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Abstract

Chlamydia trachomatis attachment to cells induces the secretion of the elementary body–associated protein TARP
(Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at
tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent
recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion
activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine
nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation
profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase
(PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when
phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid
phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of
chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these
data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.
trachomatis invades non-phagocytic cells.
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Introduction

Chlamydiae are obligate intracellular bacterial pathogens that

are responsible for a number of human diseases [1]. Different

serological variants of Chlamydia trachomatis are primarily pathogens

of humans. Serological variants (serovar) A, B, Ba, and C are the

etiologic agents of trachoma, the leading cause of preventable

blindness worldwide. Serovars D to K are associated with sexually

transmitted diseases, and serovars L1, L2, and L3 cause

lymphogranuloma venereum, a more invasive sexually transmitted

disease. Chlamydophila psittaci is a zoonotic agent that causes a

pneumonia-like respiratory disease in humans. Chlamydophila

pneumoniae is a causative agent of community-acquired pneumonia,

and has recently been associated with cardiovascular diseases. The

genii Chlamydia and Chlamydophila share several biological

properties, including a biphasic developmental cycle that includes

cell types adapted for extracellular survival (elementary bodies or

EBs) or intracellular multiplication (reticulate bodies or RBs) [2].

Intracellular development occurs within a protective vacuole

called an inclusion, which is nonfusogenic with endocytic vesicles,

but is instead interactive with an exocytic pathway that delivers

sphingomyelin and cholesterol from the Golgi apparatus to the

inclusion [3].

Because of the obligate intracellular nature of chlamydiae,

access to the inside of the cell is paramount to survival. To this

end, Chlamydiae have evolved to efficiently invade non-phago-

cytic cells through a process that has been described as ‘‘parasite-

specified phagocytosis’’ [4]. Because entry into host cells is a

critical step in the chlamydial developmental cycle, this stage of

infection is an especially attractive chemotherapeutic target for

inhibition. Thus, considerable efforts have been put forth to

understand the molecular mechanism of chlamydial invasion.

Several chlamydial ligands and host receptors have been proposed,

although there has been little consensus as to which of the number

of chlamydial ligands and host receptors are of primary

importance. It is likely that many of these ligand-receptor

interactions function in infection of different cell and tissue types

conferring an advantage during infection [5].

Chlamydial invasion is initiated by the electrostatic and

reversible interaction of EBs mediated through host heparan

sulfate-like proteoglycans, followed by an irreversible host-

dependent step that leads to internalization of EBs [6–8]. While

the identity of the host factors in this secondary irreversible step

has yet to be identified, the characterization of the molecular

mechanism of the post-attachment stages of chlamydial infection is

beginning to be defined [7,9–12]. Upon attachment of EBs, there

is a demonstrable rapid recruitment of actin at the sites of

attachment, leading to the the formation of pedestal-like structures

underneath attached EBs [9,11]. This recruitment of actin is

transient and eventually leads to the uptake of EBs into

membrane-bound vesicles that are devoid of known early

endosomal markers [13].

Recently, a chlamydial protein associated with the uptake of

EBs was found to be translocated by a type III secretion system
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into the host cell at the site of entry [14]. Once in the cytosol, the

protein quickly becomes tyrosine phosphorylated by host kinases.

This protein, termed TARP for translocated actin-recruiting

protein, is likely to be involved in chlamydial invasion in that it is

able to interact with both filamentous and monomeric actin [15].

Interestingly, live cell imaging studies demonstrated tyrosine

phosphorylation preceding actin recruitment, leading to the

hypothesis that TARP plays a key role in initiating a signal

transduction cascade that leads to the activation of the cellular

actin remodeling machinery [14]. A striking feature of the TARP

protein is the presence of several tyrosine-rich tandem repeats of

approximately 50 amino acids in length. The number of repeats

differs, with C. trachomatis urogenital isolate, serovar D, containing

three repeat units and an LGV strain with almost six full repeat

units [16]. Some isolates lack these repeats, and are also able to

recruit and remodel actin to facilitate their invasion [11]. This is

consistent with recent functional studies of TARP that concluded a

C-terminal domain located downstream of the tandem repeat

region contributes to actin recruitment and nucleation [15]. Here

we report of an alternate mechanism of actin remodeling by

TARP that involves the repeat domain. Our data show that

phosphorylation of critical residues in this region initiates a signal

transduction cascade by interacting with guanine nucleotide

exchange factors, Sos1 and Vav2. Mutations in the relevant

tyrosine residues resulted in the loss of the ability of TARP to

interact with these proteins, preventing recruitment of Rac and

actin, and reduced invasion.

Results

A single phosphodomain unit of TARP functions to
recruit actin and Rac

Upon interaction of the EBs with epithelial cells, the TARP

tyrosine residues that are phosphorylated are within the context of

the phosphorylation sites for members of the Src-family of kinases

and recognition sites of various src-homology 2 domain (SH2)-

containing adaptor proteins (Figure 1a). The presence of these

sequences raises the possibility that TARP may recruit signaling

molecules that recruit and remodel actin. To directly test this

hypothesis, a mammalian expression vector with an insert that

encodes for a fusion protein containing the N-terminal extracel-

lular domain of CD4 (amino acids 1–372) and one phosphodo-

main unit, with wild type or mutant sequences was synthesized,

and co-transfected into Cos-7 cells along with either GFP-actin or

GFP-Rac1. The second repeated (amino acids 174–222) unit has

the sequence DAAADYEPISTTENIYESIDDSSTSDPENTSG-

GAAALNSLRGSSYSNYD, with the relevant tyrosines under-

lined (Figure 1a). These tyrosine residues were targeted because

they are in the context of the recognition motifs for various Src

kinase family and SH2 domain-containing adapter proteins [17].

Interestingly, these features of the tyrosines in the TARP

phosphodomain are shared by the critical tyrosine in the Tir

protein of enteropathogenic E. coli [18].

