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Abstract: Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease.
Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane
surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic
acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide,
Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic
and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration
of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure,
and this structure accelerates the aggregation. We also describe the inhibition mechanism of the
Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by
the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since
polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged
amino acid residues, they inhibit the aggregation.

Keywords: molecular dynamics simulation; amyloid-β peptide; polyphenol; interface; aggregation;
aggregation inhibitor

1. Introduction

Proteins usually fold correctly and maintain their function in vivo. However, when
their concentration increases, such as due to ageing, they aggregate to form oligomers and
amyloid fibrils. These protein aggregates are associated with approximately 40 human
neurodegenerative diseases [1–3]. For example, amyloid-β (Aβ) peptides, which has 40–43
amino acid residues, is associated with Alzheimer’s disease. Huntington’s disease is caused
by polyglutamine. Parkinson’s disease and dialysis-related amyloidosis are caused by
α-synuclein and β2 microglobulin, respectively.

The amyloid fibril of Aβ peptides has a cross-β structure [4–8]. There are several
experiments that showed the oligomers of Aβ peptides, which are formed before the
amyloid fibril, are more toxic than the amyloid fibrils [9–12]. Atomic-level understanding
of the aggregation process has become even more important now. The conformational
change during the aggregation and disaggregation process can be clarified by molecular
dynamics (MD) simulation. To reveal the aggregation and disaggregation mechanisms
of proteins and peptides, several computational studies [13,14] have been performed on
the monomeric state [15–26], dimerization [27–38], oligomerization [39–45], amyloid fibril
elongation [46–58], amyloid fibril stability [59–65], and disruption of amyloid fibrils [66–68].

We review MD simulation studies in environments that enhance and inhibit the
Aβ aggregation. Aggregation of Aβ peptides is known to be accelerated at hydrophilic–
hydrophobic interfaces, such as membrane surfaces [8,69] and air–water interfaces [70,71].
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Oligomerization of peptides at these hydrophilic–hydrophobic interfaces has attracted
attention both experimentally [8] and theoretically [24,25]. The inhibition of the Aβ ag-
gregation has also been studied by experimental [72,73] and computational [26,73] ap-
proaches. Ono et al. [72,73] found that Aβ oligomerization is inhibited by the polyphenolic
compounds. Polyphenols have attracted attention as inhibitors of Aβ aggregation. In
the following sections, we first present MD simulations of Aβ peptides at hydrophilic–
hydrophobic interfaces [25,45], and then describe a simulation study about the interaction
between an Aβ fragment and polyphenols [26].

2. Amyloid-β(16–22) Aggregation at Hydrophilic–Hydrophobic Interfaces

In this section, we present MD simulations for aggregation of Aβ(16–22) peptides at
hydrophilic–hydrophobic interfaces. This peptide consists of the 16th to 22nd amino acid
residues of the Aβ peptide. The amino acid sequence is KLVFFAE. This is a part of the
Aβ peptide that contains the hydrophobic amino acid residues and is most responsible
for the intermolecular β-sheet of the Aβ amyloid fibril. This part is known to play an
important role in the aggregation of Aβ peptides and to form oligomers and amyloid fibrils
by itself [74]. This is one of the most frequently studied peptides in simulations because it
is shorter and tends to aggregate more than the full-length Aβ peptide [75–80].

We performed MD simulations of Aβ(16–22) peptides at hydrophilic–hydrophobic
interfaces [45]. The hydrophilic–hydrophobic interface was modeled here as the inter-
face between the aqueous phase and vacuum phase. First, 162,500 water molecules and
100 Aβ(16–22) peptides were placed in a cubic simulation box with the side length of
L = 217.69 Å in the range of (1/4) L < z < (3/4) L, as shown in Figure 1a. The Aβ(16–22)
peptides were uniformly and randomly distributed, as shown in Figure 1b. All-atom MD
simulations were then performed at a temperature of T = 310 K to observe the aggregation
process of Aβ(16–22) peptides. The simulations were performed using the Generalized-
Ensemble Molecular Biophysics (GEMB) program developed by one of the authors (H.O.).
We have used this program to simulate several proteins and peptides so far [29,81–87].
We applied the AMBER parm14SB force field [88] for the peptides. We also used the TIP3P
rigid-body water model [89] by adopting the symplectic quaternion scheme [90,91].

