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ABSTRACT

TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and 
immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis 
(TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages 
of Mtb infection and performs diverse physiological and pathological functions by binding 
to its receptors in a context-dependent manner. TNF is essential for granuloma formation, 
chronic infection prevention, and macrophage recruitment to and activation at the site 
of infection. In animal models, TNF, in cooperation with chemokines, contributes to the 
initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF 
therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk 
of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in 
patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and 
prevention of TB and underscores the importance of investigating the functions of TNF and 
its receptors in the establishment of protective immunity against and in the pathology of TB. 
Such investigations will facilitate the development of therapeutic strategies that target TNF 
signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.
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Cell death; Pathogenesis

INTRODUCTION

Mycobacterium tuberculosis (Mtb), the pathogen of human tuberculosis (TB), is the primary 
cause of death attributable to a single bacterial pathogen globally. Mtb is an intracellular 
pathogen that infects the lungs upon the inhalation of bacteria-laden droplets (1). More 
than 90% of individuals infected with Mtb experience latent TB, an asymptomatic and 
prolonged stage of the disease. Active TB manifests in less than 10% of infected individuals, 
underscoring the importance of the interplay between host protection and bacterial 
pathogenesis in the prevention of active disease (2). Despite notable advancements, the 
mechanisms of host–pathogen interactions and their effects on the outcomes of TB infection 
remain unclear.
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assembly complex; mitoROS, mitochondrial 
ROS; MLKL, mixed lineage kinase domain-like 
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myeloid differentiation primary response 
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pattern; PCD, programmed cell death; 
PRR, pattern-recognition receptor; RIPK, 
receptor-interacting serine/threonine-protein 
kinase; sTNF, soluble TNF; sTNFR, soluble 
TNF receptor; TACE, TNF-converting enzyme 
metalloprotease; TB, tuberculosis; TNFR, 
TNF receptor; TRAF, TNF receptor-associated 
factor; TRADD, TNFR1-associated death 
domain; TRIF, TIR-domain-containing adapter-
inducing interferon-β.
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The production of TNF, a proinflammatory cytokine, protects against and promotes Mtb 
infection. Granuloma formation, a feature of Mtb infection, requires the recruitment of 
immune cells to the site of infection, driven predominantly by proinflammatory immune 
mediators, particularly TNF. In response to Mtb or its Ags, innate immune cells, including 
macrophages and dendritic cells, produce TNF following the stimulation of pattern-
recognition receptors (PRRs) via intracellular signaling pathways involving NF-κB activation 
(3). The recognition of TNF by the producing cell or its neighbors via TNF receptors 
(TNFRs) initiates a variety of biological responses, including inflammation, oxidative stress, 
antimicrobial mechanisms, and cell death (4). Single-cell RNA sequencing analysis has 
shown that TNF has multiple cellular sources, e.g., clusters of blood cells, including myeloid-
like and CD8+ human cells (5).

The strict control of TNF production is important for the maintenance of homeostasis during 
infection and the prevention of pathological inflammation and necrotic cell death while 
promoting host protective responses. The association of TNF with TB dates to its discovery 
as cachectin (6), although the mechanisms by which TNF modulates body mass and disease 
outcomes during different stages of TB infection are unknown. Thus, the investigation of 
the regulatory mechanisms of protective TNF responses will facilitate the development of 
inflammation-based host-directed therapies against TB.

This review focuses on the functions of TNF in the pathogenesis and prevention of TB. It 
highlights the importance of these functions in the activation of M1-macrophage responses, 
immunometabolic remodeling, trained immunity, and apoptosis, which are crucial for 
protective immunity against TB. By contrast, TNF-related mitochondrial oxidative stress and 
damage are associated with necrotic cell death and TB progression. Further investigation could 
enable the development of therapeutic strategies for TB through targeting TNF signaling.

OVERVIEW OF TNF AND TNFRs

In 1975, the Carswell group at the Sloan–Kettering Institute discovered TNF. They found 
that it was released by activated macrophages in the serum of Bacillus Calmette-Guérin 
(BCG)-infected mice treated with endotoxin, inducing endotoxin-mediated tumor necrosis 
(7). This cytokine was given the name “TNF” because it exerts lethal effects on tumors via 
hemorrhagic necrosis (8). It is involved in acute and chronic inflammatory responses to 
microbial infections and autoimmune conditions. TNF also modulates diverse physiological 
and pathological processes, encompassing embryonic development, germinal center 
formation, and tissue degeneration and repair (4,9). In this section, we explore the properties 
of TNF and TNFRs, including their relationships in signaling cascades (Fig. 1).

TNF expression, synthesis, and secretion
Human TNF was initially purified from culture supernatants of HL-60 promyelocytic 
leukemia cells stimulated with PMA (10). It is produced primarily by activated immune cells, 
including macrophages and monocytes. In response to microbial products, it is generated 
at lower levels by activated non-immune cells, such as certain subsets of endothelial cells, 
fibroblasts, adipose cells, cardiac myocytes, and astrocytes (11).

The synthesis and secretion of TNF are controlled by a series of protein- and enzyme-
mediated steps (Fig. 1). Initially, TNF is translated as a 26-kDa membrane-bound form 
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(mTNF) with N-terminal intracellular and transmembrane and C-terminal extracellular 
domains arranged into non-covalently bound homotrimers, and serves as an external signal 
receptor and a ligand. Subsequently, mTNF is converted to 17-kDa soluble TNF (sTNF) 
via cleavage of the extracellular domain by the TNF-converting enzyme metalloprotease 
(TACE; a disintegrin and metalloprotease 17). This strictly regulated process releases 
sTNF homotrimers into the extracellular milieu (12) and is required for TNF functions and 
signaling in a variety of physiological and pathological contexts.