Expression of the fusion proteins was allowed to continue for

24 h post-transfection. The cells were incubated for 2 h with 4.5

uM beads coated with anti-CD4 antibody molecules to induce

aggregation of plasma membrane-localized CD4-1xR fusion

proteins. The highly localized tyrosine phosphorylation [14] and

subsequent formation of actin-rich structures (i.e. pedestal and

microvilli) directly underneath the attaching EB particle [9] are

indicative of a signaling process that is restricted to the area

directly underneath the invading EB particle. Indeed, the re-

initiation of the formation of these actin-rich structures after

disruption by the actin-destabilizing agent cytochalasin D was

preferentially localized to the sites of chlamydia attachment

(Figure S1). The induced aggregation provided defined spaces in

which to monitor the recruitment of GFP-actin and/or GFP-

Rac1. Doubly transfected cells were decorated with the beads and

appeared green under fluorescence microscopy. For those

transfected with CD4-1xR (WT), a ring-like localization of GFP-

actin could easily be seen surrounding the beads. CD4-1xR (Y1F2)

and (F1Y2), in which the tyrosines were mutated to phenylala-

nines, also demonstrated recruitment of GFP-actin and GFP-

Rac1, while the double mutant CD4-1xR (F1F2) failed to show the

same recruitment (Figure 1a). The differences in the ability to

recruit actin and Rac1 was not due to differences in expression

level as all constructs were expressed equally well (Figure 1b).

The tyrosine residues in the CD4-1xR fusion protein that were

actually phosphorylated in vivo were determined to be Tyr179 or

Tyr189, using a numbering system that starts with the Asp174

residue of the second repeat of the serovar L2 TARP homolog.

Figure 1b shows that the mutation of the two tyrosines to

phenylalanines (F1F2) eliminated any reactivity with the 4G10

anti-phosphotyrosine antibody. Thus Tyr179 and Tyr189, but not

Tyr218 and Tyr221 were phosphorylated. The doublet observed

in the lane marked WT was likely due to the singly and doubly

phosphorylated forms. Thus, one unit of the phosphodomain of

TARP is functional, and that recruitment of actin and Rac1

appeared to require at least one tyrosine to be phosphorylated.

The oligopeptide spanning a single copy of the repeated
units of TARP binds Rac-specific GEFs in a
phosphorylation-dependent manner

Because one copy of the repeated unit is apparently sufficient to

recruit actin and Rac1 in our cell culture assay, and the

dependence of these activities on the phosphorylation of Tyr179

and Tyr189, it is hypothesized that the domain may act as a

signaling platform to which host signaling molecules are recruited.

To directly test this possibility, biotinylated oligopeptides with the

sequence DAAADYEPISTTENIYESIDDSSTSDPENTSG-

GAAALNSLRGSSYSNYD were custom synthesized either as

non-phosphorylated tyrosines (WT), individually phosphorylated

Author Summary

The human pathogen Chlamydia trachomatis is the
causative agent of the most prevalent bacterial sexually
transmitted disease in industrialized nations, and of the
preventable blinding condition trachoma in developing
countries. Survival and replication of chlamydial species
occur exclusively inside a host cell, and thus, gaining
access to the protective intracellular niche is an absolute
requirement. This report describes how the chlamydia
protein TARP, which is secreted at the base of the bacteria
and across the host membrane, acts as a scaffold to which
host signaling proteins bind. This assembly of the complex
of signaling proteins, which include Sos1, Abi1, Eps8, and
Vav2 results in the remodeling of the host cytoskeleton to
facilitate engulfment of the infecting chlamydia. We
conclude that these proteins have a role in chlamydia
based on a number of observations including their
interaction with the TARP protein, their ability to switch
on known signaling participants in chlamydia invasion,
their localization at the site of chlamydia entry, and the
inhibition of chlamydia invasion in their absence. Alto-
gether, the data functionally link TARP with signaling
pathways that function in chlamydial invasion, demon-
strating the direct involvement of TARP in the invasion of
host cells by C. trachomatis.

Signaling During Chlamydia Invasion
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tyrosines (pY1 and pY2), or in which phenylalanines have been

substituted for the tyrosines (F1F2). The biotinylated oligopeptides

were incubated with lysates from HeLa cells and the presence of

molecules known to participate with Rac1 in signal transduction

pathways, specifically the Rac guanine nucleotide exchange factors

Vav2 and Sos1 were monitored by Western blotting. The

specificity of Sos1 towards Rac1 is conferred by the Abi1 and

Eps8 proteins [19]. Sos1 exclusively bound to the phosphorylated

pY1 peptide, as shown in Figure 2a, while Abi1 bound equally well

to pY1 and pY2 oligopeptides. Vav2 bound equally well to pY1

and pY2. Pulldown samples from the WT and F1F2 oligopeptides

showed background or undetectable levels of the all the proteins

monitored, indicative of the requirement for phosphorylated

tyrosine residues.

Interestingly, Rac was only detected in the pY1 fraction,

coinciding with the presence of Sos1, Abi1, and Eps8 in the same

fraction. While Vav2 was also present in the pY1, it is unlikely that

Rac is binding to this protein, because Rac was not pulled down

by pY2 despite the presence of Vav2. However, it has been

reported previously that Rac association with Vav2 could be

enhanced by the addition of PI 3,4,5-P3 [20–22]. Therefore, a

water-soluble analog of this phospholipid was added to the lysates,

and the pulldown fraction was assayed for the presence of Rac

(Figure 2b). When lysates were pre-treated with the PI 3,4,5-P3

analog, the Rac GTPase protein could be detected from the

pulldown fractions from both pY1 and pY2. Thus, it appears that

interaction of Rac with the phosphodomain of TARP via Vav2

required PI 3,4,5-P3.

