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A B S T R A C T   

The cure models based on standard distributions like exponential, Weibull, lognormal, Gompertz, 
gamma, are often used to analyze survival data from cancer clinical trials with long-term survi-
vors. Sometimes, the data is simple, and the standard cure models fit them very well, however, 
most often the data are complex and the standard cure models don’t fit them reasonably well. In 
this article, we offer a novel generalized Gompertz promotion time cure model and illustrate its 
fitness to gastric cancer data by three different methods. The generalized Gompertz distribution is 
as simple as the generalized Weibull distribution and is not computationally as intensive as the 
generalized F distribution. One detailed real data application is provided for illustration and 
comparison purposes.   

1. Introduction 

There are two main classes of cure rate models proposed in statistical literature, namely, mixture cure models [1–3] and promotion 
time cure models [4,5]. A broad class of flexible cure models including the promotion time cure model (PTCM) as special case is 
proposed in Ref. [6]. An extended parametric PTCM to incorporate the background mortality is developed in Ref. [7]. The two groups 
of mixture cure models and PTCMs are unified into one by introducing an extra transformation parameter to survival function using 
Box-Cox transformation [8–10]. The readers are referred to Refs. [11–17] for other extensions of the cure models, the corresponding 
baseline distributions, and the estimation methods. Recent advances in the developments and applications of the cure rate models can 
be seen in Refs. [18–24]. In the analysis of failure time data with cure fraction, several distributions including exponential, gamma, 
Weibull, lognormal, log-logistic, Burr type XII, Gompertz are commonly used as the baseline distributions. In this article, we study the 
generalized Gompertz distribution in promotion time cure model and compare its suitability as a baseline distribution with other 
well-known generalized distributions. The generalized Gompertz distribution was introduced by El-Gohary et al. [25] and has been 
used in different applications [26–29]. It can assume increasing, constant, decreasing or bathtub curve shapes for different combi-
nation of its parameter values unlike the Gompertz distribution which can have only monotonic increasing hazard. This is the main 
advantage of the generalized Gompertz distribution over the Gompertz distribution. Our main objectives in this paper are to study the 
PTCM with Gompertz and generalized Gompertz as the baseline distributions, and to compare these models with the PTCM based on 
Weibull, gamma, generalized Weibull and generalized gamma as the baseline distributions. 

Presentation of the remaining paper is structured as follows. We discuss the PTCM and the distributions to be used as baseline in 
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Section 2. Section 3 provides the nonparametric estimation of the survival function and then in Section 4, we consider maximum 
likelihood (ML) method of estimation and the associated inference. The procedure of semiparametric maximum likelihood estimation 
is provided in Section 5. Our main part of the paper belongs to results and discussions regarding the real data analysis, and it is 
presented in Section 6. The final Section 7 pertains to conclusion of the paper. 

2. The model and its assumptions 

Suppose that for a subject in a group of patients, the count of carcinogenic cells left active after some medication is a random 
variable, say N, distributed as Poisson with parameter θ. Further assume that for the ith cell, Zi represent the random time taken to 
create a cancer disease for i = 1,2,3,…, according to some probability distribution FZ(.) independently of the variable N. Then T =

min{Zi,0≤ i≤ N} with P(Z0 = ∞) = 1 can be considered as the time to recurrence of cancer for the subject in question, where Z0 
denotes the time when there is no cancer. The PTCM is derived in Ref. [5] as 

Sp(t)= exp( − θ+ θSZ(t))= exp( − θFZ(t)) (1)  

with density and hazard functions as fp(t) = θfZ(t)exp( − θFZ(t)) and hp(t) = θfZ(t), where SZ(.) denotes the survival function for the 
non-censored patients and Sp(.) the survival function for the whole population. One can note that Sp(∞) = exp(− θ) represents the 
proportion of patients that are cured in the study. 

