α2

σ∗ + τ, α2)

at τ = 0, this relationship must hold over the duration of τ. TFα2(t) will therefore yield more 

transcripts through the right-hand side of Equation S8 over this duration. Thus, for the same 

accumulated TF area, i.e. TFα1 (t) up until t = t1 (α1) and TFα2 (t) up until t = t1(α2), TFα2 
(t) produces more transcripts.

Now for the three pulse input, TFα1 (t1 (α1) + τ) is identical to TFα1 (t0 + τ) for the two 

pulse input for τ>0. Additionally, for the three pulse input, TFα2 (t1 (α2) + τ) is identical to 

TFα2(t0 + τ) for the two pulse input for τ>0. For the two pulse input, pon(t0, α1) = pon(t0, 

α2) and TFα2 (t) produces more transcripts. However, pon(t1(α1), α1)>pon(t1 (α2), α2) for 

the three pulse input. Thus, TFα2 (t) must produce more transcripts for τ>0. We can 

therefore conclude that TFα2 (t) produces more transcripts than TFα1 (t) for the three pulse 

input, i.e. Nα2>Nα1. This same analysis can then be applied to each successive pair of inputs 

with adjacent plateau values to ultimately show that the pulsed input TFp(t) yields the most 

transcripts for this class of inputs while the continuous input TFc(t) yields the least (Figure 

S9C (bottom plot)).
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The logic and analysis developed for the three pulse input can be applied to the same class 

of inputs with an arbitrary number of pulses to show that TFp(t) yields the most transcripts 

for this class of inputs while the continuous input TFc(t) yields the least, regardless of the 

number of pulses. To begin, we discuss the first two adjacent input pairs (Figure S9D) where 

we plot just past the beginning of the third drop to its plateau value for TFα2 (t). As above, t 
= t0 represents the time where TFα2 (t) first drops to its plateau value, and at which both 

TFα1 (t) and TFα2(t) have the same TF area. In general, all successive drops to the plateau 

value of TFα2(t) start at t = ti(α2), where 1≤i≤M – 2, where M is the total number of pulses 

for this class of inputs. Given t = ti(α2) for TFα2(t), the time that corresponds to the same TF 

area for TFα1 (t) is t = ti(α1).

For the three pulse input, we used the right-hand side of Equation S8 to show that the 

transcripts produced from t = t0 to t = t1 (α1) for TFα1 (t) is less than that for TFα2 (t) from t 
= t0 to t = t1 (α2). This comparison is over equivalent TF area. Now for TFα1 (t) from t = t1 

(α1) to t = t2(α1), the input is the same as it was from t = t0 to t = t1 (α2). Similarly, for TFα2 
(t) from t = t0 (α2) to t = t2(α2), the input is the same as it was from t = t0 to t = t1(α2). This 

repeats at every t = ti(α1) for TFα1 (t) and every t = ti(α2) for TFα2(t) until i = M – 2 just 

prior to shutoff. Importantly, at t = t0, pon(t0, α1) = pon(t0, α2), but at the beginning of every 

succeeding repeated sequence pair, pon (ti(α1), α1)<pon(ti (α2), α2) for all 1≤i≤M – 2. 

Hypothetically, if pon(ti (α1), α1) = pon(ti(α2), α2), we know that TFα2(t) will yield more 

transcripts through Equation S8 from t = ti(α2) to t = ti+1 (α2) than TFα1 (t) from t = ti(α1) 

to t = ti+1(α1). Thus, since pon(ti(α1), α1)>pon(ti(α2), α2), this must still hold. We can 

therefore conclude that over every succeeding repeated sequence pair, TFα2(t) will always 

yield more transcripts. Furthermore, we can apply the shutoff results from the three pulse 

input above to conclude that TFα2(t) will yield more transcripts for t>tM–2(α2) (through 

shutoff) than TFα1 (t) for t>tM–2(α1) (through shutoff). Thus, in general, for any number of 

pulses M, Nα2>Nα1. This same analysis can then be applied to each successive pair of inputs 

with adjacent plateau values to ultimately show that the pulsed input TFp(t) yields the most 

transcripts for this class of inputs while the continuous input TFc(t) yields the least (see 

twenty pulse example in Figure S9E).

Finally, this analysis proves that the continuous input TFc(t) will always produce less total 

transcripts than the pulsed input TFp(t), given the constraint of equal TF area. Thus, the 

slope ratio of the total transcripts, Np/Nc, will remain greater than one. Importantly, while 

we use triangle-like pulses as a visual example, the analysis is general for any pulse type that 

has a single rise (step-ups allowed as in the examples presented) followed by a fall (step-

downs allowed as in the examples).

Asymptotic Analysis of mRNA Dynamics for the Simple Promoter to a Step 
Function Input—We can evaluate the promoter model (Figure 4A; Equation 1 in the main 

text) and the resulting mRNA dynamics for a step input using linear systems analysis. For a 

four hour constant input experiment, TF(t) ≈ TFmaxu(t), a step function, since TF(t) 
equilibrates to TFmax within two minutes (Figure 3A). The solution for pon would be
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pon(t) = TFmax

TFmax + koff
kon

u(t)[1 − exp( − [konTFmax + koff]t)] (Equation S50)

