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Abstract
Proper protein glycosylation is critical to normal cardiomyocyte physiology. Aberrant glycosylation can alter protein locali-
zation, structure, drug interactions, and cellular function. The in vitro differentiation of human pluripotent stem cells into 
cardiomyocytes (hPSC-CM) has become increasingly important to the study of protein function and to the fields of cardiac 
disease modeling, drug testing, drug discovery, and regenerative medicine. Here, we offer our perspective on the importance 
of protein glycosylation in hPSC-CM. Protein glycosylation is dynamic in hPSC-CM, but the timing and extent of glyco-
sylation are still poorly defined. We provide new data highlighting how observed changes in hPSC-CM glycosylation may 
be caused by underlying differences in the protein or transcript abundance of enzymes involved in building and trimming 
the glycan structures or glycoprotein gene products. We also provide evidence that alternative splicing results in altered 
sites of glycosylation within the protein sequence. Our findings suggest the need to precisely define protein glycosylation 
events that may have a critical impact on the function and maturation state of hPSC-CM. Finally, we provide an overview 
of analytical strategies available for studying protein glycosylation and identify opportunities for the development of new 
bioinformatic approaches to integrate diverse protein glycosylation data types. We predict that these tools will promote the 
accurate assessment of protein glycosylation in future studies of hPSC-CM that will ultimately be of significant experimental 
and clinical benefit.
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Overview of protein glycosylation

Protein glycosylation occurs in all eukaryotic cells [103]. 
The presence of a glycan moiety at the appropriate site 
within a glycoprotein is critical for proper protein folding 
and stability. Glycoproteins play critical roles in cell adhe-
sion, signaling, and immune responses [2, 82, 103, 123]. 
Cell–cell adhesion, self/non-self-recognition, molecular 
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trafficking and clearance, evasion of host immune recogni-
tion, and receptor activation are examples of glycan-medi-
ated events [63, 103].

N-linked and O-linked are two major types of protein gly-
cosylation. The process of N-linked glycosylation occurs co-
translationally as proteins are translocated through the endo-
plasmic reticulum (ER) (reviewed in [46, 89]). An N-linked 
precursor glycan is transferred from a dolichol-phosphate 
onto asparagine residues within the consensus sequence 
[(Asp (N)-x-Ser (S)/Thr (T)/Cys (C)), where x can be any 
amino acid except proline] within the polypetide chain [9, 
62]. A Val (V) in the third position has also been proposed 
as a consensus sequence for glycosylation [125], but our 
bioinformatic analysis indicates that both the NxC and NxV 
motifs occur at a lower rate than expected in predicted sur-
face/extracellular proteins and at a higher rate than expected 
in predicted intracellular proteins. This pattern is opposite to 
what is observed for the NxS/T motif and suggests that the 
presence of NxC/V sequence motif alone offers no evidence 
of surface protein N-glycosylation [105]. After transfer of 
the glycan onto the protein, glycoproteins traverse the ER 
and Golgi apparatus, and the oligosaccharide is trimmed by 
glycosidases in a highly coordinated fashion. The glycans 
are then modified with sialic acid residues in the Golgi. In 
contrast, O-linked glycans are normally added post-transla-
tionally on Ser (S) and Thr (T) residues to proteins within 
the Golgi, although some types of O-glycosylation are initi-
ated in the ER [21]. There is no known general consensus 
sequence for O-linked glycosylation, although a specific 
consensus-sequence in the epidermal growth factor protein 
domains has been described [21, 34].

Unlike RNA and protein, glycan synthesis is not a tem-
plate-driven process. Rather, the resulting glycan structure 
is defined by the actions of available glycan-modifying 
enzymes (there are > 300 human glycosyltransferases and 
glycosidases), which are influenced by a variety of factors. 
These include the availability of nucleotide sugar donors 
used for glycan biosynthesis, and the spatial organization 
and structure of the secretory pathway, both of which can 
be affected by cellular stressors (reviewed in [90]) (Fig. 1A). 
This complex regulation within the glycan biosynthetic path-
way results in tremendous diversity in glycan structures and 
glycoprotein proteoforms (i.e., different forms of proteins 
generated by genome sequence variations, splicing, and 
post-translational modifications that include glycosyla-
tion). Different glycan structures can occupy a single site 
on a protein (i.e., microheterogeneity). There can be vary-
ing levels of site occupancy and different combinations of 
glycan structures across the protein sequence (i.e., macrohet-
erogeneity) (Fig. 1B). Beyond their canonical intracellular 
location within the ER-Golgi apparatus, some glycosyltrans-
ferases are secreted and function as extracellular enzymes 

in the circulation [48], further confounding the observed 
heterogeneity.