We consider the generalized Gompertz as the baseline distribution for latency part of the PTCM to analyze the lifetimes of patients 
under risk of cancer disease and a log link function for incidence part of the PTCM to analyze the covariates affecting the cure rate of 
insusceptible patients. The generalized Gompertz distribution with parameters α, λ and δ is defined as 

fZ(z; γ)= δαeλz e−
α
λ (eλz − 1)

(
1 − e−

α
λ (eλz − 1)

)δ− 1
; z≥ 0, λ ≥ 0, δ, α>0, (2) 

with distribution function as 

FZ(z; γ)=
(

1 − e−
α
λ (eλz − 1)

)δ
(3) 

and hazard function as 

h(z; γ)=
δαeλz e−

α
λ (eλz − 1)

(
1 − e−

α
λ (eλz − 1)

)δ− 1

1 −
(
1 − e− α

λ (eλz − 1)
)δ ,

where γ denote the distribution parameters. We link the cure rate parameter θ to the covariate vector X as ln(θ(X)) = Xʹβ, where β 
denote the vector of regression parameters. The cure fraction can be obtained from p = exp( − exp(Xʹβ)). When we have only one 
covariate with values zero and one representing the group identification, then p0 = exp(− exp(B0)) and p1 = exp( − exp(B0 +B1))

provide the cure fractions in the respective groups. Substituting the distribution function from (3) and ln(θ(X)) = Xʹβ in (1), we have 
the population survival function given by 

Sp(t; γ, β|X) = exp
(
− eXʹβ

(
1 − e−

α
λ (eλz − 1)

)δ )
. (4) 

The associated density function from (2) and (3) is 

fp(t; γ, β|X) =αδeXʹβeλte−
α
λ (eλz − 1)

×
(

1 − e−
α
λ (eλz − 1)

)δ− 1
exp
(
− eXʹβ

(
1 − e−

α
λ (eλz − 1)

)δ )
. (5) 

Secondly, we consider the generalized Weibull distribution with density function 

fZ(z; α, λ, δ)= αλδzα− 1e− λzα
(1 − exp(− λzα))

δ− 1
; z ≥ 0,α>0, λ>0, δ> 0, (6) 

and associated distribution function 

FZ(z; α, λ, δ)= (1 − exp(− λzα))
δ
. (7) 

The hazard function of the generalized Weibull distribution is 

h(z; α, λ, δ)=
αλδzα− 1 exp(− λzα) (1 − exp(− λzα))

δ− 1

1 − (1 − exp(− λzα))
δ .

We note that the generalized Weibull distribution with density in (6) reduces to standard Weibull distribution for δ = 1 and can 
have different hazard shapes for different combinations of its parameter values. Further properties of the generalized Weibull dis-
tribution can be seen in Ref. [30]. For the generalized Weibull promotion time cure model, the survival function can be obtained from 
(1), and (7) with θ(X) = exp(Xʹβ) as 
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Sp(t; α, λ, δ, β|X) = exp( − exp(Xʹβ) (1 − exp(− λzα))
δ
), (8) 

and the corresponding population density function as 

fp(t; α, λ, δ, β|X) =αλδzα− 1 exp(− λzα)exp(Xʹβ)

×(1 − exp(− λzα))
δ− 1 exp( − exp(Xʹβ) (1 − exp(− λzα))

δ
). (9) 

Thirdly, we consider the generalized gamma distribution with density function 

fZ(z; α, λ, δ)=
α

Γ(δ)
zαδ− 1

λαδ exp
(
−
(z

λ

)α)
; z > 0, α>0, λ>0, δ>0.

We can see that the generalized gamma distribution in (10) reduces to standard gamma distribution for α = 1 and standard Weibull 
distribution for δ = 1. Furthermore, as δ tends to infinity, the generalized gamma distribution tends to a lognormal distribution [31, 
32]. One negative point for the generalized gamma distribution is that its distribution function does not exist in close form, one needs 
to perform numerical integration for 

FZ(z; α, λ, δ)=
∫ z

0

α
Γ(δ)

uαδ− 1

λαδ exp
(
−
(u

λ

)α)
.

The hazard function of the generalized gamma distribution is 

h(z; α, λ, δ)=
1

1 − FZ(z; α, λ, δ)
α

Γ(δ)
zαδ− 1

λαδ exp
(
−
(z

λ

)α)
.

The population survival function is 

Sp(t; α, λ, δ, β|X) = exp( − exp(Xʹβ) FZ(z; α, λ, δ) ).