As shown in Figure 1a, even though the top and bottom quarters of the simulation
box were initially vacuum, a few water molecules evaporated at T = 310 K, but most
water molecules and Aβ(16–22) peptides did not. Therefore, the interface was maintained
spontaneously without any additional force. Other details of the simulation conditions can
be found in Reference [45].
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Figure 1. (a) Initial conformation of 100 Aβ(16–22) peptides (blue) and water molecules (red) with
air–water interfaces. Side views of the (b) initial and (c) final conformation of Aβ(16–22) peptides.
The water molecules are not shown here. The blue frames indicate the air–water interfaces. Reprinted
with permission from Reference [45]. Copyright 2020 American Institute of Physics.

We observed that the Aβ(16–22) peptides gradually moved to the interface during
the simulations. In the end, all Aβ(16–22) peptides moved to the interface, as shown in
Figure 1c. This is because Aβ(16–22) peptides have both hydrophilic (Lys, Glu) and
hydrophobic (Leu, Val, Phe, Ala) amino acid residues, and the hydrophilic residues tend
to exist in water, while the hydrophobic residues tend to exist in the hydrophobic region,
as shown in Figure 2. Figure 2a shows an average distance between the Cα atom of each
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residue and the interface, and Figure 2b shows a typical snapshot of an Aβ(16–22) monomer
at the interface. The reason why full-length Aβ peptides are abundant on the surface of
cell membranes in vivo is because this is the hydrophilic–hydrophobic interface, and Aβ

peptides consist of both hydrophilic and hydrophobic amino acid residues. In other words,
Aβ peptides are amphiphilic molecules, like surfactants. Therefore, the concentration of
Aβ peptides increase at the interface, and they tend to aggregate there.
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Figure 2. (a) Average distance of Cα atoms from the interface. (b) A typical snapshot of an Aβ(16–22)
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Institute of Physics.

Typical aggregates of the Aβ(16–22) peptides at the interface are shown in Figure 3. We
found that the aggregates consist of two layers. The first layer is close to the interface, and
the second layer is on the aqueous side. In the first layer, most of the Aβ(16–22) peptides
are either monomers that do not form hydrogen bonds with each other or aggregates with
only one or two β-bridges. In the second layer, most of the seven amino acid residues of
the Aβ(16–22) peptide form intermolecular β-sheets. This peptide has a negatively charged
Lys at the N-terminus and a positively charged Glu at the C-terminus. The electrostatic
attraction between these residues tends to form antiparallel intermolecular β-sheets. In the
second layer, the antiparallel intermolecular β-sheet is well formed, and the hydrophilic
amino acid residues (Lys and Glu) at both ends are aligned along the edge of the oligomer,
covering the hydrophobic amino acid residues (Figure 4b,c). This makes the oligomer
more soluble in water. This is the reason why the oligomer with more intermolecular
β-bridges exist in the second layer. In the first layer, on the other hand, the hydrophilic
amino acid residues are not well aligned, and the hydrophobic residues are not covered
by the hydrophilic residues (Figure 4a). The hydrophilic residues are sometimes located
in the center of the oligomer, and the hydrophobic residues are exposed along the edge
of the oligomer. These oligomers are, therefore, present in the first layer, exposing the
hydrophobic residues to the hydrophobic region, as shown in Figure 2b.

Jean et al. experimentally found that amyloid-forming peptides adsorb in layers for up
to about 80 nm from the interface [71]. Our simulations that show the layer formation agree
with these experimental results. In addition, our simulations suggest that the formation of
intermolecular β-sheets may be promoted mainly in the second (or higher) layer.
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3. Conformation of an Amyloid-β 40 Peptide at a Hydrophilic–Hydrophobic Interface

We now describe the conformations of a full-length Aβ peptide, Aβ40, that consists of
40 amino acid residues at a hydrophilic–hydrophobic interface. The amino-acid sequence
of Aβ40 is DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV. It is known
that two intermolecular β-sheet structures are formed in the amyloid fibril of the Aβ

peptides [92]. These β-sheets are formed at residues 10−22 (β1) and residues 30−40 (β2).
Most of the β1 and β2 regions are composed of hydrophobic residues.

We performed MD simulations for an Aβ40 molecule in a system with hydrophilic–
hydrophobic interfaces [25]. The hydrophilic–hydrophobic interface was prepared again
by removing water molecules located in the lower half of a cubic simulation box. The
N-terminus and C-terminus of the Aβ40 molecule were not capped here. For comparison,
MD simulations of an Aβ40 molecule in bulk water were also performed. Other simulation
details can be found in Reference [25].