Figure 1. Recruitment of GFP-actin after binding of 40 mm beads coated with a-CD4 antibody to cells expressing the fusion protein
CD4-1xR and its mutant derivatives. a) The wild-type and mutant sequence of the second repeat of the TARP protein from the C. trachomatis
serovar L2 is shown, from amino acid 174 to 222, the amino acid sequence of the Immunoreceptor Tyrosine-based Activator Motif (ITAM), and the
surrounding amino acids of the tyrosine residue in the Tir protein essential for actin pedestal formation by EPEC to highlight the potential for this
region of the TARP protein to be recognized by signaling molecules that are known to participate in actin cytoskeletal remodeling. Relevant tyrosine
and substituted phenylalanine residues are in bold. Western blot of total lysates prepared from cells transfected with the various CD4-1xR expression
constructs demonstrates equal levels of expression of the different derivatives of the CD4-1xR fusion protein and their respective reactivity to the
4G10 anti-phosphotyrosine antibody; b) Recruitment of GFP-actin upon aggregation of the plasma membrane-localized CD4-1xR fusion derivatives
after incubation with beads coated with the monoclonal anti-CD4 antibody. Note the lack of GFP-actin recruitment in the F1F2 mutant, indicating the
requirement for the presence of at least one of the two tyrosine residues within the ITAM sequence. c) Localization of GFP-Rac at the sites of CD4-1xR
aggregation by the anti-CD4 antibody-coated beads. Note the lack of GFP-Rac recruitment in the F1F2 mutant, indicating the requirement for the
presence of at least one of the two tyrosine residues within the ITAM sequence. In addition, membrane ruffles could be observed, which is typically
found in cells that overexpress Rac. Asterisks indicate the position of the beads. Scale bars = 10 mm
doi:10.1371/journal.ppat.1000014.g001

Signaling During Chlamydia Invasion
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A series of lysates was prepared from HeLa cells depleted of

Sos1, Abi1, and Eps8, and the co-precipitation of these signaling

molecules was performed to determine which proteins are

required for the interaction of the complex with the pY1

oligopeptide (Figure 2c). The depletion of the Abi1 protein

markedly affected the levels of Eps8 and Sos1 coprecipitated by

the pY1 oligopeptide, while neither the depletion of Eps8 nor Sos1

significantly affected the level of coprecipitated Abi1 protein.

However, depletion of Eps8 negatively affected the ability of Sos1

to be coprecipitated. Sos1 depletion also had a negative effect on

Eps8 pulldown. Taken together, the depletion and pulldown data

indicate that Abi1 binding to TARP, which is likely to be indirect

due to the lack of any SH2 domain, mediated the coprecipitation

of Eps8 and Sos1 in a complex. Interestingly, Sos1 and Eps8 may

stabilize each other’s association with the complex as depletion of

Sos1 decreased the coprecipitated levels of the Eps8 and vice versa.

Localized synthesis of phosphatidylinositol 3,4,5-
triphosphate during chlamydial invasion

Because the presence of PI 3,4,5-P3 appears to be necessary for

optimum GEF activity of Vav2 towards Rac, the localized

Figure 2. Characterization of the fraction precipitated by the various biotinylated oligopeptide derivatives. a) Western blot of the
precipitated fractions to demonstrate the presence of various host proteins that participate in guanine nucleotide exchange of the Rac GTPase. HeLa
cell lysates were incubated with the different phosphorylation derivatives of an oligopeptide that spans one unit of the repeated domain. Note the
differences in the proteins pulled down by the different oligopeptides. b) The addition of the PI 3,4,5-P3 analog to the lysate prior to pulldown
enhanced the interaction of Vav2 with Rac1. The intramolecular interaction of Vav2 blocks the binding domain of Rac1, which the lipid analog
unmasked, and thus allowed for binding of Rac with Vav2. c) The interaction of the Sos1/Abi1/Eps8 complex with TARP requires the Abi1 protein.
Lysates depleted of the various components of this complex were subjected to co-precipitation with the pY1 oligopeptide to determine the nature of
its interaction with TARP. Abi1 was required for the coprecipitation of Sos1 and Eps8 with the pY1 oligopeptide, while Sos1 or Eps8 depletion did not
affect the interaction of Abi1 with pY1, but rather partially inhibited their respective interactions with pY1. The red borders indicate the blots
demonstrating efficiency of siRNA depletion, while the lack of the border signified the coprecipitated levels of the proteins.
doi:10.1371/journal.ppat.1000014.g002
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synthesis of this phospholipid at the site of chlamydial entry was

investigated, using the probe BTK-PH-GFP, where the pleckstrin

homology (PH) domain of Bruton’s tyrosine kinase (BTK) was

fused to GFP. This domain has been demonstrated to be specific

for PI 3,4,5-P3 [23–27]. Cells expressing this probe were infected

by CMTPX-labeled C. trachomatis serovar L2, and monitored using

live microscopy (Figure S2). As shown in Figure 3, localized bursts

of EGFP-BTK-PH recruitment could be observed. Both the

recruitment and disappearance of the fluorescent probe were rapid

and transient. To test if the recruitment of BTK-PH-GFP was due

to PI 3,4,5-P3 synthesis, transfected cells pre-treated with 100 nM

wortmannin were monitored by live cell microscopy. As shown in

figure 3a and figure S3, BTK-PH-GFP recruitment at the site of

entry was not observed. Thus, BTK-PH-GFP localization at the

site of entry was likely associated with PI 3,4,5-P3 synthesis. This

localized PI 3,4,5-P3 synthesis would be expected to participate in

the activation of Rac1 by the Vav2 GEF. That not all EBs

localized with the BTK-PH-EGFP reporter could be attributed to

the presence of a relatively large number of non-infectious EB

particles, which is common in purified EB preparations, or that

some simply do not utilize the PI3-kinase pathway of chlamydia

entry.

The localized burst of PI 3,4,5-P3 synthesis implies the presence

of the PI3-kinase at the site of chlamydia entry. Figure 3b shows

that the p85 subunit of the Class I PI3-kinase interacted with the

pY1 oligopeptide, but not with pY2 or the non-phosphorylated

WT and F1F2 oligopeptides. In conjunction with the localized PI

3,4,5-P3 synthesis, the interaction of the p85 subunit implies its

localization at the site of chlamydia entry.

Vav2 and the multiprotein complex of Sos1, Eps8, and
Abi1 has guanine nucleotide exchange factor activity
towards Rac1

Sos1, Eps8, and Abi1 have been shown previously to act as a

Rac-specific GEF, and Vav2 required binding of PI 3,4,5-P3 to the

Dbl homology domain for optimal Rac binding and activation

[19–22,28]. We sought to determine if the Sos1, Eps8, and Abi1

complex and Vav2 proteins precipitated by the pY1 oligopeptide

could act as a Rac GEF. Post-nuclear supernatants were prepared

from HeLa cells that were depleted of Sos1 or Vav2 proteins by

small interfering RNA (siRNA). As a control, lysates were

prepared from HeLa cells transfected with scrambled siRNA.