The corresponding population density function can be obtained from (12) as 

fp(t; α, λ, δ, β|X) = eXʹβ α
Γ(δ)

zαδ− 1

λαδ exp
(
−
(z

λ

)α)
e− exp(Xʹβ) FZ(z; α,λ,δ).

3. Nonparametric estimation 

Survival analysis can be carried out via three different methods, namely, parametric, nonparametric, and semiparametric. Each 
method has its own intuitive basis. While parametric methods are based on distribution assumptions relating to data generating 
mechanisms, nonparametric methods do not rely much on distribution assumptions. Semiparametric methods are considered better in 
the sense that they combine the efficiency of parametric methods and robustness of nonparametric methods. Nevertheless, we consider 
all three methods in this paper for comparison purposes. 

Let the random variables T1, ...,Tn with the distribution function FT(t) and the density function fT(t) denote the failure times and the 
random variables C1, ...,Cn with the distribution function FC(c) and the density function fC(c) denote the censoring times for a random 
sample of n subjects entered into a life testing. Each patient in the sample will have either a failure time or censoring time. Let us denote 
the observed survival times as Yi = min(Ti,Ci) and a censoring indicator as Di = I(Ti ≤ Ci) for i = 1,2,…, n. Under the independence of 
the censoring and failure time variables, Kaplan and Meier [33] provided the estimator of the survival function given by 

S(y)=
∏

i:Yi≤y

(
n − Ri

n − Ri + 1

)di

,

where Ri is the rank of the ith observation in the observed sample. This classic nonparametric estimator of the survival function is used 
as a standard for comparing the other estimated survival functions. Although the Kaplan-Meier estimator is ML for discrete distri-
butions only, Johansen et al. [34] showed that it is a ML estimator in the class of all distributions under the generalized ML framework 
developed by Kiefer and Wolfowitz [35]. 

The R codes to obtain the K-M survival probabilities, to plot the K-M survival curves and to obtain the estimates of cure fraction 
from the K-M survival curves are provided in appendix. 
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4. Parametric maximum likelihood estimation 

The likelihood function for an observed data, say O = {yi,di,Xi, i = 1,2,…,n}, can be written as 

l(γ, β|O)=
∏n

i=1

[
fp(yi)

]di[
Sp(yi)

]1− di
=
∏n

i=1

[
hp(yi)

]di Sp(yi),

where γ is a vector of baseline distribution parameters. Replacing fp(.) and Sp(.) from (4) and (5), we have the likelihood function for 
PTCM based on generalized Gompertz distribution given by 

l(γ, β|O)=
∏n

i=1
exp
(
− eXʹ

iβ
(

1 − exp
(
−

α
λ
(
eλyi − 1

)))δ )

×

[

δαeXʹ
iβ+λyi exp

(
−

α
λ
(
eλyi − 1

)) (
1 − exp

(
−

α
λ
(
eλyi − 1

)))δ− 1
]di  

= (δα)
∑n

i=1
di

e

∑n

i=1
di

(
∑k

j=0
Bjxji

)

+λ
∑n

i=1
diyi

exp

(

−
α
λ

∑n

i=1
di
(
eλyi − 1

)
)

×exp

⎛

⎜
⎝ −

∑n

i=1
e

(
∑k

j=0
Bjxji

)

(
1 − exp

(
−

α
λ
(
eλyi − 1

)))δ

⎞

⎟
⎠

×
∏n

i=1

(
1 − exp

(
−

α
λ
(
eλyi − 1

)))(δ− 1)di
.

The corresponding log-likelihood function, say L(γ,β|O) = ln[l(γ,β|O)], is 

L(γ, β|O) = ln(δα)
∑n

i=1
di +

∑n

i=1
di

(
∑k

j=0
Bjxji

)

+ λ
∑n

i=1
diyi −

α
λ
∑n

i=1
di
(
eλyi − 1

)

+(δ − 1)
∑n

i=1
di ln

(
1 − exp

(
−

α
λ
(
eλyi − 1

)))

−
∑n

i=1
e

(
∑k

j=0
Bjxji

)

(
1 − exp

(
−

α
λ
(
eλyi − 1

)))δ
,

where k denotes the number of covariates, x0 the vector of 1’s, xj’s the covariates, B0 the intercept term and Bj’s the regression 
coefficients. 

