
Published online 27 October 2017 Nucleic Acids Research, 2018, Vol. 46, Database issue D677–D683
doi: 10.1093/nar/gkx1022

PULDB: the expanded database of Polysaccharide
Utilization Loci
Nicolas Terrapon1,2,*, Vincent Lombard1,2, Élodie Drula1,2, Pascal Lapébie1,2,
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Agronomique, F-13288 Marseille, France, 3Department of Biological Sciences, King Abdulaziz University, 23218
Jeddah, Saudi Arabia and 4Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne
NE2 4HH, UK

Received September 17, 2017; Revised October 16, 2017; Editorial Decision October 17, 2017; Accepted October 25, 2017

ABSTRACT

The Polysaccharide Utilization Loci (PUL) database
was launched in 2015 to present PUL predictions
in ∼70 Bacteroidetes species isolated from the hu-
man gastrointestinal tract, as well as PULs derived
from the experimental data reported in the litera-
ture. In 2018 PULDB offers access to 820 genomes,
sampled from various environments and covering a
much wider taxonomical range. A Krona dynamic
chart was set up to facilitate browsing through tax-
onomy. Literature surveys now allows the presenta-
tion of the most recent (i) PUL repertoires deduced
from RNAseq large-scale experiments, (ii) PULs
that have been subjected to in-depth biochemical
analysis and (iii) new Carbohydrate-Active enzyme
(CAZyme) families that contributed to the refine-
ment of PUL predictions. To improve PUL visualiza-
tion and genome browsing, the previous annotation
of genes encoding CAZymes, regulators, integrases
and SusCD has now been expanded to include func-
tionally relevant protein families whose genes are
significantly found in the vicinity of PULs: sulfa-
tases, proteases, ROK repressors, epimerases and
ATP-Binding Cassette and Major Facilitator Super-
family transporters. To cope with cases where susCD
may be absent due to incomplete assemblies/split
PULs, we present ‘CAZyme cluster’ predictions. Fi-
nally, a PUL alignment tool, operating on the tagged
families instead of amino-acid sequences, was in-
tegrated to retrieve PULs similar to a query of in-
terest. The updated PULDB website is accessible at
www.cazy.org/PULDB new/

INTRODUCTION

Polysaccharides constitute the main source of carbon for
most organisms on Earth. Because of their enormous struc-
tural diversity, polysaccharide deconstruction requires the
concerted action of large numbers of specific enzymes.
While most bacteria break down polysaccharides by export-
ing their carbohydrate-active enzymes (CAZymes) into the
extracellular milieu and import the simple sugars produced,
an inventive solution operates in Gram-negative bacteria of
the Bacteroidetes phylum. The genomes of these bacteria
feature Polysaccharide Utilization Loci, or PULs. A PUL
comprises a single genomic locus that encodes the neces-
sary proteins to bind a given polysaccharide at the cell sur-
face, to perform an initial cleavage to large oligosaccharides,
to import these oligosaccharides in the periplasmic space,
to complete the degradation into monosaccharides and to
regulate PUL gene expression. Some Bacteroidetes species
contains up to 100 PULs with almost 20% of their genome
dedicated to these systems (1), explaining their evolution-
ary success as primary glycan degraders in the human gut
microbiota (2). Bacteroidetes are found in almost all envi-
ronments, and the last decade has seen a continuous accel-
eration of published PUL analyses, notably by RNAseq ex-
periments and in-depth biochemistry. To facilitate individ-
ual PUL analysis, in 2015 we launched PULDB to present
PULs predicted solely from genome sequences along with
those reported in the literature (3). The principle of the PUL
prediction is to start from every susCD-like gene pair, and
then to extend PUL boundaries to operonic genes (based on
intergenetic distances between genes on the same strand (4))
and to more distant regulators and CAZyme coding genes
which catalyze polysaccharide breakdown. While we pre-
viously mainly focused on the algorithm and presented a
limited number of genomes with a recognized bias towards
human gut species/strains, we present here a major update
of PULDB. This release includes a 10-fold increase in ana-
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Figure 1. Krona multilayered pie-charts of taxonomy in PULDB. The top-left corner includes web-browser classical features (text search area and buttons
for browsing back and forward), and display features (depth of the taxonomy, font and chart sizes). The bottom-left corner displays the color scale that
represents the number of PULs per species (averaged in ancestral nodes). The top-right corner indicates the selected taxonomic level and its relative
information: the number of species (with a link to the listing), a link to PULDB to visualize all PULs for this taxon, a link to the NCBI taxonomy, etc. (A)
Initial display of the most general taxonomic level, labeled ALL at the center, with a search for the character string ‘frigo’ highlighting the taxa having a
positive result. (B) Display of the Sphingobacteriaceae level, resulting from a zoom-in by double-clicking on the ‘Sphingobacteriaceae’ area in (A) chart.
Going back to (A) or intermediary levels is possible through the lineage links at the center.