Protein glycosylation in cardiomyocyte 
development and disease

Most cell surface and secreted proteins are predicted to 
be glycosylated and can contain both N- and O-glycans 
[103, 105]. In the heart, ion channels at the cell surface are 
required for propagation of action potentials and subsequent 
contraction of the myocardium [102]. Differential sialylation 
(i.e., the covalent addition of sialic acid to the terminal end 
of a glycan) may modulate cardiac voltage-gated sodium 
channel activity throughout development or between cardiac 
chambers. Treatment with neuraminidase to remove sialic 
acids from rat neonatal atria and adult atria and ventricles 
results in depolarized potentials akin to those measured for 
channels from neonatal ventricles [95]. Treatment of rat neo-
natal cardiac myocytes with neuraminidase to remove sialic 
acids also causes altered cellular calcium concentrations and 
contractile function [121]. Distinct glycan profiles have been 
reported for rat neonatal and adult ventricles [17]. Rat left 
ventricle and atria express distinct β1-adrenergic receptor 
proteoforms, a receptor whose cleavage—and downstream 
signaling—is partially mediated by O-glycosylation [80]. 
Finally, DNA microarray analysis has shown that glycosyla-
tion-associated genes (glycogenes) are highly regulated in 
cardiomyocytes and are modulated uniquely between new-
born and adult cardiac tissue types [72].

Cardiac protein sequence mutations can lead to disrup-
tions of N-glycosylation sites in ion channel proteins and 
impair their function and localization at the cell surface. 
Perturbation of N-glycosylation sites of potassium/sodium 
hyperpolarization-activated cyclic nucleotide-gated (HCN) 
channel 2 leads to loss of its expression at the cell surface 
in HEK293 cells [49, 74]. Mutations in N-glycosite motifs 
in three different ion channels—voltage-dependent calcium 
channel subunit alpha-2/delta-1 (CACNA2D1), voltage-
dependent sodium channel type 5 subunit alpha (SCN5A), 
and potassium channel subfamily K member 2 (KCNK2)—
lead to decreased steady-state cell surface densities of these 
proteins and loss of catalytic activity [8, 18, 96, 114]. Gly-
cosylation site mutations in potassium voltage-gated channel 
subfamily E member 1 (KCNE1) give rise to a form of the 
Long-QT syndrome, a heart rhythm disorder [91]. Human 
induced pluripotent stem cell (hiPSC) lines derived from 
patients with Long-QT syndrome recapitulate the electro-
physiological characteristics of this disease phenotype, and 
hiPSC-CMs showed altered glycosylation and trafficking 
of the potassium voltage-gated channel subfamily H, mem-
ber 2 (KCNH2, HERG) [65, 68]. Separately, the KCNE2 
protein associates with and modulates potassium channels. 
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The absence of glycosylation at site N6 of KCNE2, due to 
a variant in the third position of the N-glycosite sequon, is 
primarily responsible for increased susceptibility of KCNH2 
to the antibiotic sulfamethoxazole [79, 92]. Based on these 
findings, glycosylation of KCNE2 is proposed to protect the 
HERG channel from high-affinity block of sulfamethoxazole 
[79].