TNFR expression levels, structures, and functions
The bioactive homotrimeric form of TNF interacts with two cognate type-I transmembrane 
receptors, TNFR1 (also known as TNFRSF1A, CD120a, and p55) and TNFR2 (also known as 
TNFRSF1B, CD120b, and p75), triggering its pleiotropic functions (13). TNFR1 is expressed 
in a variety of cell types and interacts with mTNF and sTNF, thereby promoting inflammation 
and tissue injury. TNFR2 is expressed primarily in immune and endothelial cells and is 
implicated in immune modulation and tissue regeneration. Notably, TNFR2 is activated 
exclusively by mTNF, despite being capable of interacting with mTNF and sTNF. Additionally, 
transmembrane TNFR1 and TNFR2 are cleaved into soluble forms (sTNFR1 and sTNFR2) by 
TACE (11). Such complex receptor interactions and conversions contribute to the regulation 
of the TNF signaling pathway.
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Figure 1. Schematic diagram of the synthesis and receptor signaling pathways of TNF. TNFR1 signaling involves the formation of complexes I and II. Complex I 
initiates proinflammatory responses and promotes cell survival via the canonical NF-κB and MAPK pathways. In the absence of RIPK1 ubiquitination, complex II 
formation occurs, leading to caspase-dependent apoptosis or MLKL-dependent necroptosis, depending on caspase-8 activity. TNFR2 signaling begins with the 
binding of TRAF proteins and promotes cell survival and proliferation via the PI3K/AKT pathway. It also induces non-canonical NF-κB activation mediated by NIK. 
PI3K, phosphoinositide 3-kinase; NIK, NF-κB–inducing kinase; ADAM17, a disintegrin and metalloprotease 17; FLIP, FADD–like IL-1β–converting enzyme–like 
inhibitory protein; IKK, inhibitor of NF-κB kinase; NEMO, NF-κB essential modulator; TAK1, transforming growth factor-β–activated kinase 1; TAB, TGF-β–activated 
kinase 1–binding protein; AP1, activator protein 1; TF, transcription factor.



TNFR1 and TNFR2 are composed of extracellular, transmembrane, and intracellular domains. 
Their extracellular domains are similar and harbor cysteine-rich motifs containing two to six 
repeats, typically with six cysteine residues involved in three disulfide bonds (12). In contrast, 
the intracellular domains of TNFR1 and TNFR2 do not have homologous sequences, and 
they activate both common and distinct signaling pathways. TNFR1-deficient mice with 
Mycobacterium bovis BCG infection showed a massive increase in the bacterial burden and 
succumbed to infection, whereas TNFR2-deficient mice with the same infection showed a 
reduced delayed-type hypersensitivity response and impaired granuloma formation (14).

TNFR1 signaling pathway
The binding of TNF to TNFR1 activates several signaling pathways via intracellular complexes 
I and II. Complex I is responsible for the activation of genes associated with cell survival and 
the generation of proinflammatory cytokines via the canonical NF-κB and MAPK pathways. 
By contrast, the activation of complex II promotes programmed cell death (PCD), including 
apoptosis and necroptosis (3,13). This dual signaling determines the cellular response to TNF 
and balances pro-survival and pro-death pathways in different cellular contexts (Fig. 1).

TNFR1 contains a death domain (DD) in its cytoplasmic region. Upon the binding of TNF 
to TNFR1, a conformational change that facilitates interaction with the TNF receptor 1–
associated DD (TRADD) occurs, leading to the formation of complex I. This process involves 
the recruitment of TNF receptor–associated factors (TRAF) 2 and 5 (and receptor-interacting 
serine/threonine-protein kinase 1 (RIPK1). Notably, RIPK1 governs the direction of TNFR1-
mediated signal transduction. Its ubiquitination by cellular inhibitor of apoptosis proteins 
1 and 2 (cIAP1/2) and the linear ubiquitin assembly complex (LUBAC) is important in this 
process, as it activates the NF-κB and MAPK signaling pathways via the assembly of IκB 
kinase complex and TGF-β–activated kinase 1 complexes, respectively (9). This signaling 
network fine tunes the cellular response to TNF, the outcomes of which depend on the 
context and ubiquitination state of RIPK1.

Complex II forms in the cytoplasm in the absence of RIPK1 ubiquitination and interacts 
with Fas-associated DD protein (FADD) and procaspases 8 and 10. In the absence of cIAP1/2, 
RIPK1 ubiquitination is prevented, leading to the recruitment of RIPK3, procaspase 8, 
and cellular FADD–like IL-1β–converting enzyme–inhibitory protein, ultimately resulting 
in caspase-dependent apoptotic cell death (4). TNFR1-mediated apoptosis, but not that 
mediated by TNFR2, is important for the activation of innate protective immunity in M. 
avium–infected mice (15). TNFR1 signaling triggers the formation of a necrosome involving 
phosphorylated RIPK1, RIPK3, and mixed-lineage kinase domain-like protein (MLKL), 
leading to caspase-independent necroptosis (13). Roca and Ramakrishnan (16) investigated 
the TNF-mediated pathogenesis of TB using M. marinum–infected zebrafish, finding that 
excess TNF promoted the mitochondrial ROS (mitoROS)-mediated activation of necroptosis 
via RIPK1- and RIPK3-dependent pathways in infected macrophages, resulting in increased 
macrophage microbicidal activity during the early stage and vigorous extracellular 
mycobacterial growth in the late stage. In summary, the TNFR1 signaling pathways dictate 
cellular responses to TNF, influencing cell fate and immunity during infection. Research on 
these pathways will promote the development of targeted therapies for diseases involving 
dysregulated TNF signaling.
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TNFR2 signaling pathway
In contrast to TNFR1, TNFR2 lacks a DD and thus does not interact directly with TRADD. 
It does interact directly with TRAF2 via a TRAF-binding motif, leading to the indirect 
recruitment of TRAF2-associated proteins, such as TRAF1, cIAP1/2, and LUBAC. This 
recruitment promotes ubiquitin-mediated protein degradation, thereby suppressing apoptosis 
(17,18). The engagement of TNF with TNFR2 activates diverse signaling pathways, including the 
reciprocal phosphoinositide-3 kinase/Akt pathway, the apoptosis signal–regulating kinase 1–
mediated c-Jun N-terminal kinase pathway, and the non-canonical NF-κB pathway, by activating 
NF-κB–inducing kinase. These pathways collectively promote cell proliferation and survival (18).