lyzed genomes that offers a much deeper coverage of the
Bacteroidetes phylum and different environments. A tool
has been integrated to the web interface to facilitate taxon-
omy browsing in PULDB. Also this release updates to the
most recent literature-derived PULs and CAZyme families.
Additional protein families relevant in a PUL context are
now displayed and used in a PUL aligner that allows the
user to retrieve the most conserved modular PUL organi-
zations.

10-FOLD INCREASE IN CAZy-ANALYZED SPECIES

In order to achieve a >10-fold increase in PULDB, we an-
alyzed 820 complete genome sequences (∼3 million genes)
mostly of the Bacteroidetes phylum downloaded from JGI
(http://genome.jgi.doe.gov/) and NCBI (https://www.ncbi.
nlm.nih.gov/nuccore) servers. Our PUL prediction proce-
dure relies on genomic data but also requires the semi-
manual expert annotation of CAZymes (5). We identified
153 202 CAZyme modules in the 820 genomes, mostly
glycoside hydrolases (53%) and glycosyltransferases (31%),
classified according to the sequence-based families that are
described in the CAZy database. Then the 820 genomes
were subjected to the PUL predictions as described ear-
lier. Compared to the 2015 PULDB dataset (3), the new
genome sampling expands far beyond the human gastroin-
testinal tract (now represented by ∼80 species), and no-
tably includes 64 rumen gut species, as well as many bac-
terial species from soil or marine environments. The cover-
age of Bacteroidetes taxonomical diversity also drastically

increased. The 2015 dataset almost exclusively consisted of
species from the Bacteroidales order (70% belonging to the
Bacteroides genus). In the current dataset, Bacteroidales
only represents 40% (only half being from the Bacteroides
genus), a proportion comparable to the Flavobacteriales
order while three additional orders (Cytophagales, Sphin-
gobacteriales and Chitinophagales) are now also presented.
Moreover, the presence of the PUL fundamental susCD
gene tandem now allows the prediction of PULs beyond the
Bacteroidetes phylum, namely in the Gemmatimonadetes
and Ignavibacteriae phyla (which group with Bacteroidetes
in the FCB group), and also in the Balneolaeota phylum.

To facilitate navigation across the various taxonomical
levels, and to identify species of interest, we implemented
a new browsing tool in PULDB. We adapted the Krona
multilayered pie-chart, introduced for metagenomics anal-
ysis (6), to represent the hierarchical aspects of the taxon-
omy (Figure 1). Implemented using the latest HTML5 and
JavaScript interactive technology, Krona allows zooming in
and out very efficiently and can be easily customized by the
user for the desired taxonomic depth or font size, allowing
the production of high-quality publication-ready pictures.
It also offers text searches and improved navigation. We also
added a color scale indicative of the number of PULs per
genome (estimated for ancestral taxa by a simple arithmetic
mean) which immediately offers an overview of the PUL
diversity at the different taxonomical levels. Finally, in the
upright part, where Krona provides statistics about genome
for each taxa, we added several hyperlinks to the species list,

http://genome.jgi.doe.gov/
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Figure 2. Example of the improved PUL predictions by the inclusion of recently created CAZyme families in the RGII PUL of Terrimonas ferruginea
DSM 30193. Panel (A) displays the JBrowse view (35) of the region before the creation of families GH136-GH143 (16). The predicted PUL is depicted at
the bottom of the panel by a green, yellow and red line, according to confidence levels as previously described (3). Panel (B) displays the same region with
the genes belonging to these seven families now annotated and highlighted by black boxes. These annotations lead to a PUL prediction with improved
confidence (left and middle arrows), and improved PUL boundaries (right arrow), compared to (A).

to the NCBI taxonomy and to PULDB predicted PULs in
this group/species.