The levels of Sos1 and Vav2 from the respective lysates were

markedly reduced. A representative Western blot of an siRNA

depletion experiment is shown in Figure S4.

The different precipitates were evaluated for GEF activity

towards purified His-tagged Rac1 or His-tagged Cdc42 (Table 1).

His-Rac1 and His-Cdc42 molecules were mixed with the different

precipitates along with 32P-a-GTP. An additional control in which

the His-tagged Rac1 was omitted from the reaction was included.

Total HeLa cell lysate showed the highest GEF activity towards

the His-tagged Rac1 and Cdc42. When no biotinylated oligopep-

tide was present, the amount of 32P radioactivity was relatively low

and comparable to samples in which the His-Rac has been

omitted. Pulldown samples from the WT oligopeptide showed an

approximately 4-fold increase relative to the samples with no

oligopeptide, possibly representing the non-specific binding of

proteins to the oligopeptides. However, using His-Rac1 as the

target, the supernatant incubated with the pulldown samples from

the pY1 oligopeptide displayed significantly elevated levels of

retained 32P label relative to the pulldown from the WT

oligopeptide for all lysates examined. An exception was the

Sos1-depleted lysate, indicating the requirement for the Sos1 GEF.

The pY1 precipitate from the PI 3,4,5-P3 -supplemented lysate

showed an increase in GEF activity for both His-Rac1 and His-

Cdc42 (31038 cpm vs. 51169 (Rac1) and 2821 cpm vs.

28660 cpm (Cdc42)). The corresponding increases could be

attributed to the presence of Vav2, which is a GEF for Rac,

Cdc42, and RhoA. Indeed, for the exchange reaction using His-

Rac1 as the target, Vav2 depletion by siRNA returned the 32P

level to that of the untreated cell lysate, even in the presence of PI

3,4,5-P3. While a similar reaction was not performed using Cdc42

as the target, the significantly lower level of GEF activity in the

absence of PI 3,4,5-P3 indicate that Vav2 may be involved as well.

From the data, it appears that withdrawal of PI 3,4,5-P3 was

functionally similar to the depletion of Vav2, as this GEF appears

to be inefficient in catalyzing the exchange reaction in Rac1 and

Cdc42 in the absence of PI 3,4,5-P3. Note that the remaining GEF

activity found in the Vav2-depleted lysates was likely due to the

presence of Sos1, because its depletion resulted in the further 10-

fold decrease in retained 32P label. The pY1 oligopeptide

contained Sos1 and Vav2 exchange activities.

The pulldowns with pY2 yielded relatively high numbers with

the PI 3,4,5-P3 -treated (31700 cpm) or untreated (7634 cpm)

lysates. The former indicated the presence of a PI 3,4,5-P3 -

dependent Vav2 activity, which was confirmed by the loss of

retained label (870 cpm) when Vav2 was depleted even in the

presence of PI 3,4,5-P3. Similar to pY1, the exchange reaction

using Cdc42 as the target was stimulated by the addition of PI

3,4,5-P3, indicating the involvement of Vav2. That Vav2 depletion

resulted in values that are similar to the background levels suggests

that Vav2 is the only GEF towards Rac1 and Cdc42 in the pY2

pulldown. Interestingly, there was still a relatively high level of

GEF activity in the pY2 pulldown from untreated lysates

(7634 cpm) compared to background (722 cpm). This result was

reproducible, and the significance of this observation is unclear. As

expected, the oligopeptides in which the tyrosine residues have

been replaced by phenylalanine failed to yield values that are

statistically different from the negative controls. Taken together,

the lysates pulled down by the phosphorylated peptides contained

GEF activity towards His-Rac (pY1) and Cdc42 (pY1 and pY2),

and that this GEF activity was due to the presence of Sos1 and

Vav2, with the latter requiring the addition of PI 3,4,5-P3. The

involvement of Cdc42 in the in vitro GEF reaction poses an

interesting question as this GTPase has been shown not to be

required in C. trachomatis invasion [10].

Sos1, Eps8, Abi1, and Vav2 colocalize at the sites of
chlamydial attachment

Phalloidin and 4G10 antibodies also colocalize at the sites of

entry, where TARP molecules are predicted to be translocated

across the host plasma membrane [9,14]. Interaction of Sos1,

Eps8, Abi1, and Vav2 with TARP would result in the localization

of these molecules at the sites of chlamydial entry. Indeed,

colocalizations of Sos1, Eps8, Abi1, and Vav2 with invading EBs

were observed by antibody staining and indirect immunofluores-

cence (Figure 4). All four proteins were present as distinct puncta.

We observed that 30% of EBs colocalized with Sos1, 41% with

Abi1, 30% with Eps8, and 24% with Vav2. The significance of

these values is unclear as they could be skewed by the quality of EB

preparations and the transient nature of the localization of the

signaling molecules. This transient localization of the signaling

molecules to the sites of entry may have prevented the

visualization of some of these recruitment events in fixed cells.

Another possibility is the utilization of alternate mechanisms for

some of the invading EBs.

Signaling During Chlamydia Invasion
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Figure 3. The p85 subunit of phosphatidylinositol 3-kinase interacts with the phosphodomain of TARP. a) Binding of CMTPX-labeled C.
trachomatis L2 EBs to cells expressing the PI 3,4,5-P3 probe GFP-BTK-PH induces the localized synthesis of the lipid, and thus recruitment of the
fluorescent probe. The images were obtained by live cell microscopy at 5 sec intervals. Treatment with the PI3-kinase inhibitor, wortmannin (100 nM)
abolished PI 3,4,5-P3 synthesis, demonstrating the specificity of the GFP-BTK-PH probe. B) Oligopeptide pulldown using HeLa cell lysates demonstrate
the interaction of the SH2 domain-containing p85 subunit of PI3-kinase in a phosphorylation-dependent manner, showing preference for the pY1
oligopeptide.
doi:10.1371/journal.ppat.1000014.g003
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The role of Sos1, Abi1, Eps8, and Vav2 in the invasion of
non-phagocytic cells by C. trachomatis serovar L2

Abi1 and Eps8 adaptor proteins, when in a complex with Sos1

can function as a Rac-specific guanine nucleotide exchange factor

[19,28]. Vav2 is also a well-characterized Rac GEF [20,21]. That

these proteins are found to co-precipitate with Rac and the

repeated domain of TARP underscores their potential importance

in chlamydial invasion. The roles of Sos1, Eps8, Abi1, and Vav2 in

chlamydial entry were investigated in HeLa cells depleted

individually of each protein. At 48 h post-transfection Sos1,

Eps8, Abi1, and Vav2 proteins were reduced to minimal levels

(Figure S4) with the knockdowns resulting in a decrease in invasion

efficiency of approximately 40%, 60%, 10%, and 80% respectively

(Figure 5). This suggests that Vav2 makes a very limited

contribution to chlamydial invasion or that the presence of the

Sos1 pathway compensates for the loss of Vav2.