The mRNA equation would then be

dmRNA
dt = β1pon(t) − γ1mRNA (Equation S51)

where β1 is the production rate of the promoter and γ1 is the mRNA decay rate. The solution 

for the mRNA equation would then be

mRNA(t) = β1
TFmax

TFmax + koff
kon

[u(t) − u(t)exp( − [konTFmax + koff]t)] ∗

u(t)exp( − γ1t)
= β1

TFmax

TFmax + koff
kon

u(t) 1
γ1

− 1
γ1

exp( − γ1t) − 1
γ1 − [konTFmax + koff]

exp

( − [konTFmax + koff]t)

+ 1
γ1 − [konTFmax + koff]

exp( − γ1t)

(Equation S52)

where ’*’ denotes convolution. Here we have used the formula

[u(t)exp( − λ1t)] ∗ [u(t)exp( − λ2t)] = 1
λ2 − λ1

[u(t)exp( − λ1t) − u(t)exp
( − λ2t)]

(Equation S53)

for λ1 ≠ λ2. Now let’s look at two extreme regimes. The first being konTFmax + koff>>γ1 

(where konTFmax + koff>>1 is also true). For this case

mRNA(t) ≈ β1
TFmax

TFmax + koff
kon

u(t) 1
γ1

− 1
γ1

exp( − γ1t)
(Equation S54)

Here the dominant effect in the time signal mRNA(t) is the slow γ1 with exponential 

timescale Ts = 1 /γ1. The other extreme regime is konTFmax + koff<<γ1 (where γ1>>1 is 

also true). For this case

mRNA(t) ≈ β1
TFmax

TFmax + koff
kon

u(t) 1
γ1

− 1
γ1

exp( − [konTFmax + koff]t) (Equation S55)

Here the dominant effect in the time signal mRNA(t) is the slow konTFmax + koff with 

exponential timescale Ts = 1/(konTFmax + koff). We denote Ts as the settling time for the 

dynamic data presented in Figure 5 in the main text.
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Model Exploration and Sampling Details for the pGYP7-YFP Phenotype: List 
of Models

Two-state models with either koff or kon thresholding (Figures S6C and S6D) -: These 

models involved a TF concentration gated activation, kon, or inactivation, koff, rate constant. 

The kinetic model with koff thresholding consisted of Equations S1, S2, and S3, but utilized 

the following equation instead of Equation S1:

dpon
dt = konTF (1 − pon) − koff

∗ pon (Equation S56)

where k off
⋆ = 0 when TF ≥ threshold. Otherwise k off

⋆ = koff. threshold is a parameter value 

which denoted the threshold TF concentration at which k off
⋆  switches from 0 to koff.

The kinetic model with kon thresholding consisted of Equations S1, S2, and S3, and utilized 

the following equation in place of Equation S1:

dpon
dt = kon

∗ TF (1 − pon) − koffpon (Equation S57)

where k on
⋆ = kon when TF ≥ threshold. Otherwise k on

⋆ = 0.

These two models could represent a binary interaction of the transcription factor (TF) with 

promoter elements, where below a TF concentration, the TF had no effect on promoter 

activity and above a TF concentration, the promoter turned on at its maximal rate.

The same parameter ranges were sampled in this model as in the simple kinetic model. The 

additional parameter threshold was sampled randomly from TF = 0 to 2.6, the maximum 

value of the TF input to the model.

Cooperative Model (Figure S6B) -: Similar to the two-state thresholded models, the 

cooperative model described a nonlinear relationship between TF concentration and protein 

output. The model was represented by the equations:

dmRNA
dt = β0 + β1

TFn

TFn + kd
n − γ1mRNA (Equation S58)

dProtein
dt = β2mRNA − γ2Protein (Equation S59)

where n is the Hill coefficient, and kd =
koff
kon

.

The same parameter ranges were sampled in this model as in the simple kinetic model. The 

additional parameter n was sampled randomly from n = 0.5 to 4, a biologically relevant 

range (Hansen and O’Shea, 2013).
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3-State Models -: We considered five 3-state models with different relationships of TF and 

the rate constants for the transition between promoter states. The first such model was a 3-

state model (Figure S6F). An additional promoter state, p0, was added. The rate equations 

describing this model were:

dp0
dt = roffpoff − ronp0 (Equation S60)

dpoff
dt = koffpon + ronp0 − (roff + konTF )poff (Equation S61)

dpon
dt = konTF poff − koffpon (Equation S62)

dmRNA
dt = β0 + β1pon − γ1mRNA (Equation S63)

dProtein
dt = β2mRNA − γ2Protein (Equation S64)

In this model, the p0 and poff could be thought of as non-transcribing promoter states that 

represented nucleosome occluded and open states, respectively. pon represented an active 

transcribing promoter state. The rate constants roff and ron described the transitions between 

the occluded and open promoter states. The promoter underwent a transition between p0 and 

poff (with rate constants, ron and roff, respectively), but poff was still not a promoter state 

conducive for transcription. A second transition from poff to pon (with rate constants, kon and 

koff, respectively) was needed to start transcription.

3-state model with roff threshold but no linear TF dependence of kon (Figure S6E) 
-: This model was the same as the 3-state model with roff threshold, except there was no 

linear dependence of the TF in the transition from poff and pon. The model was described by 

Equations S60, S61, S62, S63, and S64; the following equations replaced Equations S60, 

S61, and S62:

dp0
dt = roff

∗ poff − ronp0 (Equation S65)

dpoff
dt = koffpon + ronpo − (roff

∗ + kon)poff (Equation S66)

dpon
dt = konpoff − koffpon (Equation S67)
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where r off
⋆ = 0 when TF ≥ threshold. Otherwise r off

⋆ = roff.