LITERATURE-DERIVED PULs, COGNATE SUB-
STRATES AND NEW CAZymes FAMILIES

The study of polysaccharide degradation by PUL en-
coded systems is a highly active research field. A con-
tinuous literature survey enabled us to complete the
PULDB data with literature-derived PUL data (previ-
ously called experimentally-validated PULs). Notably, re-
cent high-throughput experiments led to the delineation of
PULs in Bacteroides cellulosilyticus WH2 (7), Bacteroides
thetaiotaomicron 7330 (8) and Zobellia galactinovorans (9).
Attempts to define PUL boundaries in the absence of ex-
pression data were also reported in the genome publica-
tion of Capnocytophaga canimorsus Cc5 (10). Moreover,
several specific analyses have focused on the degradation of
defined polysaccharides by their corresponding PULs, in-
cluding plant (fructan (11), pectin (12), xylan (13,14), xy-
loglucan (15) and type II rhamnogalacturonan (RGII) (16))
and non-plant (�-mannan (17), galactomannan (18), 1,6-�-
glucan (19), mucin (20), sialoglycoconjugates (21), N-glycan
(17,22–24), heparin and heparan sulfate (25), chitin (26), al-
ginate and laminarin (27)) polysaccharides. To facilitate the

retrieval of characterized PULs by their cognate substrate,
a new field appears in the PULDB homepage, to search for
a given character substring within the PUL substrate la-
bels. Finally, the recent RGII publication notably reported
the biochemical characterization of seven new glycoside hy-
drolase families that were immediately added to the CAZy
database, designated GH137 to GH143. Similarly, other
publications led to the creation of new CAZyme families:
GH136, GH144, GH145, PL24 to PL27 (28–34). All new
CAZy families have also been added to PULDB. As a con-
sequence, the PUL predictions are improved by these new
families, which allow refinement of both PUL boundaries
and prediction confidence, as illustrated with the Jbrowse
view (35) of the homologous RGII-PUL in Terrimonas fer-
ruginea DSM 30193 (Figure 2).

ADDITIONAL DISPLAY OF SULFATASES, PRO-
TEASES, EPIMERASES, ROKs AND TRANS-
PORTERS

In PULDB, simplified representations of PULs are pro-
posed as trains whose wagons, the constitutive proteins,
are colored/tagged if their protein function is relevant in
the PUL context. We initially focused on SusC outer-
membrane transporter (purple), SusD outer-membrane
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Figure 3. Module tags in PULDB. (A) Examples of predicted PULs including the newly tagged modules (highlighted in black boxes). (B) Complete list of
tagged modules which can be searched and displayed in PULDB (listed at www.cazy.org/PULDB/tags.html).

binding proteins (orange), several regulators (light blue), in-
tegrases which sometimes join adjacent PULs (dark gray)
and CAZyme families (mainly glycoside hydrolases in light
pink, polysaccharide lyases in dark pink, carbohydrate-
binding modules in green, carbohydrate esterases in brown).
All other proteins remained tagged as ‘unknown’ (light
gray). To increase readability of these PUL representa-
tions, we searched additional protein families with rele-
vant function in PULs, based on (i) the literature, (ii)
over-representation in PUL contexts and (iii) reliability of
Pfam domain annotation (36). These new families are now
tagged/colored in the new PULDB release. The most im-
portant accessory enzymes that directly assist polysaccha-
ride degradation are the sulfatases, which remove sulfate
groups from algal and mammalian-host glycans (25,37,38).
Sulfatases now appear colored in yellow in PULDB and
are labeled according to their SulfAtlas family classification
(39). Proteins in the Major Facilitator Superfamily (MFS)
are inner membrane transporters that participate in carbo-
hydrate metabolism after polysaccharide depolymerization
(40). Their presence in the vicinity of PULs and their par-
ticipation in species growth have been demonstrated (41).
MFS are thus colored in purple in PULDB, like SusC trans-
porters, as well as ATP-Binding Cassette transporters. Even
though PULDB has not been designed to annotate carbo-
hydrate (monosaccharide) metabolism, in which a large va-
riety of protein functions are involved, we intend to provide
users with some indicators that several ‘unknown’ genes in
a given PUL may not contribute to polysaccharide decon-

struction. Thus, we colored in light blue and tagged do-
mains of the ROK family (Repressors, ORFs and Kinases),
and as well as some epimerases (42,43) that are frequently
found in PULs. Finally, proteases have been shown to ap-
pear in some operons with susCD genes and to participate
to the degradation of non-glycan substrates (20), raising the
question of the extension the PUL paradigm beyond gly-
cans. The observation of their high frequency in some PULs
without CAZyme genes, motivates the integration of pro-
teases in PULDB (gold-colored), labeled with the clan in-
formation of the MEROPS classification (44). All tags that
can be searched and displayed in PULDB are shown in Fig-
ure 3, and are available at www.cazy.org/PULDB/tags.html.