To explore the possible cooperation between the two GEF

activities in chlamydial invasion, Sos1-depleted cells were also

treated with wortmannin, which is implicated in the Vav2-

dependent activation of Rac. Figure 5 shows that the addition of

wortmannin had no effect on mock-transfected cells, which would

be expected if the PI3-kinase-independent GEF (Sos1/Eps8/Abi1)

is truly functionally redundant to Vav2 with respect to chlamydial

invasion. However, wortmannin treatment in conjunction with

the depletion of Sos1 protein led to a significant decrease in

chlamydial invasion efficiency. For comparison, cells treated with

the actin filament destabilizing drug cytochalasin D were found to

be the least able to support chlamydial invasion

Table 1. Guanine nucleotide exchange activity associated with the different TARP oligopeptide coprecipitates

None WT pY1 pY2 F1F2

Reg. lysate 722 (110) 3085 (455) 31038 (1840) 7634 (1155) 845 (316)

PI 3,4,5-P3 782 (135) 3165 (520) 51169 (3660) 31700 (2860) 857 (228)

Sos1 siRNA 846 (118) 3427 (512) 3325 (480) 3385 (720) N/D

Vav2 siRNA+PI 3,4,5-P3 837 (104) 3252 (633) 34520 (2110) 870 (180) N/D

Cdc42-His 1013 (94) 2985 (714) 2821 (813) 3842 (996) 910 (177)

Cdc42-His+PI 3,4,5-P3 N/D 3790 (996) 28660 (2130) 22985 (3143) N/D

No Rac-His 962 (113) 835 (210) 844 (196) 909 (410) 924 (211)

Total lysate 161725 (12860) His-Rac1 218830 (9455) His-Cdc42

Data are expressed as CPM Mean (S.D.).
Used His-Rac1 as the acceptor unless indicated.
N/D – not determined.
doi:10.1371/journal.ppat.1000014.t001

Figure 4. Recruitment of various host signaling molecules to
the sites of entry of C. trachomatis L2 EBs. HeLa cells infected for
10 min were fixed and prepared for immunofluorescent staining using
antibodies specific for Sos1, Abi1, Eps8, and Vav2. White arrowheads
indicate protein puncta colocalizing with EBs. Bordered regions indicate
areas enlarged in inset images. Scale bars = 10 mm.
doi:10.1371/journal.ppat.1000014.g004

Figure 5. Sos1, Eps8, Abi1, and Vav2 are important for
chlamydial invasion. Depletion of the four proteins under investi-
gation resulted in significant decreases in invasion efficiency. The near
wild-type levels of Vav2-depleted or wortmannin-treated cells indicate a
functional compensation by the Sos1 pathway. The redundancy of the
roles of the Sos1 and Vav2 pathways was demonstrated in samples
depleted for Sos1 and treated with wortmannin. Results are from three
independent trials with each trial done in triplicate, and represented as
mean6standard deviation. Asterisks denote groups that are statisticially
significantly different (p,0.05, Student’s t-test) from the mock control.
doi:10.1371/journal.ppat.1000014.g005
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Discussion

Intracellular pathogens have evolved a number of different

mechanisms to subvert the actin cytoskeleton and facilitate their

uptake by the host cell [29–31]. Manipulation of the actin

cytoskeleton by pathogens typically involves the modulation of the

activities of host cellular proteins that participate in the complex

dynamics of actin recruitment and remodeling. Some pathogens,

like Salmonella and Shigella achieve this through secretion of

soluble Type III effectors, while others, like Listeria directly bind

host cell receptors whose signaling constitutes a cascade that

regulates actin cytoskeletal remodeling [31]. Here we report the

identification of the relevant GEFs that activate Rac during C.

trachomatis invasion. Both the Sos1/Eps8/Abi1 multiprotein

complex and Vav2 were found to associate with the phosphodo-

main of TARP in a phosphorylation-dependent manner. Optimal

Rac activation by Vav2 in vitro also required the presence of the

phospholipids PI 3,4,5-P3, which is generated at the site of

chlamydial attachment by virtue of the interaction of the p85

subunit of PI3-kinase with the TARP phosphodomain. Localiza-

tion to the sites of chlamydial entry and their functional

involvement in chlamydial invasion demonstrate their importance

in chlamydial invasion of non-phagocytic cells.

The multiple phosphotyrosine residues in the repeat region of C.

trachomatis TARP are likely recognized by a number of signaling

molecules containing Src homology 2 (SH2) domains, and thus act

as a scaffolding to which the signaling proteins relevant to actin

remodeling are recruited. The binding of the Vav2 GEF and the

p85 subunit of PI3-kinase is likely due to their respective SH2

domains, which recognize phosphorylated tyrosines. There is,

however, a level of specificity to this interaction as not all of the

SH2 domain-containing proteins examined bound to the phos-

phorylated oligopeptides. For example, the adaptor protein Grb-2

failed to bind to either pY1 or pY2 oligopeptides at levels above

background. Furthermore, depletion of Grb-2 by siRNA did not

affect chlamydial invasion (data not shown).

It has been previously shown that invasion of HeLa cells by C.

trachomatis serovar L2 is Rac-dependent, and that WAVE2 and

Abi1 are downstream effectors that activate the Arp2/3 complex

[9,10,32]. Given this requirement for Rac activation during

chlamydial invasion, the identification of the relevant Rac GEFs

defines a mechanistic pathway of chlamydia invasion at the

molecular level. A model of the proposed signaling pathway is

shown in Figure 6.