3-state model with ron threshold (Figure S6H) -: This model contained a TF concentration 

threshold dependence of ron between the occluded p0 and open poff promoter states, and was 

described by Equations S60, S61, S62, S63, and S64; where model Equations S60 and S61 

were replaced by:

dp0
dt = roffpoff − ron∗ p0 (Equation S68)

dpoff
dt = koffpon + ron∗ p0 − (roff + konTF )poff (Equation S69)

where r on⋆ = ron when TF ≥ threshold. Otherwise r on⋆ = 0.

For this model, the transcription factor modulated the rate of transition from p0 to poff such 

that when TF concentration reached the threshold concentration, threshold, the transition 

rate switched from zero to a value. Biologically, this model could represent TF interaction 

with chromatin acetylators and other modifiers that could promote an open chromatin 

conformation on the promoter.

3-state model with roff threshold (Figure S6I) -: Similarly, the model with a threshold 

dependence on the inactivating transition from the open poff to occluded p0 states was 

described by the model Equations S60, S61, S62, S63, and S64; where Equations S60 and 

S61 were replaced by:

dp0
dt = roff

∗ poff − ronp0 (Equation S70)

dpoff
dt = koffpon + ronp0 − (roff

∗ + konTF )poff (Equation S71)

where r off
⋆ = 0 when TF ≥ threshold. Otherwise r off

⋆ = roff.

For this model, the transcription factor modulated the rate of transition from poff to p0 such 

that when TF concentration reached the threshold concentration, threshold, the transition 

rate switched from a value to zero. Biologically, this model could represent either physical 

hindrance of closed chromatin formation or TF-modulated repression of a chromatin de-

acetylase. The parameters ron and roff were randomly sampled in the range from 10e-4 to 1.

3-state model with linear TF dependence of ron and kon (Figure S6G) -: This model 

contained a linear dependence on TF for the transitions between both p0 to poff and poff to 

pon. This model was described by the model Equations S60, S61, S62, S63, and S64; where 

Equations S60 and S61 were replaced by:
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dp0
dt = roffpoff − (ronTF )p0 (Equation S72)

dpoff
dt = koffpon + (ronTF )p0 − (roff + konTF )poff (Equation S73)

Parameter Search and Model Fitting -: Parameter search and model fitting were done in a 

similar way as for modeling of pYPS1-YFP and pCMK2-YFP in the section above, except 

two rounds of fitting were done with the Output-Fluorescence and dose response data of 

pGYP7-YFP. Fits to the dose response were determined to be parameter sets whose least 

squared error was 0.8 standard deviations below the mean of the least squared error 

distribution. An experiment with a strain expressing pTEF1 driven Crz1*-CLASP exposed 

to short pulsed and continuous inputs, as described in the main text, was used to cross-

validate the model fits.

Detailed exploration of model fits to the pGYP7-YFP data -: The simple kinetic model 

that described the pYPS1-YFP and pCMK2-YFP phenotypes produced no parameter sets for 

which a pulsed input generated lower gene expression output than a continuous input 

(Figure S6A). Hence, we explored model elaborations, introduced in the previous section, of 

the simple promoter switching model.

We first tested whether the two-state models with either koff or kon thresholding (Figures 

S6C and S6D), or the cooperative model (Figure S6B), could generate a promoter that 

responded with higher gene expression to continuous pulses. The rationale here was that if 

the promoter spent some time below its threshold of activation for any input, then the effect 

of this TF concentration thresholding would be smaller for a continuous pulse that does this 

once, than for a sequence of short pulses where this would be done repeatedly. In agreement 

with this intuition, this suite of models was able to generate Output-Fluorescence plots that 

mirrored the pGYP7-YFP experimental data for many parameters (Figures S6B-S6D, left 

middle panel). Figure S6D shows an illustrative example of this class of models, where 

many parameters sets (380) were shown to maximize fits through the data points within the 

error bars (Figure S6D, left middle panel). Upon further fitting with independently-obtained 

dose response data for pGYP7-YFP (obtained in the same way as explained above for 

pYPS1-YFP and pCMK2-YFP), this model however failed to fit the data, as did all models 

with only two promoter states (Figures S6B-S6D, middle right panel). The failure of these 

models to fit the pGYP7-YFP dose response showed a characteristic pattern – while the 

pGYP7-YFP dose response was linear in the TF regime we measured, the computationally 

predicted dose response was thresholded given the model structure we imposed (Figures 

S6B-S6D, middle right panel).

Next, we increased the complexity of the model by adding a second layer of promoter 

transitions to generate the 3-state model (Figure S6F). This model had the same linear 

structure as the two-state promoter model of Figure 4, and hence could not produce higher 

gene expression in response to continuous input over the pulsed one (Figure S6F).
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We also tested whether a 3-state model with roff threshold but no linear TF dependence on 
kon could produce better fits (Figure S6E). This model was indeed able to generate Output-

Fluorescence plots that match the pGYP7-YFP experimental data (423 parameter sets within 

error) (Figure S6E, middle left panel), but with these parameters, it again produced a 

thresholded dose response that failed to fit that of pGYP7-YFP (Figure S6E, middle right 

panel).

Following these results, we reasoned that the introduction of a linear dependence on TF 

concentration in the immediate step before promoter activation could mitigate the effects of 

a threshold on an earlier promoter transition step, therefore producing a linear dose response. 