In summary, TNFR2 promotes cell survival and proliferation via diverse signaling pathways 
(Fig. 1). The interplay between TNFR1 and TNFR2 signaling is important for the regulation 
of cellular responses to TNF, and the understanding of these pathways is essential for the 
decipherment of their functions in a variety of physiological and pathological contexts.

TNF: A CONTENTIOUS FACTOR DURING HOST-Mtb 
INTERACTION IN TB
Mtb infection is initiated when the bacteria enter the lungs via inhalation and target alveolar 
macrophages in the lower respiratory tract (2). These macrophages internalize Mtb via 
receptor-mediated phagocytosis. Thereafter, Mtb employs sophisticated immune evasion 
strategies, such as the suppression of phagosome-lysosome fusion. It also disrupts the 
phagosomal membrane via its 6-kDa early secretory antigenic target secretion system 1 
(ESX-1), thereby releasing various bacterial components, such as mycobacterial DNA, into the 
macrophage cytosol (19).

Mtb infiltrates the lungs, prompting the recruitment of immune cells and culminating in the 
formation of granulomas—localized clusters of immune cells that contain the infection and 
coordinate immune responses (1). During the initial phase of infection, the innate immune 
system detects Mtb, triggering a cascade of pro- and anti-inflammatory responses. Alveolar 
macrophages are important for the primary immune defense because of their specialized 
PRRs and communication with epithelial cells (20). The activation of innate immune 
signaling pathways triggered by PRR recognition results in the activation of the transcription 
factor NF-κB, which triggers the expression of TNF and other proinflammatory cytokines 
(21). TNF and TNFR signaling is linked to the production of other inflammatory cytokines 
and chemokines, M1 macrophage responses, oxidative stress induction, cell death initiation, 
and the adaptive immune response. In this section, we discuss TNF-mediated granuloma 
formation and innate immune activation.

TNF and granuloma formation
TNF regulates host immune responses, including granuloma formation. Granulomas 
are important for the control of TB, but can also contribute to Mtb proliferation and 
dissemination (22). Granuloma formation, quantity, and morphology differ between active 
and latent TB infections. Additionally, individual granulomas contain distinct populations 
of activated and differentiated immune cells, including macrophages, which have varying 
abilities to control bacterial growth. This heterogeneity reflects the diversity of TB 
progression and the local microenvironment, which is associated with host immune and 
pathological statuses at the site of infection and systemically (23,24).
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The granulomatous inflammation triggered by Mtb infection can have protective effects 
and destructive consequences. From a protective standpoint, it entails the infiltration of 
inflammatory cells, including macrophages, T cells, and B cells, to the primary site of lung 
infection. These cells exert important effects on intracellular Mtb, and fibrous encapsulation 
promotes Mtb eradication and the establishment of a mechanical and functional barrier 
that prevents its dissemination (25). Mtb has evolved strategies to persist in the face of the 
host response, enabling its long-term survival. These adaptations subvert host immunity, 
contribute to latent TB development, and promote antimicrobial drug tolerance. Oxygen 
reduction is the most characteristic adaptation; the direct, in-vivo assessment of other 
environmental factors is challenging because the host response to Mtb evolves (26,27).

The precise regulation of TNF production is essential for protective granuloma formation 
and the maintenance of granuloma structure, as excessive proinflammatory responses 
during early Mtb infection can lead to extensive tissue damage. Thus, a balanced response is 
needed to promote protection, minimize tissue damage, reduce bacterial persistence, and 
enhance the efficacy of antimicrobial treatment (25). The investigation of the mechanisms 
of protective granuloma formation will enable the development of novel therapeutics that 
enhance protection and reduce damage.

TB and cachexia
Malnutrition is linked to cachexia, a wasting symptom associated with chronic illnesses (28). 
The factors underlying wasting in TB are unclear. Studies have linked cytokine production 
to cachexia prevalence in specific cancer types (29). Cytokine (IL-6, TNF, IL-8, TGF-β, and 
macrophage inhibitory cytokine 1/growth differentiation factor 15) production has been 
linked to the cachexia prevalence in certain cancer types (30,31). Interestingly, the sex of 
wasted TB patients impacts post-treatment weight regain, with men showing a higher 
rate of regain of the lean mass index relative to the fat mass index and women exhibiting 
the opposite pattern (32). Furthermore, B cells may protect in part against chronic TB, 
despite debate over their contribution to anti-Mtb immunity. In TB-susceptible I/St mice, 
the decline in B cells between weeks 12 and 16 post-infection aligned with intensified lung 
inflammation and elevated expression of IL-1, IL-11, IL-17α, and TNF. B-cell depletion at week 
16 post-infection resulted in accelerated cachexia, reduced lifespan, heightened infiltration 
of CD8+ T cells, elevated IL-6 expression, and the upregulation of genes associated with 
neutrophil recruitment and tissue damage (33). Research on the mechanisms underlying 
the relationships among cachexia, inflammation, and sex-dependent anti-TB responses will 
facilitate the development of personalized interventions for TB.