We observed that Aβ40 existed at the hydrophilic–hydrophobic interface as well as
Aβ(16–22) peptides. To see the conformations of Aβ40 at the interface, we calculated
the average distance of Cα atoms from the interface, as shown in Figure 5a. When this
value is positive (negative), the Cα atom is in the hydrophilic (hydrophobic) region. We
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can see from this figure that Aβ40 has an up-and-down shape. This result agrees well
with previous NMR experiments on Aβ40 conformation on lyso-GM1 micelles [93]. It is
known that Val12−Gly25, Ile31−Val36, and Val39−Val40 of Aβ40 bind to lyso-GM1 mi-
celles. The β1 region almost consists of the residues Val12−Gly25. The β2 region includes
Ile31−Val36 and Val39−Val40. Therefore, the β1 and β2 regions bind to the lyso-GM1
micelles. It was also reported that the Aβ monomer has an up-and-down shape at the
hydrophilic–hydrophobic interface. Figure 5b shows a typical conformation at the interface.
In this conformation, the β1 and β2 regions bind to the interface. The N-terminal region
and the linker region between β1 and β2 are in the aqueous solvent.
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Figure 5. (a) Average distance of each Cα atom of the Aβ peptide from the interface. Red lines show
the residues that bound to the lyso-GM1 micelle in the experiments [93]. (b) A typical snapshot of
the Aβ40 peptide at the interface. Reprinted with permission from Reference [25]. Copyright 2019
American Chemical Society.

In order to investigate the effects of the interface on Aβ40 structures, we calculated
contact probabilities of Cα atoms from our MD simulations. Figure 6a,b shows the contact
probabilities with the interface and without the interface, respectively. The β1 and β2
regions formed helix structures at the interface. This is consistent with the experimental
results on the lyso-GM1 micelle [93]. By forming the contacts between the β1 and β2
regions, not only the helix structures but also a hairpin structure was formed. In the bulk
water, both regions had helix structures as well as at the interface, as shown in Figure 6b.
However, the probability of the hairpin structure in the bulk water was lower than that
at the interface. The difference in the forming ability of the hairpin structure between the
interface and in the bulk water would cause a difference in the ability to form the oligomers.
In fact, we reported that a β-hairpin structure facilitates the formation of intermolecular β-
sheet structures with other Aβ fragments [30,42]. That is, the β-hairpin structure accelerates
the oligomer formation with the intermolecular β-sheet structure. Several experimental
and computational studies, as well as ours, showed that the β-hairpin structure played
an important role in oligomer formation [94,95]. As we described in the previous section,
because they have both hydrophilic and hydrophobic residues, the Aβ40 peptides gather at
the hydrophilic–hydrophobic interface. The increase in the Aβ40 concentration promotes
the aggregation at the interface. Not only the high concentration but also the structure of
Aβ40 itself accelerates the aggregation.
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of the interface. Red solid lines correspond to the residues with helix structures in the experiments
with the lyso-GM1 [93]. Reprinted with permission from Reference [25]. Copyright 2019 American
Chemical Society.

We can consider why the β-hairpin structure is formed at the interface more easily
than in the bulk water as follows. The β1 and β2 regions get trapped at the interface, as
shown in Figure 5. These regions can move only at the interface, as shown in Figure 7.
Thus, the relative motion of the β1 region to the β2 region is suppressed in two dimensions.
In the bulk water, on the other hand, the β1 region can move in three dimensions. By taking
various conformations, the entropy increases in the bulk water. At the interface, however,
the entropy increase is suppressed because of the two-dimensional motion. Therefore,
lower enthalpy conformations are preferred to decrease the free energy. The hydrogen-
bond formation between the β1 and β2 regions decreases the enthalpy. The β-hairpin
structures are, thus, formed.
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To explain this mechanism in more detail, time-series snapshots are presented in
Figure 8. The initial Aβ40 conformation was a fully extended structure (Figure 8a). The β1
and β2 regions first formed helix structures, as shown in Figure 8b. These regions stably
bound to the interface and moved only at the interface. The helix structure in the β1 region
was then broken, as shown in Figure 8c. The extended β1 region approached the β2 region,
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and a β-bridge was formed between these regions (Figure 8d). The β-bridge kept being
formed, but the helix structure in the β2 region was broken, as shown in Figure 8e. The
β-hairpin structure was finally formed, as shown in Figure 8f. In this way, hydrogen bonds
between the β1 and β2 regions were formed step-by-step, changing the helix structures to
the extended structures.
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4. Interaction between Amyloid-β(16–22) and Polyphenols