Hence, the 3-state model with roff threshold was tested (Figure 6A and S6I). With this 

addition, the model was able to generate Output-Fluorescence plots that maximized fit to the 

experimental data for many parameters (96 parameter sets) and for a subset of those (25 

parameter sets), was also able to recapitulate the pGYP7-YFP dose response (Figures 6A 

and S6I, middle right panel). The 3-state model with ron threshold was similarly able to 

recapitulate the data (Figure S6H), albeit with a poorer fit for the Output-Fluorescence plot. 

Finally, we tested the 3-state model with linear TF dependence of ron and kon (Figure S6G). 

This model was also able to produce qualitative fits to the Output-Fluorescence plot (Figure 

S6G, middle left panel) and dose response data (Figure S6G, middle right panel).

To further test these three successful models and also further invalidate the discarded 

models, we subjected them to cross-validation using an independent experiment in a strain 

where Crz1*-CLASP expression was increased (now expressed from pTEF1 instead of 

pADH1). We subjected these cells to either short pulses (2 minutes ON/10 minutes OFF) or 

a continuous input (40 minutes of light) in a timespan of 4 hours, and measured pGYP7-

YFP levels at 5 hours. These data revealed that the higher gene expression in response to 

continuous input was still preserved at the higher pTEF1 expression level. All discarded 

models (Figure S6, right panels) were inconsistent with these data, predicting instead a 

reversal of the phenotype with an increase in the TF concentration. Notably, the 3-state 
model with linear TF dependence of ron and kon (Figure S6G, right panel) also failed this 

cross-validation because the dependence on TF caused the rate of transition from p0 to poff 

to increase with increased TF, and thus the higher gene expression in response to continuous 

inputs could only be produced for relatively low TF concentrations. Hence, only two 

minimal models were able to explain all the data we collected (Figures S6H, S6I, and 

6B-6D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Nuclear Localization Quantification—The software tool “ilastik” was used for image 

segmentation to determine nuclear fluorescence (Sommer et al., 2011). Time lapse images of 

the IRFP nuclear marker were used to identify nuclei objects for strains with iRFP nuclear 

marker. Otherwise, the 5% brightest pixels per cell were denoted as the nucleus. Nuclear 

fluorescence of each nucleus was defined as the mean pixel intensity of this nucleus. Cell 

tracking of nuclear/cytoplasmic enrichment was done using automated yeast cell tracking 

software implemented in Matlab (Doncic et al., 2013). Photobleaching was corrected for 

cells that underwent constant illumination and frequent imaging. This correction was done 
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by fitting an exponential decay function to each nuclear and cytoplasmic trace and then 

dividing each trace by its decay function. For all microscopy analysis, “nuclear/cytoplasmic 

enrichment” represented the mean pixel intensity of the nucleus divided by the mean pixel 

intensity of the cytoplasm, and “fold change” represented division by the value of the signal 

at t=0. Nuclear localization duration was defined as the time from light ON to the time when 

the nuclear/cytoplasmic enrichment has returned to 75% of the starting (t=0) value. 

Normalized peak-trough difference was quantified across all pulses for single cell traces, and 

represented the difference between the local maximum (the peak) and the local minimum 

(the trough) values divided by the maximum peak-trough difference in the population-

averaged traces.

Flow Cytometry Quantification—All analysis of flow cytometry data was performed in 

Python 2.7 using the package FlowCytometryTools or Matlab using custom scripts. 

Fluorescence values were calculated using the height (H) measurement for the appropriate 

channel and normalized to cell size by dividing by side scatter (SSC-H).

Growth Assays Quantification—Data was analyzed in Python 2.7 or Matlab using 

custom scripts. To quantify log phase growth rate, only the OD600 measurements which 

were between. 1 and 1 for each strain were used. A linear regression was then fit to the 

natural logarithm of the log phase OD600 values (as y) and time (as x). The slope from this 

regression was plotted as the log phase growth rate.

RNA Sequencing Quantification—Genomic alignment was performed using STAR 

(Dobin et al., 2013), using the UCSC S. cerevisiae annotation file. Log counts were 

calculated using the variance stabilizing transform from DESeq2 (Love et al., 2014). For 

more details on quantification, please see Mace et al, 2020 on bioRxiv. Hierarchical 

clustering using Matlab was performed on the normalized counts from the RNA sequencing.

ChIP-seq Analysis from Published Literature—A ChIP-seq dataset (Sen et al., 2015) 

and TSS dataset (Malabat et al., 2015) were used to identify the nucleosome occupancy of 

Crz1 target genes. The SRA toolkit was used to convert .sra files to .fastq files. The ChIP-

seq data was then aligned using STAR (Dobin et al., 2013) and then further processed and 

visualized using Deeptools (Ramírez et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CLASP, an optogenetic tool, translocates TFs to the nucleus with minute-level 

resolution

• Crz1 genes show different expression for pulsatile or continuous Crz1-

CLASP inputs

• Modeling reveals quantitative promoter features required for TF input 

decoding

• Two- and three-state promoter models explain differential gene expression
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Figure 1. Design, Optimization, and Characterization of CLASP
(A) Schematic illustrating CLASP mechanism.

(B) Optimization of LANS NLS (top panels) and LOVTRAP localization (bottom panel). 

Top panels show the mean value of nuclear/cytoplasmic enrichment fold change for original 

NLS and optimized NLS (yeLANS) as a function of time when given a pulse of blue light. 