TB and anti-TNF therapy
TNF has a variety of physiological and homeostatic functions, and anti-TNF therapies are 
used to treat a range of inflammatory and autoimmune diseases, including rheumatoid 
arthritis, psoriatic arthritis, and inflammatory bowel disease (13,34). Five TNF blockers—
infliximab, golimumab, adalimumab, certolizumab pegol, and etanercept—have received 
regulatory approval to date. Infliximab is a chimeric monoclonal anti-TNF Ab with a human 
IgG1 fragment crystallizable (Fc) region and a murine variable region, whereas golimumab 
and adalimumab are fully human anti-TNF monoclonal Abs. Certolizumab pegol is a 
polyethylene glycol–ylated Ag-binding recombinant fragment of a humanized monoclonal 
Ab against TNF. Etanercept is a human TNFR Fc fusion protein comprising the extracellular 
ligand-binding domain of TNFR2/p75 and the Fc domain of human IgG1 (35).
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TB infection has been reported in individuals receiving anti-TNF therapy. Infliximab, 
approved for clinical use in 1998, had caused 70 reported cases of TB and the death of 12 of 
these patients by 2001 (36). Harris et al. (37) reported that the three TNFα-suppressing drugs 
infliximab, adalimumab, and etanercept inhibited IFN-γ–induced phagosome maturation 
in human THP-1 cells treated with PMA, whereas the treatment of macrophages with TNF-α 
induced the maturation of phagosomes containing M. bovis BCG or Mtb H37Rv. Mezouar et 
al. (38) reported that etanercept treatment slightly delayed granuloma formation and reduced 
the proliferation of multinuclear giant cells by triggering the expression of M1 polarization 
genes and the generation of IL-10 in an in-vitro model of human tuberculous granuloma; 
adalimumab also attenuated the formation of multinuclear giant cells in granulomas. 
Thus, the understanding of the mechanism by which anti-TNF therapy modulates immune 
dynamics would provide insight into the pathogenesis of TB and promote the development of 
anti-TB interventions.

TNF and Mtb-mediated innate immune signaling
In response to Mtb infection, human macrophages initiate intracellular innate-immune 
signaling pathways. Macrophages engulf Mtb, resulting in the activation of antimicrobial 
systems and eradication of the bacteria by indirect opsonization and direct detection. 
Indirect detection involves soluble factors such as collectins and complements, which 
facilitate Mtb internalization by macrophages. Additionally, a variety of PRRs on 
macrophages identify pathogen-associated molecular patterns (PAMPs) on the cell surfaces 
and in macrophage phagolysosomes and cytosol (39). Among membrane-bound receptors, 
TLR2 and 4 are implicated in the innate immune response to Mtb in the respiratory tract 
(40). The recognition of Mtb components by TLR2 activates innate immune signaling 
mediated by the pivotal adaptor protein myeloid differentiation primary response 88 
(MyD88), leading to the production of proinflammatory cytokines like TNF and IL-12 (40,41). 
Several mycobacterial Ags transmit TLR4 signaling via two pathways, regulated by the Toll/
IL-1 receptor (TIR) homology domain–containing adaptor protein–MyD88 and TIR homology 
domain–containing adapter-inducing IFN-β (TRIF)-related adaptor molecule–TRIF pairs. 
These pathways stimulate the production of proinflammatory cytokines and type I IFNs (40).

Upon activation, adaptor molecules orchestrate the recruitment and activation of several 
kinases, including IL-1 receptor–associated kinases, and ubiquitin ligases such as TRAF6 and 
Pellino1. Subsequently, these activated kinases and ubiquitin ligases facilitate the liberation of 
NF-κB, specifically the RelA and p50 domains, from IκB or promote the nuclear translocation 
of IFN-regulatory factors (21). The MAPK pathway is activated in response to the recognition 
of Mtb by PRRs and enhances antimicrobial immune reactions during Mtb infection. These 
signaling cascades trigger the production of a range of proinflammatory cytokines and 
chemokines, including TNF, IL-1β, IL-6, IL-23, and GM-CSF, to promote antimicrobial responses 
(23). Furthermore, the immune signals mediated by TLR2 and TLR4, in collaboration with 
other PRRs, are important in mycobacterial infections, although further studies are required to 
elucidate the mechanisms underlying their cooperative functions (23,40).

TLR9 recognizes Mtb DNA in phagolysosomes, and the ESX-1 secretion system disrupts the 
integrity of the phagosomal membrane, enabling the recognition of cytosolic Mtb DNA and 
activation of the cyclic GMP-AMP synthase/stimulator of IFN genes pathway (19,42). This 
recognition of pathogenic Mtb DNA by TLR9 amplifies M1 macrophage responses, leading to 
the production of TNF and induction of autophagy (42). Moreover, Mtb coinfection with HIV 
triggers the activation of the TLR-3, -7, and -9 signaling pathways, although the underlying 
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mechanisms are unclear (43). The functions of individual TLRs, as well as their combined 
effects, in the context of HIV-Mtb coinfection warrant further investigation. Furthermore, 
strategies that regulate TLR signaling, such as vaccination, are needed to control Mtb infection 
(44). Other efforts should be directed at the interruption of the sustained activation of TLR 
signaling during chronic mycobacterial infection, with the aim of delaying disease progression.