Beyond mutations in cardiac ion channels, defects in the 
glycosylation pathway that attaches glycans to proteins or 
lipids have been reported (reviewed in [28]). Collectively 
referred to as congenital disorders of glycosylation (CDG), 
these defects encompass a variety of inborn metabolic disor-
ders. Type I CDGs are related to defects in the assembly or 
transfer of the dolichol lipid-linked glycan to either proteins 
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Fig. 1   Overview of protein N-glycosylation. A Glycan structures are 
generated by complex interactions among enzymes (shown in red and 
grey) that build and trim the structures using a pool of donor sugars. 
An example N-glycan is shown here with the corresponding donor 

sugars and enzymes that would be required to generate or trim the 
structure. B. Examples of glycan microheterogeneity and macrohet-
erogenity in glycoproteins are provided
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or lipids. Type II CDGs are aberrations in trimming and 
processing of protein-bound glycans in the ER or Golgi. 
Approximately 20% of CDG have been associated with car-
diac complications (reviewed in [61]), including defects in 
glycosylation enzymes that give rise to dilated cardiomyopa-
thy, hypertrophic cardiomyopathy, and endocardial sclerosis 
[19, 39, 59, 71, 76, 100].

Altogether, these studies reveal how proper protein gly-
cosylation is critical to normal cardiomyocyte function. 
Changes in glycosylation status of proteins affect cardiomyo-
cyte physiology by altering their localization, function, and 
drug interactions. Therefore, the study of protein glycosyla-
tion is essential if we are to truly understand the biological 
mechanisms that affect protein function.

Human pluripotent stem cell‑derived 
cardiomyocytes and protein glycosylation

Human pluripotent stem cell-derived cardiomyocytes 
(hPSC-CM) can be produced in nearly unlimited quantities 
for the study of cardiomyocyte protein function, early car-
diomyocyte development, cardiac disease, and toxicology 
testing [12, 14, 16, 27, 64, 73, 75, 101]. The use of hiPSC-
CM enables personalized modeling of cardiovascular dis-
ease, drug response, and, potentially, regenerative medicine 
strategies. The utility of hPSC-CM for each of these applica-
tions is, however, inextricably tied to how accurately they 
model the correct cell type (e.g., progenitor, cardiomyocyte) 
from the appropriate anatomical region of the heart (e.g., 
pacemaker, left or right atria, left or right ventricle, septum, 
apex), the relative developmental stage (e.g., fetal, neona-
tal, adult), and how well the cells recapitulate the expected 
phenotype (e.g., disease, response to drug).

Several recent comprehensive reviews of glycosylation 
in undifferentiated hPSC underscore the importance of gly-
cosylation in pluripotency and early differentiation and the 
value of using hiPSC models to understand tissue-specific 
mechanisms in CDG [11, 30, 31, 77, 111]. Despite mounting 
evidence for its relevance and importance, analysis of pro-
tein glycosylation in hPSC-CMs remains limited (Table 1).

Currently, only seven studies have evaluated glycosyla-
tion in hPSC-CM by released glycan analysis. This strategy 
is useful for determining glycan composition or isomeric 
structure but does not identify the protein(s) to which the 
glycans were attached. To determine the role of sialylation in 
early development, N-glycans from a mouse embryonic stem 
cell (mESC) line lacking the CMP-Sia synthetase (Cmas; 
Cytidine 5′-monophosphate (CMP)-sialic acid synthetase, 
an essential enzyme involved in the biosynthesis of glycans 
containing sialic acids) were evaluated at one time point by 
high-performance multiplexed capillary gel electrophoresis 
with laser-induced fluorescence (xCGE-LIF) [1]. Loss of 

Cmas resulted in undifferentiated mESC with an increase 
in oligoLacNAc-capped glycans and glycans with terminal 
galactosyl sugars. However, loss of Cmas did not inhibit the 
cardiomyocyte differentiation of these cells. This enzyme 
thus appears dispensable in early murine cardiomyocyte 
development. In another disease-based study, N-glycans 
from hPSC-CM generated from patients with Pompe disease 
displayed a reduced diversity of multiantennary structures 
compared to control hPSC-CM [85]. The diseased hPSC-
CM also contained an abundance of the trimannose complex 
glycan precursors, which were undetectable in control hPSC-
CM. These data suggest that Pompe hPSC-CM have the 
N-linked glycan core, but do not undergo further branching 
and extension as in the control hPSC-CM. These data pro-
vide evidence of Golgi-based glycosylation defect in Pompe, 
providing a potential link between Pompe cardiomyopathy 
and cardiomyopathies observed in CDG.