Nuclear/Cytoplasmic enrichment fold change is calculated relative to the nuclear/

cytoplasmic enrichment at t = 0. Bottom panel shows the mean of OD600 in 3 independent 

growth experiments for original LOVTRAP targeted to mitochondria and the optimized 

plasma membrane-targeted LOVTRAP.
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(C) (Top panel) Confocal microscopy image showing mScarlet-CLASP localization at the 

plasma membrane in the dark (left) and in the nucleus (right) after 3 min of light exposure. 

Images are an overlay of the mCherry and Cy7 channels. (Bottom panel) Quantification of 

mean nuclear/cytoplasmic enrichment fold change of mScarlet-CLASP as a function of time 

in response to a prolonged light input (80 min, 1024 a.u. light input amplitude). Blackline 

represents the mean of 74 cells.

(D) Quantification of the response of mScarlet-CLASP to light inputs with different 

dynamic characteristics. The left plot shows median time to return within 25% of basal 

nuclear/cytoplasmic enrichment for light pulses of different durations and constant 1,024-

a.u. amplitude. Median is used to minimize the effect of outliers. The dotted line is Y = X 

line. The right plot shows the mean response to 1 min light pulses of different amplitudes. 

Points in both plots represent at least 21 cells.

(E) Nuclear/cytoplasmic enrichment fold change of mScarlet-CLASP in response to light 

pulsing with different periods. Left three graphs show mean enrichment fold change as a 

function of time in response to pulsed light inputs (1 min light given in a 9, 5, or 2 min 

period, respectively) with 1,024-a.u. amplitude. The right plot quantifies median peak-to-

trough difference (normalized to the median peak-to-trough difference generated by the 

longest period). Median is used to minimize the effect of outliers. Each point in the right plot 

represents at least 32 cells. Error bars and shaded area except where noted, represent 

standard deviation to show the spread of the data. For all panels, n represents the number of 

cells tracked and light input regimes are depicted on top of panels. Cartoon (left of D) 

represents mScarlet-CLASP. yeLANS—yeast enhanced LANS, PM-LOVTRAP—plasma 

membrane LOVTRAP, Mito-LOVTRAP—mitochondrial LOVTRAP. See also Figures S1 

and S2.
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Figure 2. CLASP Can be Used to Control Localization of Many Transcription Factor Cargos
(A) Nuclear/cytoplasmic enrichment fold change in response to pulsed (left panels) and 

continuous light (right panels) for several TF-CLASP cargos. Graph shows mean of single-

cell traces for TFs tagged with CLASP. Light is delivered for one minute at the start of each 

5-min period or continuously. The shaded gray area represents 95% confidence interval and 

light inputs are represented in blue above graphs. n represents number of cells tracked.

(B) Fluorescent reporter expression due to TF-CLASP localization. The left panel shows a 

schematic of the experiment—the TF is localized to the nucleus for 0.5, 1, 1.5, or 2 h. A 

fluorescent reporter is measured via flow cytometry 1 h after light shut-off. Center panel 

shows the population response of pSYNTF-YFP (promoter downstream of SynTF-CLASP) 

for inputs shown on the left. Darker blue shades correspond to longer light duration. The 

black histogram corresponds to no light. The right panel shows quantification of the YFP 

fold change as a function of light duration for promoters responsive to other TF-CLASP 

constructs following the same experimental protocol. Fluorescence readings are normalized 

by side scatter and then normalized to the 0 min dose for each strain to show fold change. 

Error bars represent standard error of the mean for 9 biologically independent replicates.

(C) Fluorescent reporter response to pulsatile versus continuous localization of different TF-

CLASP constructs. TF-CLASP constructs are given either 20 2-min pulses of light or 1 40-

min pulse of light, as depicted in the schematic on the left. Reporter expression is measured 

via flow cytometry 1 h after light shut-off. Right panels show quantification of YFP fold 

change in response to pulsed light input, continuous light input, or no input. Error bars 

represent standard error of the mean for 9 biologically independent replicates. In all panels, 
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strains are induced with a given amplitude of light (SynTF-CLASP – 1,024 a.u.; Msn2-

CLASP – 2,048 a.u., Pho4-CLASP – 4,095 a.u.). See also Figure S3.
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Figure 3. Crz1 Target Genes Show Differing Interpretation of Crz1*-CLASP Short 
Nucleoplasmic Pulses
(A) Schematic of the experimental setup used. Two types of light inputs are given to cells 

expressing Crz1*-CLASP: 2 min pulses with decreasing periods (20, 15, 12, and 6 min 

periods) and single pulses with increasing durations (20, 40, 80, 120 min). Light-induced 

Crz1*-CLASP nuclear localization is measured with fluorescence microscopy. The mean of 

single-cell fluorescence values is plotted (solid red for pulsed input or blue line for 

continuous inputs), with the shaded area representing 95% confidence interval (red or blue 

shading). Cells tracked for the pulsed and continuous inputs are 187 and 91 cells, 

respectively. Crz1*-CLASP nuclear fluorescence AUC (x-axis in a rightmost panel) is 

quantified as the area under the nuclear fluorescence traces (gray shading in middle panel). 

Gene expression (mean FITC/SSC) is measured for 6 promoter fusions of target gene 

driving a fluorescent protein (YFP) at 5 h after light input. A schematic shows gene-

expression values for different light input regimes are plotted as a function of nuclear 

fluorescence AUC, generating the output-fluorescence plot referred to in the text. Each point 

in the plot is an endpoint measurement of gene expression, as highlighted by the YFP time 

course schematic above. Red circles represent output fluorescence for short 2 min pulses 

with an increasing period, and blue circles represent that for continuous single pulse with 

increasing durations. A best-fit line (red for pulsed inputs and blue for continuous inputs) is 

fit through the data points for the pulsed and continuous inputs. For each output-

fluorescence plot we define the slope ratio as the ratio of the slope of the pulsed to 

continuous best-fit lines.