ROLE OF TNF IN PROTECTIVE IMMUNITY DURING 
MYCOBACTERIAL INFECTION
The innate immune responses triggered by Mtb involve primarily the production of 
proinflammatory cytokines, notably TNF, by macrophages. In this section, we discuss TNF 
and M1 macrophage responses, the immunometabolic remodeling in macrophages that 
influences TNF production, trained immunity and TNF, autophagy and TNF responses, and 
the apoptosis associated with TNF during mycobacterial infection (Fig. 2). Investigation 
of the function of TNF in protective immunity will promote the development of novel TB 
interventions and vaccines that target TNF-mediated pathways.
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Figure 2. Regulatory pathways of TNF-α production in response to Mtb infection. TNF-α induces Mtb-infected macrophage polarization to M1 macrophages, 
which exert a bactericidal effect by producing iNOS, IFN-γ, T-bet, CCR7, CCL19/21, and IL-1β. M1 macrophages also produce lactate via enhanced aerobic 
glycolysis, which inhibits bacterial growth. After Mycobacterium bovis BCG vaccination, the production of IFN-γ and TNF-α increases in response to Mtb and 
Staphylococcus aureus infection, respectively. SQSTM1 agonists activate autophagy and reduce the TNF-α level. By contrast, the Mtb protein PE6 inhibits 
autophagy and stimulates TNF-α production during Mtb infection. Fluoxetine, an antidepressant, enhances autophagy and increases Mtb-induced TNF-α level. 
During Mtb infection, IL-1β increases TNFR1 expression and TNF-α secretion, leading to apoptosis to regulate intracellular Mtb growth. However, Mtb induces 
IL-10 secretion and soluble TNFR2 release, thereby suppressing apoptosis. 
T-bet, T-box transcription factor TBX21; CCL19/21, chemokine (C-C motif) ligands 19 and 21.



TNF and M1 macrophage responses
Macrophages can be classified into M1 and M2 types based on their effector molecules; M1 
macrophages have proinflammatory features. The TLR ligands IFN-γ, TNF, and GM-CSF 
induce M1 macrophages (45), which exert bactericidal effects by producing inducible nitric 
oxide synthase (iNOS), IFN-γ, T-box transcription factor TBX21, C-C chemokine receptor (CCR) 
7 (, chemokine (C-C motif ) ligands 19 and 21, and antimicrobial peptides (46). However, the 
distinction of M1 and M2 macrophages is hampered by the presence of host and microbial 
factors at the site of infection. Furthermore, macrophage responses are heterogeneous because 
of the co-evolutionary dynamics of Mtb and host–cell reactions (46). Indeed, the rate of 
intracellular bacterial growth is associated closely with intracellular iNOS activity (47).

Numerous Mtb protein and lipid effectors regulate the antimicrobial functions of 
macrophages and subvert the inflammatory process (48). For example, Mtb phthiocerol 
dimycoceroserate lipids mask PAMPs and inhibit TLR-dependent macrophage recruitment 
to suppress microbicidal reactive nitrogen species, thereby evading M1-mediated killing 
(49). In addition, phenolic glycolipids and CCR2 promote the recruitment of permissive 
macrophages during infection (49). Further studies should focus on the mechanisms by 
which Mtb components suppress the TLR-mediated recruitment of bactericidal macrophages 
in the respiratory tract.

TNF and immunometabolic rewiring toward aerobic glycolysis
Mtb alters the mitochondrial morphology, metabolism, and functions, markedly impacting 
macrophage immunometabolism and thereby influencing the effectiveness of host 
antimicrobial defenses and the outcomes of infection (50). Metabolic reprogramming 
occurs in alveolar and bone marrow–derived macrophages during Mtb infection (51). 
Alveolar macrophages have a limited ability to transition to aerobic glycolysis, resulting in 
the insufficient control of infection. Pharmacological reprogramming using metformin can 
promote glycolysis, leading to reduced necrosis and enhanced antimicrobial activity (51). 
The immunometabolic remodeling of immune cells orchestrates host resistance and disease 
tolerance during Mtb infection (52). In their resting state, alveolar macrophages rely on 
oxidative phosphorylation fueled by fatty acid oxidation due to the abundance of lipids in the 
lung. However, Mtb infection triggers M1 macrophage responses, characterized by enhanced 
aerobic glycolysis and increased lactate production, bolstering the immune functions that 
restrict Mtb growth (52). Indeed, caloric restriction, not malnutrition, protected DBA/2 mice 
against pulmonary Mtb infection. Such restriction reduces the bacterial load, lung damage, 
and foam-cell formation by inducing a metabolic shift toward glycolysis, decreased fatty 
acid oxidation and mTOR activity, and increased autophagy in immune cells. These findings 
underscore the importance of immunometabolic reprogramming toward aerobic glycolysis 
for the control of Mtb infection and enhancement of immunity (53). Further investigations of 
the effect of TNF on immunometabolism and its modulation of mycobacterial pathogenesis 
and protective immune responses are needed, given its association with M1 macrophage 
responses with an aerobic glycolysis metabolic signature.

Similar to the observation that the LPS-induced enhancement of aerobic glycolysis is associated 
with the elevated production of TNF and IL-1β (54), M1 macrophages infected with BCG 
produce M1-specific cytokines, including TNF and IL-1β, and upregulate aerobic glycolysis 
(55). Importantly, lactate, the end product of aerobic glycolysis, significantly improved the 
intracellular clearance of Mtb in human macrophages, in part by promoting autophagy (56). 
However, lactate also suppresses the secretion of TNF and IL-1β by Mtb-infected human 
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macrophages, indicating the existence of a negative feedback effect on inflammatory 
responses (56). Consequently, although Mtb infection promotes M1 macrophage responses, 
accompanied by the upregulation of TNF and aerobic glycolysis, lactate prevents an excessive 
inflammatory response and enhances bacterial killing. Investigation of the regulatory 
mechanisms of macrophage differentiation, inflammation, and metabolic reprogramming 
may enable the identification of new therapeutic targets for human TB and other intracellular 
bacterial infections.