Scita et. al. have previously reported the specificity of the Sos1

protein towards Rac is conferred by the Eps8 and Abi1 proteins

[33]. Their report demonstrated that, while Sos1 by itself could

activate both Rac and Ras, the addition of Eps8 and Abi1 shifted

the specificity of Sos1 towards Rac. We confirmed that the fraction

that contained Sos1/Abi1/Eps8 complex has at least a GEF

activity towards Rac1. These proteins, indeed function as a

complex as depletion of one of the components affected the

efficiency of co-precipitation of the others. Based on this set of

pulldown experiments (Figure 2c), we propose that Abi1 mediates

the indirect interaction of Sos1 and Eps8 with the pY1

oligopeptide, while Sos1 and Eps8 require each other for their

respective interaction with Abi1. The presence of a low level of

Eps8 in pY2 in Figure 2a may be due to its interaction with Abi1,

and its low level relative to that observed for pY1 was likely due to

the absence of Sos1 in the pY2 fraction.

We have previously shown that expression of the dominant

negative mutant of the Rac GTPase inhibited chlamydial invasion,

and this inhibition correlated with the loss of actin localization at

the sites of entry. The depletion of guanine nucleotide exchange

factors that activate Rac, in essence is functionally equivalent to

the dominant negative Rac mutant. Thus, it is likely that inhibition

of the guanine nucleotide exchange factor activity towards Rac

would result in the similar loss of actin localization at the sites of

chlamydial invasion.

Vav2 demonstrated GEF activity towards both Rac1 and

Cdc42. Our results are consistent with previous data that

characterized Vav2 specificity [34]. However, the previously

reported exclusive dependence of the C. trachomatis serovar L2

invasion on Rac1 seems to contradict our data [10,32]. One

explanation could be the lack of a sustained signal to or by Cdc42

during chlamydial invasion. Three observations appear to support

this hypothesis. First, our previous data that demonstrated the lack

of any detectable activation of Cdc42 could be interpreted as

short-lived activation that was undetected during the time intervals

chosen for the experiment [10]. Second, the synthesis of the Vav2

co-factor PI 3,4,5-P3 at the site of entry is extremely short-lived,

resulting in the transient interaction of Vav2 with its downstream

GTPase effectors. Thirdly, there is a precedent for a difference in

the duration of signals transduced by GTPase protein. An

excellent example is the difference in Rac and Ras signaling, in

which Ras signaling, mediated by the Sos1/Grb-2 complex during

growth factor stimulation, was short-lived relative to signaling by

Figure 6. A model of the signaling pathway to the Arp2/3
complex. Rac activation, which is required for chlamydia invasion
involves two different guanine nucleotide exchange factors that
interact directly (Vav2) or indirectly (Sos1/Abi1/Eps8) with the
phosphodomain of the TARP protein.
doi:10.1371/journal.ppat.1000014.g006
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Rac, which was mediated by Sos1/Abi1/Eps8, under similar

conditions of growth factor stimulation [35]. Thus, it is quite

possible that the transient production of PI 3,4,5-P3 may explain

the apparent lack of Cdc42 involvement in chlamydial invasion.

On the other hand, Rac1 could be activated by two distinct

pathways; one of which is independent of PI 3,4,5-P3. This Rac

activation pathway would be expected to predominate during

conditions of high PI 3,4,5-P3 turnover. The presence of a PI

3,4,5-P3 -independent pathway of Rac1 activation would be

expected to confer a wortmannin-insensitive invasion mechanism.

Indeed, entry of serovar L2 is insensitive to treatment with

100 nM wortmannin. During inhibition of PI 3,4,5-P3 synthesis,

the Sos1/Abi1/Eps8 pathway of Rac activation remains function-

al, with the host cell still supporting chlamydial uptake.

We observed highly localized and transient bursts of synthesis of

PI 3,4,5-P3 at the sites of chlamydial entry. This implies the

recruitment of the regulatory subunit (p85) of PI3-kinase and its

binding partner, the catalytic (p110) subunit. Indeed, the p85

subunit was found to bind preferentially the pY1 oligopeptide. In

conjunction with the observed interaction of Vav2 with the pY2

oligopeptide, these two components may bind independently to

two distinct binding sites, but cooperate to activate the Vav2-

dependent pathway. That the PI3-kinase p85 subunit displayed

the same preferential binding to pY1, as the Sos1/Abi1/Eps8

complex is suggestive of a competition or a hierarchical control

that possibly determines which pathway is utilized for chlamydia

uptake. The reproducible decrease in invasion efficiency during

depletion of the Sos1 protein indicate the preferential utilization of

this pathway compared to the Vav2 pathway. In addition, because

TARP homologs within the C. trachomatis species have at least two

phosphodomains, it is intriguing to speculate that the domains

cooperate with each other to recruit signaling molecules, and bring

into proximity components to stabilize the signaling complex and/

or transduce the desired signal. However, the presence of multiple

potential binding sites adds another level of complexity to this

signaling process in the regulation of this signaling pathway.

Chlamydophila species that possess TARP homologs, but do

not contain the repeated phosphodomain clearly demonstrate that

alternative mechanisms of actin remodeling and recruitment exist.

An attractive scenario is the requirement for an additional

bacterial factor that interacts with a conserved region of TARP

and substitute for the tyrosine phosphorylation during recruitment

of signaling molecules. The enterohemorrhagic E. coli (EHEC)

EspFu/TccP protein directly binds to the GTPase binding domain

of N-WASP to induce pedestal formation independent of Tir

tyrosine phosphorylation and Nck recruitment [36]. Whether a

similar mechanism is at work in other species of chlamydia is

certainly a topic that warrants further investigations.

Equally important is how the actin nucleating function of the

conserved C-terminal domain of TARP fit with the model that

requires signaling to the Arp2/3 complex to activate its actin-

nucleating activity. It is unlikely that the Arp2/3-independent

actin nucleating activity of the C-terminal domain of TARP is

sufficient for chlamydia-induced actin recruitment and invasion. It

has been reported that the invasion of C. trachomatis serovar L2

depends on Arp2/3. A model that we favor is a cooperative one, in

which the activation of the Arp2/3 complex by the Rac-dependent

signaling pathway initiates actin nucleation forming short actin

filaments. These nascent filaments are then bound by the WH2

motifs within the C-terminal domain of TARP, nucleating

spontaneous actin polymerization. This model fits a number of

critical observations – a) C. trachomatis invasion is Arp2/3-

dependent; b) actin polymerization can be mediated by a minimal

TARP domain that contains the WH2 motifs in an Arp2/3-

independent manner; and c) the C-terminal domain has a higher

affinity for F-actin. How these two mechanisms cooperate is under

investigation.