Three studies completed global glycome characterization 
of undifferentiated hPSC compared to hPSC-CM at a single 
timepoint of differentiation. A study of glycosphingolipid 
glycans in hiPSC and hiPSC-CMs using xCGE-LIF revealed 
that monosialodihexosylganglioside (GM3), the b-series 
ganglioside GD3, sialyl neolactotetraosylceramide (Lc4), 
and nLC4 were highly abundant in hiPSC-CM compared 
to hiPSC [88]. Two comparative studies used MALDI to 
analyze N-glycans in human and mouse iPSCs compared to 
hPSC-CM. In mouse, Kawamura et al. described changes in 
N-glycans that occurred during miPSC-CM differentiation 
including a decrease in high mannose and exposed GlcNAc 
glycans and an increase in exposed galactose and sialylated 
glycans. In human, an increase of α2,3-sialylation in hiPSC-
CM compared to hiPSC was identified which was corre-
lated with the observed higher expression of ST3Gal3 in the 
hiPSC-CM comparatively [41, 42]. Further, increase in ter-
minal fucose was observed more frequently in hiPSCs than 
hiPSC-CMs. Altogether, these studies suggest that protein 
glycosylation changes as pluripotent stem cells differentiate 
to cardiomyocytes.

Analysis of glycans at multiple timepoints of hPSC-CM 
differentiation has provided greater insights into glycome 
dynamics during in vitro differentiation and maturation. 
Using xCGE‐LIF, Konze et al. examined early myogenic 
and cardiomyogenic commitment by comparing glycans 
from hPSC-CM at differentiation days 0, 7, and 15 and 
from primary human cardiomyocytes [45]. They reported 
62 N-glycan structures and observed three structures unique 
to hPSC compared to hPSC-CM, including β1,3-linked 
galactose, α2,6-linked sialic acid, and complex fucosylation. 
By day 15 of differentiation, hPSC-CMs had an increase in 
α2,3-sialylation and bisecting GlcNAc residues when com-
paring cells from days 0 and 7. Our group used porous gra-
phitized carbon liquid chromatography electrospray tandem 
mass spectrometry (PGC-LC–ESI–MS/MS) to separate and 
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identify glycan isomers to develop a broader view of gly-
come dynamics in committed cardiomyocytes [6]. We iden-
tified 265 N- and O-glycan structures from primary human 
cardiomyocytes and from hPSC-CM at differentiation days 
20–100. Of the structures analyzed, 23% of the glycans were 
shared among hPSC-CM and primary cardiomyocytes, while 
different sialylation linkages were observed between the two 
sample types. During hPSC-CM differentiation, few signifi-
cant differences were observed between high-mannose and 
hybrid classes of glycans; however, glycans within the com-
plex mono-antennary class structures significantly decreased 
over time. Glycans within the complex bi-, tri- and tetra-
antennary classes included those that increased and others 
that decreased over time. This included structures with α2,8-
linked sialylation motif that increased 100-fold over time of 
differentiation.

Three studies have generated proteomic data suitable 
for analysis of glycoproteins from hPSC-CM (see Table 1). 
Mills et al. performed a proteomic analysis of 3D cardiac 
organoids and human heart tissue [70]. In our re-analysis of 
their data, we used Byonic to search against a glycan struc-
ture library constructed by amending the standard glycan 
library with structures identified in our glycomics analysis 
of hPSC-CM and human heart cells and tissue [6]. Novel 
patterns of glycoprotein microheterogeneity emerged from 
this analysis. Examples included HSPG2, FINC, and LG3BP 
glycopeptides that differed between 3D organoids and pri-
mary heart tissue [7]. Here, we report another example of 
microheterogeneity that emerged from this analysis. Spe-
cifically, FKBP9-3 has five different glycan compositions 
present at site N227 in the 3D cardiac organoids (Fig. 2). 
The physiological relevance of this microheterogeneity is 
yet unknown, but this finding is presented to emphasize the 
concept that protein glycosylation status is complex and can-
not be predicted from transcriptomic or proteomic datasets 
alone.