TNF and trained immunity
The concept of trained immunity encompasses the provision of medium-term protection 
by the innate immune system via the reprogramming of immune cells by epigenetic and 
metabolic changes. The process involves an initial challenge followed by a period of 
rest, leading to an altered response upon subsequent challenge. Notably, the functional 
reprogramming of monocytes during trained immunity involves distinct epigenetic 
modifications, particularly stable alterations in histone trimethylation at histone H3 lysine K4 
(H3K4) (57). Additionally, trained immunity influences the generation of proinflammatory 
mediators, including IL-1β, TNF, and IL-6, as well as factors that impact Ag presentation to T 
cells and IFN-γ production (58,59).

An example of trained immunity in the context of mycobacterium–host responses is the 
protection conferred by BCG vaccination, which induces immune metabolic rewiring and 
drives long-term epigenetic modifications involving chromatin remodeling. Glycolysis, 
central carbon metabolism, and cholesterol synthesis are key metabolic contributors to this 
immune response (57,60). The genetic or pharmacological modulation of glycolysis enzymes 
not only inhibits trained immunity but also modifies the histone marks (H3K4me3 and 
H3K9me3) associated with BCG-induced trained immunity (61). Circulating metabolites 
shape BCG-induced trained immunity in humans. Taurine metabolism, the tricarboxylic acid 
cycle, and glutamine metabolism were associated with such immunity in 325 BCG-vaccinated 
individuals (62). Furthermore, BCG vaccination alters the gut microbiome composition 
and BCG-induced protective immunity and the accompanying cytokine production are 
influenced by the abundance of metabolites produced by immunomodulatory gut microbes 
(63). Thus, the manipulation of the gut microbiota and metabolic pathways could enable the 
development of novel vaccines and therapies for TB.

BCG-induced antimycobacterial responses rely on macrophages and neutrophils, rather than 
trained immunity. Furthermore, BCG vaccination induced sustained protection in TNF-
deficient mice (64). These findings emphasize the importance of innate immune pathways, 
beyond TNF production and trained immunity, for mycobacterial clearance. Further studies 
are needed to evaluate the potential of trained immunity for use in the development of next-
generation vaccines for human TB.

TNF and autophagy during mycobacterial infection
Autophagy is a self-digestion process by which lysosomes degrade cellular components. It is 
vital for quality control, energy supply, and immune defenses against pathogens, including 
Mtb (65). In macroautophagy, unc-51–like autophagy-activating kinase 1 and Beclin-1 initiate 
the formation of a cup-shaped membrane, which expands to capture cytoplasmic targets, 
resulting in the formation of an autophagosome in a process dependent on the conjugates 
autophagy-related gene (Atg) 12–Atg5 and light chain 3 (LC3)–phosphatidylethanolamine. 
Autophagic adaptors/receptors with LC3-interacting region domains bind to LC3, thereby 
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capturing cytoplasmic cargo. Autophagosomes fuse with lysosomes, leading to the 
degradation of their contents. Autophagy is repressed by the mammalian target of rapamycin 
(mTOR) and regulated by other pathways (66). The relationship between autophagy and 
inflammation differs depending on the context. Mitophagy, a selective form of autophagy that 
removes damaged mitochondria, is required for the controlled production of inflammatory 
cytokines, including TNF and IL-6, which sustains immune-cell homeostasis (67).

Autophagy and inflammation are interrelated in the host defense against mycobacteria. The 
inhibition of autophagy in Mtb-stimulated peripheral-blood mononuclear cells reduced 
TNF production and increased IL-1β production (68). Additionally, exogenous vitamin D, an 
autophagy activator, restored the compromised macrophage responses of HIV-seropositive 
patients, as indicated by increased TNF release as a result of enhanced TLR signaling (69). 
Dehydroepiandrosterone, which also activates autophagy, reduced the bacterial load in 
macrophages independently of effects on proinflammatory cytokine production (70).

The effectors produced by Mtb suppress autophagy and activate proinflammatory responses. 
For instance, the PE6 (Rv0335c) protein of Mtb promotes mTOR signaling and impedes 
autophagy activation while concurrently activating the canonical NF-κB signaling pathway 
to stimulate TNF production via the triggering of TLR4 signaling (71). Several small-
molecule activators of autophagy also induce TNF production to eradicate intracellular Mtb. 
Fluoxetine, a selective serotonin reuptake inhibitor, promotes TNF secretion and autophagy 
(72). In contrast, chemical mimics of N-terminal-arginine N-degron degrade intracellular 
Mtb by activating xenophagy, but significantly reduce pathological inflammation and the 
expression of chemokines and TNF by targeting p62/SQSTM1 (73). Thus, these autophagy 
activators modulate Mtb-induced inflammation in a context-dependent manner. Moreover, 
autophagy is critical for the suppression of spontaneous pulmonary inflammation and 
the induction of an effective immune response during respiratory infection. However, 
uncontrolled or ineffective autophagy can have detrimental effects on lung epithelial cells, 
thereby causing lung injury (74). The relationship between autophagy and inflammation 
differs depending on the context. Thus, further studies should focus on the involvement 
of autophagy in inflammatory responses at different stages of TB and the potential for the 
development of therapeutic strategies targeting autophagy and inflammation.