In summary, this report is the first to directly implicate the

Chlamydia trachomatis Type III effector TARP in invasion by

identifying the host signaling molecules that link TARP to the

actin remodeling machinery. The potential for TARP to be

differentially phosphorylated at the two tyrosine residues described

in this report and the presence of multiple phosphodomains

together imply the presence of a control mechanism that fine tunes

the function of TARP in chlamydia invasion. This modulation

may be at the level of phosphorylation, binding of the signaling

complexes, their respective stability, or the ability of the signaling

pathway to cooperate with the nucleating function of the C-

terminal domain of TARP. Clearly, many questions still need to be

answered to gain a full understanding of the invasion process of

this medically important obligate intracellular pathogen.

Materials and Methods

Organisms and cell culture
C. trachomatis serovars L2 (LGV-434) were grown in and

harvested from HeLa 229 cells as previously described [37]. EBs

used for infections were purified by Renografin (E. R. Squibb and

Sons, Princeton, NJ) density gradient centrifugation. Fluorescent

CMTPX-labeled EBs were prepared as described previously [38],

with slight modifications [10].

Antibodies, constructs, and siRNA
Antiphosphotyrosine monoclonal antibody (MAb) clone 4G10

and FITC-conjugated 4G10 were purchased from Upstate USA

(Waltham, MA); anti-Sos1 monoclonal, anti-Abi1 monoclonal,

anti-p85, and anti-Eps8 polyclonal antibodies were from and

Abcam; anti-Vav2 rabbit polyclonal antibody was from Zymed

(South San Francisco, CA); and anti-Rac1 monoclonal antibody

was purchased from Cytoskeleton. Secondary antibodies for

immunoblotting were horseradish peroxidase-conjugated anti-

mouse or anti-rabbit (Cell Signaling Technology, Inc., Beverly,

MA). GFP-actin (from Dr. S. Grieshaber, University of Florida),

GFP-BTK-PH (from Dr. J. Celli, LICP, NIAID) and GFP-Rac

(from Dr. M. Way, Cancer Research UK, London, UK) were

described previously [39,40]. siRNAs against human Sos1#16747,

#16656, and #16561), Eps8 (#107412, #107411, and #14635),

Abi1 (#137945, #137944, #137946), and Vav2 (#13196,

#214755, #138982) were purchased from Ambion.

Cloning
Synthesis of pEGFP-C1 L2 TARP was performed as follows.

The full length L2 TARP gene was amplified using KpnI linker-

containing FWD primer 59-ATGGTACCATGACGAATTCTA-

TATCAGGTG-39 and the BamH1 linker-containing reverse

primer 59-ATGGATCCTGTTCTCCTTTGCTTTTTA-39 with

the PCR product digested with KpnI (New England Biolabs) and

BamH1 (New England Biolabs) for an overnight ligation into the

pEGFP-C1 vector (Clontech), which was pre-digested with the

same restriction enzymes and dephosphorylated using calf

intestinal alkaline phosphatase (New England Biolabs). Ligation

was performed at 15uC for 16 h.

The N-terminal domain of CD4 (amino acids 1–372) was

subcloned from pCMV-Sport XL5-CD4 purchased from Origene

by PCR using the primers 59-CACCATGAACCGGG-

GAGTCCCTTTT-39 and 59-AAGCTTCTTCTACGGATCG-

GGTTACTT-39 into the pcDNA3.1 TOPO vector (Stratagene,

Carlsbad, CA). The resulting vector was digested with Kpn1 to
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accommodate the PCR fragment containing one repeated unit

(amino acids 174–222) of the TARP phosphodomain region. This

PCR fragment was generated by the amplification of the pEGFP-

C1 L2 TARP using the primers 59-ATGGTACCCTTCA-

GAAAGCTCAGAAACTA-39 and 59-ATGGTACCGTAG-

GAGGAGCCTCTTAGA-39 containing Kpn1 linker sequences.

The orientation of the insert relative to the the CD4 reading frame

was determine by colony PCR using the primers CD4 forward

primer 59-CACCATGAACCGGGGAGTCCCTTTT-39 and 59-

CTTAGTCATCAATACTCTCATAAATATTTTCAG-

TAGTGCTTATCG-39, which annealed to an internal region of

the 1xR sequence.

Transfection
HeLa 229 or Cos7 cells were seeded on 12-mm glass coverslips

in 24-well plates to obtain a monolayer of approximately 50%

confluence. Transfections of plasmid constructs were performed

using FuGene (Roche, Indianapolis, IN) according to the

manufacturer’s instructions. The transfection mixture was pre-

pared as follows. The FuGene reagent (3 ml was diluted into 97 ml

Optimem (Invitrogen) serum-free media, and to which DNA

(1.0 mg) and added. After a 20-minute incubation at room

temperature, the complexes were added to 1 well of a 24-well

plate containing 100 ml of Optimem. The transfection cocktail was

incubated at 37uC. After 4 hours, the transfection medium was

removed and antibiotic-free RPMI media with 10% fetal bovine

serum was added. Expression from the transfection vectors was

allowed to proceed for 24 hours at 37uC.

siRNA transfection with the transfection reagent Ribojuice was

performed per the manufacturer’s instructions. Briefly, 5 nM

siRNA was incubated with 4 ul (for a well in a 24-well plate) or 100

ul (for a 100 mm dish) of Ribojuice in OPTI-MEM and incubated

at room temperature for 30 min. HeLa cells at 80% confluency

were washed once with 16HBSS and incubated in 100 ul or 1 ml

OPTI-MEM. The siRNA transfection solution was added to the

cells and incubated for 4 h. The transfection medium was

removed and replaced with complete RPMI (10% FBS, L-

glutamine, and gentamicin). At 48 h post-transfection, the levels of

the proteins of interest were evaluated by Western blot.