The likelihood function corresponding to PTCM based on generalized Weibull distribution can be obtained from (8) and (9) as 

l(γ, β|O)=
∏n

i=1

[
hp(yi)

]di Sp(yi)=
∏n

i=1

[
exp
(
Xʹ

iβ
)
αλδyα− 1

i exp
(
− λyα

i
) (

1 − exp
(
− λyα

i
))δ− 1]di  

×exp
(
− exp(Xʹβ)

(
1 − exp

(
− λyα

i
))δ )

=
∏n

i=1
e

(
∑k

j=0
Bjxj

)

di

(αλδ)di y(α− 1)di
i exp

(
− λdiyα

i
) (

1 − exp
(
− λyα

i
))(δ− 1)di  

×exp

⎛

⎜
⎝ − e

∑k

j=0
Bjxj (

1 − exp
(
− λyα

i
))δ

⎞

⎟
⎠

The corresponding log-likelihood function is 
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L(γ, β|O) = ln(αλδ)
∑n

i=1
di +

∑n

i=1
di

(
∑k

j=0
Bjxji

)

+(α − 1)
∑n

i=1
di ln yi  

− λ
∑n

i=1
diyα

i +(δ − 1)
∑n

i=1
di ln

(
1 − exp

(
− λyα

i
))

−
∑n

i=1
e

(
∑k

j=0
Bjxji

)

(
1 − exp

(
− λyα

i
))δ

.

Similarly, the likelihood function corresponding to PTCM based on generalized gamma distribution can be obtained. 
The maximum likelihood estimate (γ̂, β̂) of (γ, β) can be obtained by maximizing the log-likelihood function L(γ, β|O). It is well 

known that the derivation of expected Fisher information matrix is not possible, we can use the observed information matrix as an 
estimate of the expected Fisher information matrix. Under standard regularity conditions of ML estimators, we can state that the vector 
(ϑ̂ − ϑ) ∼ N(0,V), where ϑ = (γ, β )́ , ϑ̂ = (γ̂, β̂ )́

 and V is the inverse of negative of the Hessian matrix evaluated at ϑ̂. The R codes to 
fit the promotion time cure model by the method of parametric ML estimation and to plot the corresponding estimated survival 
function are provided in appendix. 

5. Semiparametric maximum likelihood estimation 

For semiparametric estimation, the distribution function FZ(.) of the random variable Z is left unspecified and estimated non-
parametrically. The nonparametric estimation of F, discussed in Ref. [6], requires the determination of a threshold such that all 
censored observations greater than this threshold are treated as yi = ∞ and all other observations lower than the threshold are treated 
as yi < ∞. This is necessary because one can choose f(yi) = ∞ for some yi with di = 1. However, if a parametric form is assumed for 
FZ(.) as in Section 4, then this condition is not needed. Following [6,36], the likelihood function for an observed data Oi = (yi, di,Xi) ; 
i = 1, 2,…, n, can be written as 

l(β, F|O)=
∏n

i=1

{[(
exp
(
Xʹ

iβ
)
F{yi}

)di exp
(
− exp

(
Xʹ

iβ
)
F(yi)

)]I(yi<∞)

×
[
exp
(
− exp

(
Xʹ

iβ
))]I(yi=∞)}

,

where F{y} denotes the jump size of F(.) at y and F(.) is the right continuous distribution function with jumps at event times only. The 
corresponding log-likelihood function is 

L(β, F|O)=
∑n

i=1
I(yi <∞)di

[(
Xʹ

iβ
)
+ ln(F{yi})

]
−
∑n

i=1
I(yi <∞)

[
exp
(
Xʹ

iβ
)
F(yi)

]
.

Denoting Y(1), ...,Y(m) as the ordered distinct failure times and p(1), ..., p(m) as the corresponding jump sizes such that 
∑m

i p(i) = 1, 
where m is the number of distinct failure times, the Lagrange multiplier constraint log-likelihood function can be written as 

L(β, F|O)=
∑n

i=1
I(yi <∞)di

[
Xʹ

iβ+ ln(pi)
]

−
∑n

i=1
I(yi <∞)

[
exp (Xʹ

iβ
)
F(yi)

]
− nλ

(
∑m

i
p(i) − 1

)

, (10)  

where 

p(i) = F{yi}, F(yi)=
∑

yj≤yi ,dj=1
pj and F(∞)=1.