Second, in the study by Konze et al. described above for 
released glycans, the authors also performed an enrichment 
of cell surface sialylated glycoproteins followed by tryptic 
digestion to identify sialo-glycoproteins from hiPSC and 
from hPSC-CM at days 7 and 15 of differentiation. This 
approach, which did not analyze glycopeptides, but instead 
examined the non-modified peptide fraction, identified 879 
proteins. Among these were proteins that increased (e.g., 
HCN4, AGRN, HSPG2) and decreased (e.g., TENM4) in 
abundance at day 15 compared to day 7.

Finally, we have identified > 650 cell surface N-glycopro-
teins on hPSC-CM collected from days 20–100 of differen-
tiation (published and unpublished) using the cell surface 
capture (CSC) technology [29, 115]. The CSC approach 
enriches for extracellular N-glycopeptides and can be used 
to identify sites of glycosylation, but not the glycan moi-
ety. Among published data, we report that CD36 represents 

a marker of matured, mitochondria-rich hPSC-CM that is 
largely absent from undifferentiated hPSC and early hPSC-
CM [83]. The extracellular domain of CD36 is predicted to 
contain 10 N-glycosylation sites (UniProt), including some 
that are critical for trafficking to the surface membrane [37] 
and biological function [56]. In our CSC analyses of hPSC-
CMs, we identify seven N-glycosylation sites in total for 
CD36 (Fig. 3). Sites Asn-247, Asn-321, and Asn-417, which 
have been shown to be important for membrane traffick-
ing [37], were only observed in day 31 + hPSC-CM. Future 
studies that implement methods for the analysis of intact 
glycopeptides will be required to confirm the glycan compo-
sitions present at each of these sites. Collectively, the com-
plementary released glycan and glycopeptide approaches 
provide evidence that protein abundance and glycosylation 
are dynamic during the differentiation and maturation of 
hPSC-CM.

Expanding the assessment of protein 
glycosylation in hPSC‑CM

Strategies to assess protein glycosylation

Routine assessments of hPSC-CM combine analyses at the 
transcript, protein, and metabolite level with phenotypic 
and physiological recordings [10, 27, 40, 58, 81, 107]. 
However, neither glycan structures in general, nor the pres-
ence of a specific glycan structure at a specific glycosite 
within a protein, can be directly predicted from transcrip-
tomic, proteomic, or metabolomic studies. Multiple ana-
lytical approaches for the identification, characterization, 
and quantification of protein glycosylation, therefore, have 
been developed. These approaches can be broadly charac-
terized according to the level of structural detail that can be 
achieved and whether the amino acid residue occupied by 
the glycan can be determined.

Lectins (proteins that recognize and bind glycans) can be 
used for high-throughput screening (lectin arrays) and imag-
ing (reviewed in [32]). However, lectins recognize glycan 
motifs, do not provide information about complete mono-
saccharide composition, and are limited to targets for which 
reagents are available. Currently, no N-glycan structure-
specific lectins and few O-glycan structure-specific lectins 
are available [16, 33, 39, 52, 68].

To inform the specific enzymes in the glycan biosynthetic 
pathway needed to generate the structures in hPSC-CM, a 
full structural characterization is necessary. This level of 
detail is typically achieved when glycans are released and 
empirically measured either by high-performance liq-
uid chromatography (HPLC) or mass spectrometry (MS), 
which do not require anti-protein or anti-glycan affinity rea-
gents. While these analytical techniques are apt for glycan 
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characterization, structural elucidation, and quantitation, the 
methods differ by whether they can determine glycan com-
position (identity and quantity of monosaccharides within 
the glycan) or full structural characterization (composition 
and linkage and branching points of monosaccharides).

Detection of fluorescent labeled released glycans in con-
junction with HPLC can be used to profile glycans and, 
when coupled with exoglycosidase treatment, can identify 
new glycan structures [23, 45, 60]. MS-based approaches 
include the analysis of deglycosylated peptides, intact glyco-
peptides, released glycan compositions, and released glycan 
structures. Each of these approaches require distinct analyti-
cal platforms that have been extensively reviewed elsewhere 
(reviewed in [7, 13, 52]). MS methods that enable determi-
nation of glycan structure include chemical derivatization 
of specific residues such as linkage specific sialic acid deri-
vatization [20], all monosaccharide permethylation [26], or 
reduction of free glycans [38], followed by separation using 

hydrophilic interaction (HILIC) or PGC liquid chromatog-
raphy prior to MS [38, 104].