(B) Output-fluorescence plot, for three representative Crz1 target promoters pYPS1-YFP, 

pCMK2-YFP, and pGYP7-YFP. The error bars are the standard deviation of at least 3 

biological replicates.
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(C) Slope ratios for 6 Crz1 target genes plotted in order of highest to lowest slope ratio. Data 

for 3 biological replicates are plotted. In all panels, Crz1*-CLASP is induced with a 512 a.u. 

light input. See also Figure S4.
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Figure 4. Higher Gene Expression in Response to Short Pulses by Promoters Occurs when the 
Dose Response Is Saturated at Low TF Concentration
(A) Schematic of a two-state promoter model, where the input is Crz1*-CLASP nuclear 

localization (TF) and the output is fluorescent protein level (Protein). The promoter turns 

ON with rate constant kon and turns OFF with rate constant koff.

(B) Heatmap of slope ratio for increasing kd and different values of kon and koff. Each 

column has a given value of kd and each row has different values for kon and koff that 

produce the same kd. The nominal kon and koff values used in the first row are noted at the 
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top of each column, and every subsequent row uses a fraction of these values (1/5, 1/10, and 

1/20). The values of β1, β2 and β0 are 2.01, 4.92, and 0.0032, respectively.

(C) The plot of pon as a function of TF for kd = 2.3 and 46, assuming a fast promoter. This 

quantity is denoted as pon, QSSA, and calculated as pon, QSSA = TF/(TF+ kd). The dotted line 

represents max TF input, TFmax, which is 2.6.

(D) The plot of pon, QSSA as a function of time assuming quasi-steady state of promoter 

dynamics as in panel (C). In these panels, kd = 2.3. (Top panels) Red and blue lines represent 

pulsed and continuous TF inputs, respectively. Gray lines and text denote the equivalent area 

of TF input. The area labeled “a” represents the rise for both pulsed and continuous inputs. 

The area labeled “b” represents the fall of the pulsed input, and the equivalent area for the 

continuous input. The area labeled “c” represents a single pulse of the pulsed input, and the 

equivalent area of the continuous input. The area labeled “c” is equivalent to the sum of the 

areas labeled “a” and “b.” The areas labeled “a” and “b” are equivalent to each other. 

(Bottom panels) Red and blue lines represent pon, QSSA in response to pulsed and continuous 

TF inputs, respectively. Gray shading denotes the equivalent area of pon, QSSA for continuous 

and pulsed inputs. Light red shading denotes excess pon, QSSA area resulting from the rise 

and fall of the pulsed input.

(E) Output-fluorescence plots generated by the model for two parameter sets that 

qualitatively represent pYPS1-YFP. The solid lines represent kon = 0.2 and koff = 0.46. The 

dashed lines represent kon = 2 and koff = 4.6, and kd = koff/kon = 2.3 for both parameter sets. 

The red lines represent the output of the pulsed input. The blue lines represent the output of 

the continuous input; for both parameter sets, this output is the same.

(F) Plot of pon as a function of time for continuous and pulsed inputs for kd = 2.3 with kon = 

0.2, koff = 0.46. Red and blue solid lines represent the pon resulting from pulsed and 

continuous inputs, respectively. The red and blue shading represents pulsed and continuous 

TF inputs, respectively.

(G) Same as (F) for kon = 2, koff = 4.6.

(H) Schematic of dose-response experiment. Cells with different expression levels of Crz1*-

CLASP are induced with light for 4 h and YFP expression is measured after 5 h.

(I) The experimental dose response for pYPS1-YFP was fit to the equation: normalized 

protein output = C×TF/(TF + kd) where TF = maximum Crz1*-CLASP nuclear 

fluorescence, C = scaling factor, and kd = koff/kon. kd and squared error of prediction (SSE) 

of the fit for each gene is noted in the bottom right corner of the plot.

(J) Same as (I) for pCMK2-YFP. for (I and J), error bars represent the standard deviation of 

3 biologically independent replicates. See also Figures S5, S8, and S9.
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Figure 5. Time Course Measurements of Protein Output Constrain Parameter Relationships
(A) (Left panel) Schematic of the input used for protein time course experiment. Cells are 

induced with constant blue light and pYPS1-YFP or pCMK2-YFP expression is measured 

continuously (every 8 min) throughout induction for 2 h. (Middle panel) Plot of normalized 

protein expression (FITC/SSC) as a function of time for pYPS1-YFP. The magenta lines 

represent fits through the data (plotted as black dots with error bars) for the model in Figure 

4A. The model was simulated using 33,000 parameter sets varying kon, koff, and γ1, and fit 

to the dynamic gene-expression data was assessed. kon was varied from 0.001–10, koff from 

0.000007–100, and γ1 from 0.01–10. (Right panel) Same as a middle panel for pCMK2-
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YFP. For both panels, β1 was set to 0.1, β2 set to 0.06, γ2 set to 0.0083, and β0 set to 0.001. 

For middle and right panels, error bars represent standard deviation of 3 biologically 

independent replicates.

(B) (Left panel) Plot of log10(γ1) as a function of log10(kon×TF+koff) for pYPS1-YFP. 