Finally, we present MD simulations of Aβ(16–22) peptides and polyphenols [26].
Polyphenols are known to inhibit the aggregation of Aβ peptides and have attracted
attention as candidate molecules for drugs against Alzheimer’s disease. There are several
types of polyphenols. However, according to recent experiments, myricetin (Myr) and
rosmarinic acid (RA) are the most effective polyphenols in inhibiting Aβ aggregation
(Figure 9) [73]. However, the mechanism by which these compounds inhibit the aggregation
of Aβ is not well understood.
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We performed replica-permutation MD simulations of a system containing an
Aβ(16–22) peptide and these polyphenols [26]. The replica-permutation method [96]
is one of the generalized-ensemble algorithms [97–99] developed by the authors and is an
improved alternative to the replica-exchange method [100,101]. In these methods, several
copies of the system (called replicas) are prepared, and different temperatures are assigned
to the replicas. In the replica-exchange method, the temperatures are exchanged between
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two replicas during the simulation, as shown in Figure 10a. On the other hand, in the
replica-permutation method, the temperatures are permuted among three or more repli-
cas, as shown in Figure 10b. In this case, we use the Suwa-Todo method [102], which is
the most efficient Monte Carlo method and is employed in several generalized ensemble
algorithms [19,96,103–106]. The replica-permutation method provides statistically more
reliable data on the structure of biomolecules [96,103]. There are several versions of the
replica-permutation method [19,103–105], such as the Hamiltonian replica-permutation
method [19] and isobaric-isothermal replica-permutation method [104], but the original
replica-permutation method [96] was used here to change temperatures.
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Using this method, we performed all-atom MD simulations of systems containing
one Aβ(16–22) peptide and one polyphenol molecule. We employed two polyphenols,
Myr and RA, and observed how these polyphenols bound to the Aβ(16–22) peptide.
The GEMB program was used again for the simulations. Each system consists of one
Aβ(16–22) peptide, one polyphenol molecule, and water molecules. A Na+ ion was added
as a counter ion for the RA system. To reduce the effect of the N-terminal and C-terminal
electric charges of the Aβ(16–22) peptide, the N-termini and C-termini were blocked by
acetyl and N-methyl groups, respectively. Details of the other simulation conditions can be
found in Reference [26].

As a result, we observed that polyphenols bound to the Aβ(16–22) peptide, as shown
in Figure 11. The cyan ovals between the Aβ(16–22) peptide and each polyphenol indicate
the hydrogen bond between them. In the Myr system, the carboxyl group (-COO) of Glu22
often bound to the hydroxy group (-OH) of Myr, as shown in Figure 11a. In the RA system,
the carboxyl group of Glu22 frequently bound to the hydroxy group of RA, and the amine
group (-NH3) of Lys16 formed a hydrogen bond with the carboxyl group of RA, as shown
in Figure 11b.
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The probabilities that these polyphenols have contacts with the Aβ(16–22) peptide
were calculated, as in Figure 12. In the Myr system, Myr mainly binds to Glu22 with the
highest probability of 30%, as in Figure 12a. However, the other residues of the Aβ(16–22)
peptide have much fewer interactions with Myr. In the case of the RA system, high contact
probabilities were found at two residues, Glu22 with 71% and Lys16 with 17%, as shown
in Figure 12b. On the other hand, the hydrophobic residues (Leu, Val, Phe, and Ala)
have low contact probabilities of less than 7%. As shown in the previous section, when
Aβ(16–22) peptides aggregate, they form antiparallel β-sheets due to the electrostatic
attraction between the carboxyl group of Glu22 and the amine group of Lys16. Therefore,
we can expect that the aggregation of Aβ(16–22) peptides is inhibited by binding of Myr
and RA to the side chains of Glu22 and Lys16, as shown in Figure 11.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 14 
 

 

The probabilities that these polyphenols have contacts with the Aβ(16–22) peptide 
were calculated, as in Figure 12. In the Myr system, Myr mainly binds to Glu22 with the 
highest probability of 30%, as in Figure 12a. However, the other residues of the Aβ(16–22) 
peptide have much fewer interactions with Myr. In the case of the RA system, high contact 
probabilities were found at two residues, Glu22 with 71% and Lys16 with 17%, as shown 
in Figure 12b. On the other hand, the hydrophobic residues (Leu, Val, Phe, and Ala) have 
low contact probabilities of less than 7%. As shown in the previous section, when Aβ(16–
22) peptides aggregate, they form antiparallel β-sheets due to the electrostatic attraction 
between the carboxyl group of Glu22 and the amine group of Lys16. Therefore, we can 
expect that the aggregation of Aβ(16–22) peptides is inhibited by binding of Myr and RA 
to the side chains of Glu22 and Lys16, as shown in Figure 11. 