Methods for the analysis of deglycosylated peptides from 
hPSC-CM include the cell surface capture (CSC) technol-
ogy, periodate oxidation, and aniline‐catalyzed oxime liga-
tion, and related approaches, which specifically enrich for 
N-glycoproteins localized at the cell surface [84, 115, 124, 
124]. Numerous alternative strategies enrich glycopeptides 
from whole cell or tissue lysate, but such approaches do 
not provide evidence for subcellular localization akin to that 
provided by the cell surface glycoprotein focused methods 
[55, 66, 108, 110, 113, 118, 120]. Methods for intact glyco-
peptide analysis by MS enable determination of monosac-
charide compositions present at specific sites on a protein, 
but do not typically generate sufficient information to fully 
characterize glycan structures or structural isomers [36, 43, 
44, 50, 86, 94, 97].

Currently, no singular strategy is available that enables 
the simultaneous identification of peptide sequence and full 

Fig. 2   Microheterogeneity at 
glycosylation sites complicates 
the identification of glycosyla-
tion moieties. As an example, 
one glycopeptide of FKBP9-3 
found in 3D cardiac organoids 
has multiple sites of glycosyla-
tion, including one site that has 
five different glycans

x2x2

003032

FKBP9-3

Fig. 3   Schematic representation 
of cell surface N-glycopeptides 
and N-glycosites in CD36 
identified by CSC analysis of 
hPSC-CM. Image generated 
with Protter [78]
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glycan structure characterization of glycoproteins [51, 60]. 
Rather, multiple complementary strategies are required to 
fully elucidate the glycan structures present on specific sites 
within a protein (Fig. 4). For these reasons, there has been 
limited integration of complementary approaches for the 
characterization of the hPSC-CM glycome. The remainder 
of this perspective focuses on the exploration of new data 
and integration of disparate data types to provide further 
evidence for the relevance of protein glycosylation when 
evaluating hPSC-CM for research and clinical applications.

Exploring dynamic protein glycosylation 
throughout hPSC‑CM differentiation

As described above, we and others determined that N-gly-
cans are dynamic throughout differentiation of hPSC-CM [6, 
41]. However, a limitation of these studies is that the glycans 
were released from the protein backbone prior to MS analy-
sis, making it impossible to determine to which proteins the 
glycans are attached. To complement these data and provide 

new insights regarding whether the glycoproteins present on 
the cell surface change during differentiation, we combined 
data from two complementary approaches, CSC technology 
and RNA-seq.

Application of the CSC technology to hPSC-CM col-
lected from 18 experiments on 9 timepoints between days 
10 and 93 of differentiation resulted in the identification of 
627 cell surface N-glycoproteins identified in at least two 
experiments (methods described in [83]). RNA-seq analyses 
were performed on hPSC-CM collected from four timepoints 
of differentiation, days 15, 30, 45, and 60. Data from both 
approaches were integrated by annotating each protein iden-
tified by CSC with the transcript level from the RNA-seq 
experiments. To visualize whether transcripts for predicted 
cell surface proteins are quantitatively changing, genes for 
transcripts from the RNA-seq analysis were annotated with 
their surface prediction consensus (SPC) score [106]. SPC 
scores range from 0 to 4 with scores of 3 or 4 represent-
ing a high confidence prediction in surface localization. 
SPC score of 0 indicates a protein either has a predicted 