Differentiating (10) with respect to p(i), λ, β and equating to zero the resulting expressions, we have 

∂L
∂p(i)

=
1

p(i)
−
∑n

j=1
I
(

y(i) ≤ yj <∞
)[

exp (Xʹ
iβ
)]

− nλ=0, (11) 
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∂L
∂λ

= n

(
∑m

i
p(i) − 1

)

=0, (12)  

∂L
∂β

=
∑n

i=1

I(yi < ∞)diXi −
∑n

i=1

[
exp (Xʹ

iβ
)
F(yi)

]
Xi= 0. (13) 

The maximum likelihood estimates (λ̂, β̂) of (λ, β) can be obtained by first solving (11) and (12) for p(i)’s and λ by fixing β; then 
solving (13) for β by fixing p(i)’s and λ using some nonlinear iterative procedure. The R codes to fit the promotion time cure model by 
the method of semiparametric ML estimation and to plot the corresponding estimated survival function are provided in appendix. 

6. Real data analysis 

Gastric cancer is one of the most common cancer diseases worldwide and despite a decline in death due to stomach cancer during 
the last few decades, it is still one of the leading causes of cancer related death. According to the GLOBOCAN 2020 estimates, stomach 
cancer caused approximately 800000 deaths (accounting for 7.7 % of all cancer deaths) and ranks as the fourth leading cause of cancer 
deaths in both genders combined. About 1.1 million new cases of stomach cancer were diagnosed in 2020 (accounting for 5.6 % of all 
cancer cases). About 75 % of all new cases and all deaths from stomach cancer are reported in Asia. These facts highlight the need for 
cancer research worldwide. 

The real data used in this study belong to a retrospective study in patients with gastric adenocarcinoma conducted by Jácome et al. 
[37] between January 2002 and December 2007. There are 76 patients treated with adjuvant chemoradiotherapy (CRT) and 125 
patients treated with surgery alone. About 58 % of the data are censored in CRT group and about 50 % in the surgery alone group. The 
same data was analyzed by Martinez et al. [38] in Bayesian context. First, we draw Kaplan–Meier survival curves in Fig. 1 and apply 
log-rank test of no difference of survival experiences between the two groups. 

of patients. We can see that the survival curves level off at a time substantially greater than 0 after 26- or 30- month-follow-up at 
survival probabilities significantly greater from zero for both the treatment groups. This implies that some of the patients in both 
groups were cured and did not experience the event following treatments. The Kaplan–Meier estimates of cure fraction obtained from 
the Kaplan–Meier survival curves are 0.473 for surgery alone group and 0.545 for CRT group. The p-value of log-rank test is 0.04 which 
implies that the two groups of patients face different survival experiences. Next, we consider the semiparametric ML method to fit the 
PTCM using a binary covariate X taking a value 1 for CRT treatment group and 0 for the surgery alone treatment group. The estimate of 
the cure fraction is 0.4307 for surgery alone group which is smaller than the estimate given by Kaplan–Meier survival curve and 0.5585 
for CRT group which is larger than the estimate given by Kaplan–Meier survival curve. The population survival function estimated by 
semiparametric ML method is plotted in Fig. 1 which shows a poor fit to Kaplan–Meier survival curves. In general, the semiparametric 
estimate of survival function fits well to Kaplan–Meier survival curve, however, here the performance of semiparametric ML method is 
very poor. 

Now we compute the ML estimates, standard errors (SEs) and the corresponding AIC for the PTCM based on standard distributions 
and report the results in Table 1. We can see that the results for cure fractions p0 and p1 are very poor in case of the PTCM based on 
Weibull and gamma distributions and are very good in case of the PTCM based on Gompertz distribution regarding K-M nonparametric 
criterion. That is, the cure fraction estimates are relatively close to the estimates given by Kaplan–Meier method for standard Gompertz 
cure model and far from the estimates given by Kaplan-Meier method for standard Weibull and gamma cure models. Also, in terms of 

Fig. 1. Plot of the estimated nonparametric and semiparametric survival functions and the Kaplan–Meier survival estimates of the cure fractions.  
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Fig. 2. The plot of the estimated survival functions for the standard cure models fitted to K-M survival curves.  