Oligopeptide pulldown
Briefly, post-nuclear supernatants were prepared as described

previously [32], and divided into five aliquots of 0.75 ml each. Each

aliquot was incubated with 10 mM of one type of oligonucleotide

(Sigma-Genosys) for 1 h at 4uC with rocking, followed by an

additional hour of incubation with 20 ml of streptavidin-coated

paramagnetic beads (Dynal). The beads were removed from

suspension with a magnet (Dynal), and washed three times with

cold RIPA buffer. The precipitated fractions were suspended in

150 ml of Laemmli buffer and boiled prior to gel electrophoresis.

SDS-PAGE and immunoblotting
Proteins were separated on a 10.5–14% continuous gradient

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) gels (Bio-Rad, Hercules, CA) and transferred to a 0.45-mm

Trans-blot nitrocellulose membrane (Bio-Rad). Immunoblots were

developed using Super Signal West Femto chemiluminescence

reagent (Pierce Biotechnology, Rockford, IL) per the manufactur-

er’s instructions.

GDP-GTP exchange assay
The oligopeptide pulldown fractions described above were

subjected to an in vitro GDP-GTP exchange assay [41]. 25 mCi of

[a-32P]GTP (3000 Ci/mmol, Amersham) and 83 pmol of cold GDP

(10-fold excess over labeled), and 1 mg of Rac-His or Cdc42-His

(Cytoskeleton) were added to 200 ml of exchange buffer (50 mM

HEPES, pH 7.5, 1 mM MgCl2, 1 mM Dithiothreitol, 100 mM

KCl, and 0.1 mg/ml bovine serum albumin). 10 ml of this solution

was added to the oligopeptide pulldown fraction. The reaction was

incubated at room temperature for 30 min, and terminated by the

addition of 1 ml of the stop buffer (50 mM HEPES, pH 7.5, 5 mM

MgCl2, 1 mM DTT, 10 ug/ml BSA, and 0.1 mM GTP) and

immediate incubation on ice. The beads containing the oligopeptide

and associated proteins were pelleted (30 sec at 15,000 rpm), and the

supernatant were loaded onto nitrocellulose filters using a vacuum

manifold (Bio-Rad). The filters were washed three times with ice cold

PBS with 5 mM MgCl2. Radioactivity retained on the filters was

counted by scintillation.

Immunofluorescence microscopy
Cells grown on coverslips were fixed in freshly prepared 4%

paraformaldehyde in PBS for at least 1 h at 4uC. If required, the

fixed cells were permeabilized with 0.1% Triton X-100 in PBS for

2 min at RT. The permeabilization buffer was removed and the cells

rinsed three times with 16PBS. Primary antibodies were diluted to

their respective working concentrations (a-Sos1 1:250 (Abcam), a-

Abi1 1:1000 (Abcam), a-Eps8 1:250 (Abcam), a-Vav2 1:500

(Zymed), a-L2 EB, 1:1000 from Ted Hackstadt, RML, NIAID),

added to the fixed cells, and incubated at 4uC overnight. Anti-rabbit

or anti-mouse IgG secondary antibodies used were conjugated to

either Alexa 488 or Alexa 594 (Invitrogen). Coverslips were mounted

using Mowiol on glass slides, and samples visualized using the

Olympus Fluoview 500 Laser Scanning Microscope. Images were

processed using Adobe Photoshop Creative Suite.

Live cell microscopy
Cells grown on Delta T culture dish (0.17 mm thick) (Bioptechs)

overnight and transfected with a GFP-BTK-PH expression

construct. At 18 h post-transfection, the cells were infected with

CMTPX-labeled C. trachomatis LGV serovar L2 EBs, and observed at

5 s interval using an UltraView Live Cell Imaging system fitted with

a Bioptechs Delta T4 objective heater. Images were assembled into a

time lapse Quicktime movie using NIH ImageJ (Rasband, W.S.,

ImageJ, U. S. National Institutes of Health, Bethesda, Maryland,

USA, http://rsb.info.nih.gov/ij/, 1997–2007.)

Invasion assay
Assay for invasion was performed as described previously [7].

The experiments were performed three independent times, in

triplicate each time. The Student’s t-test was used to determine

statistical significance.

Supporting Information

Figure S1 Scanning electron micrograph of cells mock-treated

(left), treated with 4 mM cytochalasin D (middle), and 30 min after

cytochalasin D has been removed. Removal of the F-actin-

destabilizing drug resulted in the preferential reformation of

microvilli at the sites of chlamydia attachment, indicating the

induction of signaling directly underneath the EBs and the restriction

of lateral mobility of the signaling complex. Scale bar = 1 mm.

Found at: doi:10.1371/journal.ppat.1000014.s001 (2.04 MB TIF)

Figure S2 Localized synthesis of PI 3,4,5-P3 at the sites of

chlamydial entry. Cos-7 cells expressing the pleckstrin homology

domain of Bruton’s tyrosine kinase fused to green fluorescent

protein (BTK-PH-GFP) were monitored by live cell microscopy
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upon infection with CMTPX-labeled C. trachomatis serovar L2

elementary bodies. Images were acquired at 5 s intervals and

compiled using the NIH Image J software. Note that the

recruitment of the fluorescent probe is short-lived, indicating the

transient nature of the signaling cascade. It is important to note

that not all of the EB particles induced the synthesis of PI 3,4,5-P3

because there likely were non-infectious particles in the EB

preparations. Loss of infectivity occurs during harvest, purification,

and labeling of elementary bodies. A) Mock-treated cells; B)

Wortmannin (100 nM)-treated cells.

Found at: doi:10.1371/journal.ppat.1000014.s002 (3.72 MB

MOV)

Figure S3 Wortmannin (100 nM) treatment of Cos-7 cells

expressing the BTK-PH-GFP probe abolished recruitment of the

probe at the sites of attachment of CMTPX-labeled C. trachomatis

serovar L2 elementary bodies. Images were acquired at 5 s

intervals and compiled using the NIH Image J software.

Found at: doi:10.1371/journal.ppat.1000014.s003 (3.57 MB

MOV)

Figure S4 Representative Western blots demonstrating the

efficiency of depletion by siRNA of proteins of interest. HeLa

cells were mock-transfected, transfected with a scrambled siRNA

or cocktail of three siRNA for each target. Protein levels were

analyzed by Western blot at 48 h post transfection.

Found at: doi:10.1371/journal.ppat.1000014.s004 (1.01 MB TIF)
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