 
Figure 12. Contact probability of each amino acid residue of the Aβ(16–22) peptide with (a) myri-
cetin and (b) rosmarinic acid at 300 K. Reprinted with permission from Reference [26]. Copyright 
2020 Elsevier. 

In order to clarify which atoms of polyphenols contribute to the interaction with the 
Aβ(16–22) peptide, we also calculated the contact probability of each atom of polyphenols, 
as shown in Figure 13. In both Myr and RA systems, multiple adjacent hydroxy groups 
around six-membered rings have high contact probabilities with the Aβ(16–22) peptide. 
In RA, the carboxyl group also makes some contacts with the Aβ(16–22) peptide. These 
atoms in polyphenols play an important role in inhibiting the aggregation of the Aβ(16–
22) peptides. 

 
Figure 13. Color mapping of contact probability of the (a) myricetin and (b) rosmarinic acid atoms 
with the Aβ(16–22) peptide at 300 K. Reprinted with permission from Reference [26]. Copyright 
2020 Elsevier. 

5. Conclusions 
We presented molecular dynamics (MD) simulations of an Aβ40 peptide and Aβ(16–

22) fragments to study the aggregation process and the binding structures of drug candi-

Figure 12. Contact probability of each amino acid residue of the Aβ(16–22) peptide with
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Copyright 2020 Elsevier.

In order to clarify which atoms of polyphenols contribute to the interaction with the
Aβ(16–22) peptide, we also calculated the contact probability of each atom of polyphe-
nols, as shown in Figure 13. In both Myr and RA systems, multiple adjacent hydroxy
groups around six-membered rings have high contact probabilities with the Aβ(16–22)
peptide. In RA, the carboxyl group also makes some contacts with the Aβ(16–22) peptide.
These atoms in polyphenols play an important role in inhibiting the aggregation of the
Aβ(16–22) peptides.
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5. Conclusions

We presented molecular dynamics (MD) simulations of an Aβ40 peptide and
Aβ(16–22) fragments to study the aggregation process and the binding structures of drug
candidates that inhibit aggregation. Aβ40 peptides and Aβ(16–22) fragments have both
hydrophilic and hydrophobic amino acid residues, and, thus, tend to exist at hydrophilic–
hydrophobic interfaces, such as cell membrane surfaces and air-water interfaces. The high
concentration of the peptides is, therefore, one reason for the acceleration of aggregation
at the interface. In addition, Aβ40 formed a hairpin structure by getting the β1 and β2
regions closer to each other. Such a hairpin structure was rarely formed in the bulk water.
This is because the β1 and β2 regions can move only at the interface, and the entropy at the
interface becomes smaller than in the bulk water. In order to decrease the free energy, it is
required to decrease the enthalpy. Lower enthalpy is realized by hydrogen-bond formation
between the β1 and β2 regions. Thus, the β-hairpin structure is formed. It is known
that the β-hairpin structure plays an important role in oligomer formation [30,42,94,95].
The β-hairpin structure accelerates the formation of an oligomer with the intermolecular
β-sheet structure. Since the hairpin structure is readily formed at the interface, the oligomer
is formed more easily at the interface than in the bulk water.

We also review how polyphenols such as myricetin and rosmarinic acid interact with
Aβ(16–22) peptides and inhibit the aggregation. The aggregation of Aβ(16–22) peptides is
caused mainly by the electrostatic attraction between charged amino acid residues (Lys16
and Glu22). The polyphenols are expected to inhibit the aggregation by forming hydrogen
bonds between their hydroxy and carboxyl groups and these charged amino acid residues.
No MD simulation has been performed for a negative control, such as a mutated Aβ(16–22)
peptide at Lys16 or Glu22. Such a simulation may be another interesting target for a
future project.

In this way, MD simulations can identify which atoms are important for aggregation
and aggregation inhibition. Recent advances in supercomputers have made it possible
to simulate large systems and long-lasting phenomena that were previously impossible
to simulate on a computer. In the future, MD simulations could be used to design useful
molecules for the treatment of neurodegenerative diseases, such as Alzheimer’s disease.
It is hoped that MD simulations will become a tool for developing treatments for these dis-
eases. We also think that such simulation-based predictions should be made in conjunction
with experiments to ensure the results.
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