Table 2 
The maximum likelihood estimates of model parameters, cure fractions and the associated goodness of fit measure for generalized cure models.  

Model Parameter Estimate SE  

Generalized 
Gompertz 

b0 − 0.1794 0.1326 AIC = 888.72 p0 = 0.4335 
p1 = 0.5881 b1 − 0.4538 0.2180 

δ 0.6167 0.1170 
α 0.0094 0.0057 
λ 0.1304 0.0308 

Generalized 
Weibull 

b0 − 0.1733 0.1431 AIC = 895.54 p0 = 0.4313 
p1 = 0.5840 b1 − 0.4468 0.2180 

δ 0.2602 0.0281 
α 3.6010 0.0047  
λ 7.05e-6 3.79e-6 

Generalized 
Gamma 

b0 − 0.1911 0.1324 AIC = 892.5 p0 = 0.4378 
p1 = 0.5901 b1 − 0.4685 0.2179 

δ 0.0535 0.0636 
α 16.5821 19.128 
λ 29.9170 1.5731  

Table 1 
The maximum likelihood estimates of model parameters, cure fractions and the associated goodness of fit measure for standard cure models.  

Model Parameter Estimate SE  

Gompertz b0 − 0.1636 0.1359 AIC = 893.80 p0 = 0.4278 
p1 = 0.579 b1 − 0.4613 0.2175 

α 0.0298 0.0064 
λ 0.0712 0.0193 

Weibull b0 1.3509 2.3777 AIC = 898.16 p0 = 0.0211 
p1 = 0.0847 b1 − 0.4474 0.2180 

α 0.8747 0.1524 
λ 0.0116 0.0269 

Gamma b0 1.0182 1.6014 AIC = 898.1 p0 = 0.0627 
p1 = 0.1702 b1 − 0.4470 0.2179 

α 0.8778 0.1409 
λ 0.0086 0.0200 

Semiparametric b0 − 0.1715 0.1357 p0 = 0.4307 
p1 = 0.55851 b1 − 0.4523 0.2076  
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AIC, the performance of PTCM based on Gompertz distribution is far better than the PTCM based on Weibull and gamma distributions. 
Based on these results, we can say that the PTCM based on standard Gomperz distribution can provide better fit to the data with fish- 
shaped survival functions than semiparametric promotion time cure model and the parametric promotion time cure model based on 
standard Weibull and gamma distributions. However, neither of the model fit the data reasonably well as indicated by the survival 
functions plotted in Fig. 2. Next, we compute the ML estimates, standard errors, and the corresponding AIC for the PTCM based on 
generalized distributions and provide the results in Table 2. We see 

that the results for cure fractions p0 and p1 are improved and approximately the same for all the three models and their goodness of 
fit have improved reasonably. Based on these results, we can say that the PTCM based on generalized distributions can provide better 
fit to the data than the parametric PTCM based on standard distributions. Still. however, neither of the models fit the data reasonably 
well as indicated by the survival functions plotted in Fig. 3. The reason may be that the arms of the data have very different hazard 
rates, one has monotone decreasing hazard rate and the other has increasing-decreasing hazard rate. To overcome the structure of 
different curve shapes of hazard rates between the two arms of data, we introduce the covariate in shape parameter delta for all the 
three generalized distributions. The ML estimates, standard errors and the corresponding AIC for these models are given in Table 3. We 
see that the AIC goodness of fit measure for the three models have largely further improved with lowest AIC for the generalized 
Gompertz cure model. To visualize the fitness of the models to real data, we plot the estimated PTCM survival function with different 
baseline distributions in Fig. 4. We see that now the estimated population survival function of the PTCM based on all the three dis-
tributions fit the Kaplan–Meier survival curves equally well with slightly better fit for the generalized Gompertz cure model. Based on 

Table 3 
The maximum likelihood estimates of model parameters, cure fractions and the associated goodness of fit measure for generalized cure models.  