TNF and apoptosis during mycobacterial infection
PCD, which encompasses apoptosis and autophagy, defends against Mtb infection by 
sequestering bacteria in dead macrophages for phagocytosis. In contrast to necrosis, 
apoptosis eliminates cells without causing inflammation. Non-PCD necrotic death is a 
pathogenic event that promotes Mtb release into the extracellular milieu during infection 
(75). Although most mycobacterial taxa trigger apoptosis, virulent strains show a decreased 
tendency to induce the apoptosis of macrophages relative to that of H37Ra (76). Among 
the factors involved, TNF initiates extrinsic apoptotic cell death by binding to its receptor, 
triggering receptor trimerization and the recruitment of adaptor proteins (TRADD/FADD) 
to the cytoplasmic end. Subsequently, caspase-8 is activated, initiating a cascade of events 
that leads to the activation of effector caspases-3, -6, and -7, resulting in apoptosis (77). 
Furthermore, IL-1β enhances TNF signaling in macrophages by increasing TNF secretion and 
TNFR1 expression, leading to caspase-3 activation. This IL-1β–mediated pathway, combined 
with downstream TNF production, contributes to the caspase-dependent limitation of 
intracellular Mtb growth (78).
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Interestingly, Mtb evades apoptosis by inducing the release of sTNFRs to neutralize the 
activity of TNF and evade TNF-mediated cell death (79). TNF shedding is facilitated by the 
secretion of IL-10, which triggers the release of sTNFRs, thereby deactivating TNF (79). 
Further investigation of the molecular regulatory mechanisms of TNF production is needed, 
and may enable the development of therapeutics based on host-protective cell death that 
ameliorate lung pathology.

DETRIMENTAL EFFECTS OF TNF DURING 
MYCOBACTERIAL INFECTION
In this section, we explore the paradoxical function of TNF in the progression and 
pathological inflammation of chronic Mtb infection (Table 1). The deleterious effects of 
TNF stem predominantly from excessive mitoROS production, necrosis, and necroptosis, as 
opposed to apoptosis.

Role of TNF in the pathogenesis of mycobacterial infection
Among BCG-vaccinated South African infants who were determined to be positive by 
QuantiFERON testing but did not develop active TB, inflammation, immune activation, and 
the risk of Mtb infection were correlated. Infants subsequently infected with Mtb showed 
an elevated level of Ag85A-specific IgG, upregulated expression of Ig-associated genes and 
type-I IFN, and higher plasma levels of IFN-α2, TNF, CXCL10/IFN-γ–induced protein 10, and 
complement C2 (80). A systematic review and meta-analysis confirmed that the cerebrospinal 
fluid levels of TNF, other proinflammatory cytokines, and IFN-γ are higher in patients with TB 
meningitis than in healthy controls (81). In addition, patients with improved lung recovery had 
lower levels of certain mediators (including TNF) after 6 months of therapy (82). Hence, the 
investigation of therapeutic agents targeting TNF and proinflammatory mediators is warranted.
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Table 1. Infection-associated roles of TNF-α during mycobacterial infections
Study model Infection status TNF-α 

level
Outcome Ref.

Infection-associated biomarker
BCG-vaccinated South African infants Mtb infection ↑ Identification of markers that are associated with 

susceptibility to Mtb infection
(80)

Pulmonary TB patients TB therapy for 6 months ↓ Good lung recovery (82)
TB patients LTBI, DS-TB, DR-TB ↑ Usage of biomarkers across the TB spectrum (83)
DR-TB patients Anti-TB therapy for 6 months ↑ Usage of biomarkers and host-directed therapy (84)

Disease pathogenesis
TB-DM patients Anti-TB treatment ↑ Non-resolving systemic and local inflammation 

compared to TB patients
(85)

Human PBMCs; Human lung TB granulomas and sputum Anti-PD1 immunotherapy ↑ Mtb growth↑ (86)
TB-susceptible I/St mice Mtb infection ↑ Rapid cachexia (33)

Cell death and mitochondrial oxidative stress
TB patients Severe TB NS TNF-induced apoptosis↑ (87)
Zebrafish macrophages; Zebrafish Mycobacterial infections ↑ Cyclophilin D- and ceramide-mediated necrosis↑ (55)
THP-1 cells; Zebrafish Mycobacterial infections ↑ Programmed necrosis↑ (88)
THP-1 cells; Zebrafish Mycobacterial infections and 

metformin treatment
↑ TNF-induced mtROS and necrosis↓ (89)

BMDMs; Sirt3+/+ and Sirt3−/− mice; human PBMCs from TB 
patients; human MDMs

Mtb infection ↑ ∙ Inflammation↑ (90)
∙ Mitochondrial damage↑
∙ Autophagy ↓
∙ Mtb growth↑

Murine macrophages; mice Mtb protease Rv3090 ↑ Late-stage apoptosis↑ (91)
LTBI, latent tuberculosis infection; DS-TB, drug-sensitive TB; DR-TB, drug-resistant TB; TB-DM, TB patients with diabetes mellitus; BMDM, bone marrow-derived 
macrophage; Sirt, sirtuin; MDM, human monocyte-derived macrophages; NS, not significant.



TNF and TNFRs are related to the different immune responses to drug-susceptible and 
-resistant TB. Research based on multiplex assays identified hyperinflammatory cytokine 
signatures associated with drug-resistant TB. Increased plasma levels of IFN-γ, TNF, and 
IL-6 differentiated patients with drug-resistant TB, latent TB, and healthy individuals (83). 
Additionally, patients with drug-resistant TB had reduced frequencies of certain T-cell 
subpopulations and showed systemic inflammation characterized by elevated TNF levels after 
6 months of treatment (84). These data suggest that TNF signaling and inflammatory status 
is closely associated with the severity of TB and the drug sensitivity in patients receiving anti-
TB therapy. Furthermore, the transcript levels of the proinflammatory cytokines IL-1β and 
TNF in the peripheral blood were higher after anti-TB treatment in patients with pulmonary 
TB and diabetes mellitus (DM) than in those with TB alone (85). This finding suggests that 
TNF sustains inflammation, thereby increasing disease severity, in patients with TB and DM.