CAZyme CLUSTERS

While most PULs resemble simple operonic systems, some
substrates have been shown to activate the concerted action
of several PULs, e.g. RGII (16), and sometimes a PUL and
an additional gene cluster devoid of susCD genes, thus fail-
ing to fulfill the standard PUL paradigm. This was exem-
plified by the xylan degradation system of Bacteroides xy-
lanisolvens (26). Indeed, when the complexity of the sub-
strate increases, more enzymes are required for its break-
down and thus a ‘longer’ PUL needs to be maintained. This
represents a challenge for bacteria to constrain all neces-
sary enzymes within a single locus/regulatory system. Com-
parative genomics analysis of homologous PULs for RGII
breakdown (16), the most complex known polysaccharide,

http://www.cazy.org/PULDB/tags.html
http://www.cazy.org/PULDB/tags.html
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Figure 4. Illustration of the PUL aligner output from the literature-derived PUL 113 for xyloglucan utilization in Bacteroides ovatus ATCC 8483. The top
left panel display the result summary, viz. the list of similar PULs (with links to each corresponding PUL webpage) ranked according to their scores, with
links to the corresponding pairwise PUL alignment. The other panels present three pairwise alignments that obtained different scores in the top-left panel
(highlighted by black arrows). The PUL modular organizations are displayed vertically with the query on the left and the subject on the right. Matching
modules are separated by central green rectangles, while gaps are depicted by red rectangles and unaligned ‘unknown’ modules remained uncolored.

revealed many species with several scattered loci, one con-
taining susCD genes and several others made of three or
more clustered CAZyme genes. To cope with such detached
gene clusters, the present PULDB update introduces the
display of so-called ‘CAZyme clusters’. To predict CAZyme
clusters, we apply exactly the same algorithm as in PUL
prediction, but instead of initiating the prediction around
susCD genes, we start from a core of at least three adjacent
CAZyme genes, not necessarily on the same strand, sepa-
rated by a maximum of one single inserted gene. The dis-
play of CAZyme clusters in the PULDB web interface is
accessible via a checkbox. CAZyme clusters will also help
in PUL annotation of fragmented genomes. For example,
despite an incomplete genome assembly, Bacteroides ovatus
ATCC 8483 became a model Bacteroidetes species thanks
to RNA analysis conducted by Martens and coworkers (45).
The complete genome sequence obtained later; however, re-
veals that the incomplete initial assembly prevented the de-
lineation of a large PUL (Bovatus 02505 to Bovatus 02540).
This was because the locus was scattered across four dif-
ferent short scaffolds for which CAZyme cluster definition
would have at least reported two of the three split clusters.

THE PUL ALIGNER

A new tool is presented in this PULDB release to allow a
user to search and identify PULs that are similar to a PUL
of interest, and is accessible in the web pages dedicated to
each PUL. This tool is a PUL aligner which allows retrieval
conserved modular organizations. Inspired from the RADS
modular alignment method for proteins (46), this tool pro-
duces local alignments of a query PUL (or CAZyme cluster)

against all PULs (and CAZyme clusters) in PULDB. How-
ever, instead of aligning concatenated amino-acid sequences
of proteins, it treats each protein relevant to PUL function
as one character. Implementing the classical Needleman–
Wunsch algorithm (47), it requires a substitution-scoring
matrix between modules, as well as gap costs. A simple
scheme based on the most relevant features of PULs was
empirically designed. Matches of identical glycoside hydro-
lase and polysaccharide lyase families are given a score of
+200 because they are the main actors of the polysaccharide
breakdown specificity, matches of all other proteins families
a score of +100 and a match of the susCD pair a value of
+50 only, due to its presence in all predicted PULs. Proteins
tagged as unknown are ignored. Given that a mutation of
a protein domain into another is an evolutionary event less
likely than for amino-acids, our scoring scheme also favors
gaps over substitutions by giving the following penalties: in-
ternal gap opening/extension: −20/−10 and terminal gap
opening/extension: −10/−5; substitution: −50. As a result,
the alignment scores allow the ranking of similar PULs
from the most identical (syntenic) to the most rearranged.
Figure 4 shows the results of a search starting from the xy-
loglucan PUL of B. ovatus ATCC 8483 (15) as the query and
three aligned PULs with various conservation levels. The
PUL aligner can also help in comparative genomics studies
of a PUL, (i) by estimating its spread among strains of the
same species, among its genus, and beyond, and (ii) by iden-
tifying the rearrangements (deletion/insertion) events that
occurred during the evolution of a particular PUL.
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