Model Parameter Estimate SE  

Generalized 
Gompertz 

b0 − 0.2870 0.1326 AIC = 868.99 p0 = 0.4272 
p1 = 0.5467 b1 − 0.2175 0.2245 

B0 − 0.4062 0.1916 
B1 1.1423 0.2398 
α 0.0266 0.0131  
λ 0.0882 0.0273  

Generalized 
Weibull 

b0 − 0.2993 0.1325 AIC = 869.71 p0 = 0.4765 
p1 = 0.5404 b1 − 0.1861 0.2243 

B0 − 1.3995 0.1213 
B1 1.2475 0.2143 
α 3.2223 0.0427  
λ 4.58e-5 1.37e-5  

Generalized 
Gamma 

b0 − 0.2992 0.1321 AIC = 869.40 p0 = 0.4764 
p1 = 0.5442 b1 − 0.1978 0.2249 

B0 − 1.9443 0.0796 
B1 1.1466 0.2054 
α 5.2768 2.6149  
λ 26.1774 2.6131   

Fig. 3. The plot of the estimated survival functions for the generalized cure models fitted to K-M survival curves.  
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the forgoing results, we can say that the generalized Gompertz cure model can be used as an alternative to the generalized Weibull and 
generalized gamma cure models to analyze the survival data with cure fraction. Before drawing the conclusions, we plot the estimated 
population hazard functions corresponding to three generalized PTCMs in Fig. 5. 

7. Conclusions 

Several distributions including exponential, gamma, Weibull, lognormal, log-logistic, Burr type XII, etc., are used as baseline 
distributions for cure models. In this article, we study promotion time cure model with generalized Gompertz as the baseline distri-
bution. A simulation study is performed to compare the goodness of fit of the proposed model with generalized Weibull and gamma 
promotion time cure models. It is observed that there is not much difference among the results for the three different models based on 
AIC. The real data used in this study belong to a retrospective study in patients with gastric adenocarcinoma. There are 76 patients 
treated with adjuvant chemoradiotherapy (CRT) and 125 patients treated with surgery alone. The p-value of log-rank test is 0.04 which 
implies that the two groups of patients face different survival experiences. It is seen that the semiparametric estimate of survival 
function fits poorly to the Kaplan–Meier survival curve. In terms of AIC, the performance of the promotion time cure model based on 
Gompertz distribution is far better than the promotion time cure model based on Weibull and gamma distributions. When we fit the 
generalized promotion time cure models, we see that the results for cure fractions p0 and p1 are improved and these are approximately 
the same for all the three models and their goodness of fit have improved reasonably. It is observed that the promotion time cure model 
based on generalized distributions provides better fit to the data than the parametric promotion time cure model 

based on standard distributions. However, neither of the model fit the data reasonably well as indicated by the survival functions 

Fig. 4. The plot of estimated survival functions for the generalized cure models fitted to K-M survival curves when the covariate is introduced to the 
shape parameter delta. 

Fig. 5. The estimated hazard functions of the promotion time cure models based on different distributions for the surgery alone and chemo-
radiotherapy groups. 
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fitted to K-M survival curve. The reason may be that the arms of the data have very different hazard rates, one has monotone decreasing 
hazard rate and the other has increasing-decreasing hazard rate. To overcome the structure of different curve shapes of hazard rates 
between the two arms of data, we introduce the covariate in shape parameter delta for all the three generalized distributions. We see 
that now the estimated population survival function of the promotion time cure model based on all the three distributions fit the 
Kaplan–Meier survival curves equally well with slightly better fit for the generalized Gompertz cure model. It is concluded that the 
generalized Gompertz cure model can be used as an alternative to the generalized Weibull and generalized gamma cure models to 
analyze the survival data with cure fraction. It is further inferred from the data at hand that the estimated survival function corre-
sponding to CRT treatment is higher than the estimated survival function corresponding to surgery alone treatment during the study 
period. The estimated hazard function corresponding to the patients treated with CRT is under the estimated hazard function cor-
responding to the patients treated with surgery alone during the follow-up time 0 month to 14 months, and above after this interval. 
The log rank test of no difference of survival experience between two treatment groups of patients is statistically significance with p- 
value 0.04. We carried out a limited simulation study to observe the goodness of fit of the proposed model in comparison to the other 
generalized promotion time cure model models, the results are very encouraging. However, an extensive simulation study is required 
to observe the behavior of the estimators of its model parameters and to compare with other generalized cure models. 
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