Immune-checkpoint therapy for cancer can activate TB infection. PD-1 is expressed in 
Mtb-infected lung tissue, but not in areas of immunopathology. The inhibition of PD-1 
signaling enhances Mtb growth in a TNF-dependent manner. The increased pulmonary TNF 
immunoreactivity in human TB and the negative correlation between the circulating PD-1 and 
sputum TNF levels support these findings. Thus, PD-1 regulates the immune response to TB 
and its inhibition can cause excessive TNF secretion, thereby contributing to TB pathology 
and accelerated Mtb growth (86). A single-cell RNA transcriptome study in which data 
from the healthy control and active TB patients with diverse severity were used that showed 
that patients with severe disease had elevated numbers of inflammatory immune cells and 
fewer lymphocytes; they exhibited immune exhaustion and the activation of TNF-induced 
apoptosis, as well as high cytotoxicity in T helper 1, CD8+ T, and NK cells (87). These findings 
shed light on the dysregulated expression of TNF and its roles in TB immunopathogenesis 
and clinical severity, which will aid the design of novel effective therapies against severe TB.

TNF, mitochondrial oxidative stress, and cell death
High-level TNF production induces mitoROS in infected macrophages via RIPK1–RIPK3–
MLKL-dependent pathways. During Mtb infection, ROS initially enhance microbicidal 
activity but thereafter trigger necroptosis, releasing mycobacteria into the extracellular 
milieu. Interestingly, the repression of RIPK3 or MLKL results in a switch from TNF-induced 
necroptosis to delayed RIPK1-dependent apoptosis (88). Avirulent Mtb strains induce 
apoptosis, whereas virulent strains promote apoptosis–-necroptosis conversion, benefiting 
pathogen dissemination. Virulent strains induce greater TNF production, upregulate anti-
apoptotic B-cell lymphoma 2 proteins, and trigger the secretion of a caspase-8 inhibitor (89). 
Although apoptosis functions as a protective mechanism against Mtb infection, late-stage 
apoptosis is associated with bacterial spread (76). The cell wall–associated protease Rv3090 is 
reported to be a virulence factor of Mtb. Rv3090 induced the late apoptosis of macrophages, 
hepatocytes, and lung cells; stimulated the secretion of proinflammatory cytokines; and 
promoted Mtb survival, thereby contributing to Mtb pathogenicity and dissemination (90).

Nondegradable materials such as silica, as well as Mtb, evade degradation in lysosomes, 
leading to persistent macrophage activation (54). The result is the upregulation of 
nicotinamide adenine dinucleotide phosphate hydrogen oxidase activation and increased 
mitoROS production, ultimately resulting in macrophage death (16,54,91). During Mtb 
infection, excessive TNF production promotes necrosis, which is characterized by the lysis 
of infected cells, leading to the release of viable bacteria and damage to the surrounding 
tissue (77). Elevated sTNF levels can induce necroptosis via two pathways. The first pathway 
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involves the regulation of mitochondrial cyclophilin D, which is associated with the 
formation of the mitochondrial permeability transition pore. The second pathway entails 
acid sphingomyelinase–mediated ceramide production (16). TNF initiated the programmed 
necrosis of mycobacterium-infected macrophages by stimulating mitoROS production 
in an RIPK1/3-dependent fashion; excessive TNF production triggered an increase in the 
mitoROS level in these macrophages via reverse electron transport through complex I (91). 
TNF-induced glutamine uptake elevated the succinate level, thereby driving reverse electron 
transport and generating mitoROS. Metformin, an antidiabetic medication that inhibits 
complex I, prevented the TNF-induced production of mitoROS and subsequent necrosis 
in Mtb-infected macrophages and a zebrafish model, suggesting therapeutic potential for 
TB (92). Furthermore, sirtuin 3 (SIRT3) regulated the excessive inflammation induced by 
mitoROS, strengthening the host defense against Mtb infection (93). Macrophages lacking 
SIRT3 exhibit heightened oxidative stress, which exacerbated inflammation. Mechanistically, 
the SIRT3–peroxisome proliferator–activated receptor-α–transcription factor EB pathway 
is implicated in the activation of autophagy, and thus the enhancement of the host defense 
against Mtb infection. Indeed, honokiol, a SIRT3 agonist, maintained mitochondrial 
homeostasis and promoted autophagy and antimicrobial activity (93). Further research 
is needed to identify the key components that co-ordinate mitochondrial and autophagic 
responses to Mtb.

CONCLUSION

The effects of TNF on host immunobiological processes suggest the potential for the 
development of host-directed therapeutics against TB. Granulomas confine infections to 
localized sites. The precise regulation of TNF production is crucial for the establishment 
and maintenance of granulomas; an excessive proinflammatory response during Mtb 
infection can result in extensive tissue damage. TNF is implicated in multiple aspects of 
protective immunity against Mtb infection, encompassing M1 macrophage responses, 
immunometabolic remodeling toward aerobic glycolysis, the enhancement of trained 
immunity, and involvement in autophagy and apoptosis. However, uncontrolled TNF 
production, coupled with mitochondrial damage and oxidative stresses, contributes to 
disease progression, pathological inflammation, necrotic cell death, and cachexia during 
chronic Mtb infection. Further investigation of the mechanisms underlying TNF production 
to enhance protective immunity is needed to enable the development of effective TB 
interventions and vaccines targeting TNF-mediated pathways. Additionally, the functional 
characterization of the TNF immune networks that orchestrate host defense mechanisms will 
facilitate the identification of novel drug targets and the development of new therapeutics. 
Further research should focus on the enhancement of TNF-based host defense mechanisms 
and targeting of the mechanisms by which Mtb evades TNF-mediated immunity, which have 
important implications for combating TB.
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