Magenta dots represent 2,355 parameter fits to the dynamic protein time course data 

(continuous input) as discussed in Figure 5A middle panel. Gray dots represent parameters 

that were tested but did not fit the data. (Right panel) Same as left panel for pCMK2-YFP. 

Blue dots represent 807 parameter fits to the dynamic protein time course data (continuous 

input) as discussed in Figure 5A right panel. Gray dots represent parameters that were tested 

but did not fit the data.

(C) (Left panel) Schematic of input for the output-fluorescence experiment. The experiment 

is as described in Figure 3A. (Middle panel) Output-fluorescence plot of simulated outputs 

and data for pYPS1-YFP. Parameters determined to fit the dynamic protein time course with 

a continuous input are used to predict the output-fluorescence data. Red and blue lines 

represent the model outputs for all parameters that fit the output-fluorescence and protein 

time course data from (A). Red and blue circles and error bars represent experimentally 

measured means and standard deviations for pulsed and continuous inputs, respectively, for 

3 biologically independent replicates. (Right panel) Same as the middle panel for pCMK2-

YFP.

(D) (Left panel) Plot of log10(γ1) as a function of log10(kon×TF+koff) for pYPS1-YFP, 

where the magenta dots represent 300 parameters that fit both the output-fluorescence and 

dynamic protein time course (continuous input). Gray dots represent parameters that were 

tested but did not fit to the data. (Right panel) Same as the left panel for pCMK2-YFP. The 

blue dots represent 321 parameters that fit both the output-fluorescence and dynamic protein 

time course data (continuous input).

(E) (Left panel) Schematic of input for protein time course experiment for pulsed and 

continuous inputs. Cells were induced with either constant light or pulsed light (2 min ON/4 

min OFF) and gene expression was measured every 8 min. (Middle panel) Plot of 

normalized protein expression (FITC/SSC) as a function of time for pYPS1-YFP for the 

experiment denoted in the left panel. Red and blue circles and error bars denote 

experimentally measured means and standard deviations for pulsed and continuous inputs, 

respectively, for 3 biologically independent replicates. Red and blue lines represent the 

model outputs for the experiment denoted in the left panel, using parameters that fit the 

dynamic protein time course (continuous input) and output-fluorescence data. (Right panel) 

Same as left panel for pCMK2-YFP. See also Figure S8.
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Figure 6. Higher Gene Expression in Response to Continuous Inputs by Promoters Can be 
Explained by a Model with Two Transition States and with a Thresholded Transition between 
Non-transcribing Promoter States
(A) Schematic of the three-state model where roff, the inactivation rate constant from p0 to 

poff, is thresholded by TF concentration and where the activation from poff to pon is linearly 

dependent on TF.

(B) (Left panel) Schematic of the experimental setup. (Right panel) Output-fluorescence plot 

for pGYP7-YFP. Circles are experimentally measured values while lines denote the mean 

model output for 96 parameter sets that fit the data points within the error bars, the same 
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metric as used in Figure 5. The solid line denotes the mean and shaded areas denote the 

standard deviation of the model outputs for these parameter sets. Parameters were sampled 

(ron from 0.1–100, roff from 0.1–100, kon from 0.0001–1, koff from 0.0001–1, β1 from 

0.0001–10, β0 from 0.000001–0.01, threshold from 0–0.5) or set (β2 = 0.06, γ1 = 0.05, γ2 = 

0.0083). Red circles, error bars, and lines relate to the pulsed input, while blue circles, error 

bars, and lines relate to the continuous input. Error bars show standard deviation from 3 

biologically independent replicates.

(C) (Left panel) Schematic of the experimental setup. (Right panel) Dose-response plot for 

pGYP7-YFP. The parameters that fit the output-fluorescence data were used to further fit the 

dose response of pGYP7-YFP using a least squared error criterion (25 parameter sets). Solid 

black line is the mean generated by the model. The black circles are the mean of the 

experimentally measured dose response and error bars are the standard deviation of 3 

biologically independent replicates.

(D) (Left panel) Schematic of the experimental setup. (Right panel) The parameters that fit 

the output-fluorescence are subjected to cross-validation using an experiment where Crz1*-

CLASP expression is increased (construct expressed from a pTEF1 promoter), and cells are 

exposed to either short-pulsed (2 min ON/10 min OFF) or continuous input (40 min of 

light). The model generated outputs (solid gray, red, and blue bars) are plotted with the 

experimental data (hashed gray, red, and blue bars). The gray bars correspond to no light 

input. The error bars are the standard deviation of 3 biological replicates.

(E) (Left panel) Heatmap shown in the log10(kon/koff)-log10(ron/roff) plane of slope ratio of 

output-fluorescence relationship resulting from the model in (A). Parameters are sampled 

(roff from 0.0025-25, koff from 0.0025–25) or set (ron = 0.25, kon = 0.25, β1 = 0.0001, β2 

=0.06, γ1=0.05, γ2 =0.0083, threshold = 0.5, β0 = 0.000001). Point 1 highlights a parameter 

set that fits the output-fluorescence, dose response, and cross-validation datasets for pGYP7-

YFP. Black region is where slope ratio < 1. Gray dotted line indicates when log10(kon/koff) ≅ 
−1.5, at which point the dose-response changes from linear to nonlinear with increase in the 

log10(kon/koff) value. All parameters that show a qualitative fit to output-fluorescence data 

are displayed as light and dark gray dots. The light gray dots represent parameter sets where 

all pGYP7-YFP data are quantitatively fit. (Right panel) Heatmap of slope ratio as in (E, left 

panel) with a ron = 2.5, 10 times larger than that in (E, left panel). kon is also set to 0.25. 

Parameters are sampled (roff from 0.025-250, koff from 0.0025-25) or set (β2 = 0.0001, β2 = 

0.06, γ1 = 0.05, γ2 = 0.0083, threshold = 0.5, β0 = 0.000001). Point 2 highlights the effect 

of increasing both ron and roff while maintaining the ratio log10(ron/roff).

(F and G) (Upper panels) Output-fluorescence plots generated by the model for different 

parameter sets that correspond to points 1 and 2 in the heatmaps of (E). The slope ratio for 

point 1 is 0.51 with log10(kon/koff) = −1.58 and log10(ron/roff) = −0.89. The slope ratio for 

point 2 is 1.04 with log10(kon/koff) = −1.58 and log10(ron/roff) = −0.89. (Middle panels) 

Example of a time course of promoter state p0 for a light input that produces the equivalent 

of 40 min (dotted line in upper panel) in nuclear localization either continuously or in short 

pulses. Solid lines are the p0 pulses while shading denotes TF nuclear localization. The 

black double arrows denote the maximum depletion of the p0 state for the pulsed input. 

(Lower panels) Example of a time course of promoter activity pon for a light input that 

produces the equivalent of 40 min (dotted line in upper panel) in nuclear localization either 

continuously or in short pulses, similar to middle panels. The red and blue hashes represent 
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residual promoter activity beyond the TF nuclear localization input. The red residual 

promoter activity is repeated 15 times while the blue residual activity is repeated one time. 

The ▲ bar denotes the difference between the amplitudes generated by the 2 min pulsed and 

40-min continuous input.

(H) (Left panel) Schematic of chromatin immunoprecipitation experiment. (Right panel) H3 

histone occupancy is plotted for regions of the promoter fusions pYPS1-YFP and pGYP7-

YFP. H3 histone occupancy is calculated as the ratio of % immunoprecipitation (% IP) of 

the promoter fusion target to % immunoprecipitation of an actin control. % 

immunoprecipitation is calculated relative to the input DNA. Black lines show the mean 

measured value and gray shading shows the standard deviation of 3 biologically independent 

replicates. See also Figures S6 and S7.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Histone H3 Antibody (mAb) Active Motif Cat No. 39064

Bacterial and Virus Strains

DH5alpha (competent cells) Macrolab https://qb3.berkeley.edu/macrolab/

MACH1 (competent cells) Macrolab https://qb3.berkeley.edu/macrolab/

Biological Samples

None

Chemicals, Peptides, and Recombinant Proteins

Conconvalin A Sigma-Aldrich Cat No. C2272

YNB w/o AA BD Difco Cat No. 233520

Glucose Sigma-Aldrich Cat No. D9434

Ammonium sulfate Sigma-Aldrich Cat No. 7783-20-2

Sorbitol Sigma-Aldrich Cat No. S1876

YNB w/o AA & ammonium sulfate Life Sciences Cat No. Y2030-02

Calcium chloride Fisher Scientific Cat No. 50995817

Complete supplement mixture MP Biomedical Cat No. MP114560122

Dextrose Sigma-Aldrich Cat No. 50-99-7

Yeast extract Alfa Aesar Cat No. 26769

Peptone BD Biosciences Cat No. 211677

Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific Cat No. 15140122

Formaldehyde Thermo Fisher Scientific Cat No. 28908

20X TBS, pH 7.4 Teknova Cat No. T1680

Glycine Fisher Scientific Cat No. BP381

Phenol-Chloroform Thermo Fisher Scientific Cat No. AM9720

TE Buffer Fisher Scientific Cat No. BP24771

Critical Commercial Assays

Quantseq 3’ mRNA-seq library prep kit FWD 
for Illumina

Lexogen https://www.lexogen.com/quantseq-3mrna-sequencing/
#quantseqdescription

Agilent RNA 6000 Pico Kit Agilent Technologies Cat No. 5067-1513

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat No. Q32851

Deposited Data

CLASP-Crz1 Data This manuscript http://dx.doi.org/10.17632/jxjnjmmj83.1

Experimental Models: Cell Lines

None

Experimental Models: Organisms/Strains

Strain list, see Table S2 This manuscript N/A

Oligonucleotides

None
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Plasmid list, see Table S3 This manuscript N/A

Software and Algorithms

Matlab Mathworks https://www.mathworks.com/downloads/

uManager uManager https://micro-manager.org/

ilastik ilastik https://www.ilastik.org/

FlowCytometryTools Python https://pypi.org/project/FlowCytometryTools/

Python 2.7.12 Python https://docs.conda.io/projects/conda/en/latest/user-
guide/install/index.html

LabView National Instruments https://www.ni.com/en-us/shop/labview/upgrade.html

STAR Dobins 2013 https://github.com/alexdobin/STAR

DESeq2 Love 2014 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

SRA Toolkit NCBI https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/

deepTools deepTools https://deeptools.readthedocs.io/en/develop/

Arduino IDE Arduino https://arduino.en.softonic.com

CLASP-Crz1 Code This manuscript https://github.com/lindseyo/CLASP-Crz1

Other

PhosphoGRID PhosphoGRID - Mike Tyers https://phosphogrid.org/

CYCLoPs University of Toronto - Andrews 
Lab

https://thecellvision.org/cyclops/
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