Fig. 4   Protein glycosylation 
can be studied by various 
approaches, which altogether 
provide complementary views 
of the glycoproteome. Lectins 
can recognize certain motifs 
or epitopes on the glycans. 
Glycomics methods include 
fluorescent detection of labeled 
glycans, and MS analysis of 
labeled or unlabeled glycans 
that can give structural, compo-
sition, or isomer specific infor-
mation. Cell surface capture 
and other methods involving 
enrichment and deglycosyla-
tion of glycoproteins allow for 
glycosylation site localization 
and protein identification. 
Glycoproteomics analyses of 
intact glycopeptides can identify 
glycan compositions present at 
specific sites within the protein. 
Transcriptomics can inform 
regulation of glycoproteins and 
enzymes within the biosynthetic 
pathway of glycosylation
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localization other than the cell surface or is a GPI-anchored 
or extracellular matrix protein that does not contain trans-
membrane domains. Volcano plots were generated featur-
ing all transcripts with SPC scores of 3 or 4 (Fig. 5). These 
data demonstrate the transcriptional levels of many predicted 
cell surface transmembrane proteins are dynamic throughout 
differentiation.

The CSC technology provides experimental evidence that 
a protein is localized to the cell surface. However, it is pos-
sible that differential detection of a peptide (i.e., apparent 
difference in abundance) by this method could be due to 
changes in protein localization or in the glycan structure, 
either of which can interfere with the glycopeptide capture 
or release. RNA-seq data do not provide direct measure-
ment of protein abundance or localization but rather reveal 
mRNA levels or alternative splicing of mRNA. The annota-
tion of transcripts from RNA-seq data with the SPC score 
does not provide experimental evidence that the proteins 
for these transcripts are localized at the cell surface in these 
cells. Instead, it serves as a filter for predicted cell surface 
proteins. Moreover, mRNA and protein abundance at the 
cell surface are not always correlated as cell surface proteins 
can be sequestered (e.g., CD36) and further processed after 
translation in ways that would alter their detection by CSC 
[56].

With these caveats in mind, further examination of 
RNA-seq data for cell surface N-glycoproteins identified by 
CSC reveals consistencies and discrepancies in the trends 
among stages of differentiation (Fig. 6). Besides CD36, 
many proteins found by CSC with a trend of increasing 
abundance during differentiation displayed a similar trend 

by RNA-seq. These include ITGA10, TSPAN9, GRM2, 
SCL15A2, NLGN1, and GLP1R which were only detected 
in day 30 + hPSC-CM by CSC and showed increased mRNA 
abundance with differentiation time. Similarly, SEMA7A 
was detected in only day 60 + hPSC-CM and showed low 
but increasing mRNA levels by RNA-seq. Proteins detected 
at days 10–21 of differentiation by CSC include GPRC5C 
and SMO for which RNA-seq also shows a decreasing trend 
over time. Intriguing are ADCY6, ACE2, ADAM23, and 
ACVR2A which were detected by CSC but had mRNA 
levels below the threshold for consideration in these stud-
ies. The reason for this discrepancy is unknown, particu-
larly since ADCY6 transcripts were found to increase with 
time of differentiation when evaluated independently by 
qPCR (online resource 1). Despite this incongruity, these 
data provide evidence for why protein-level assessments 
are important even in the age of next-generation sequenc-
ing technologies. Finally, LAMP1 and ERBB3 are examples 
where mRNA expression levels were modest (counts ranged 
1272–1849 and 258–1829, respectively) at all timepoints, 
yet were detected by very few spectra (≤ 10) in CSC at days 
59–93. The cause for this inconsistency is unknown but 
could possibly be related to alterations in N-glycosylation 
composition or site occupancy as discussed below.

Glycosylation pathway enzymes during hPSC‑CM 
differentiation

The mRNA and protein levels of enzymes associated with 
the glycosylation pathway are dynamically regulated during 
hPSC-CM differentiation. To inform whether our reported 
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Fig. 5   Cell surface N-glycoproteins are dynamic over stages of dif-
ferentiation. Volcano plots of RNA-seq data for 2057 transcripts 
with SPC scores of 3, 4. Of those, the cell surface N-glycoproteins 
that were identified by CSC are highlighted in orange. Plots show 
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tiation days 30, 45, or 60 compared to day 15. Transcripts for which 
the transcript levels are significantly changed (p < 0.05) by log2 fold 
change > 4 or a log2 fold change <  − 4 are labeled with gene symbols
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changes in glycans during hPSC-CM differentiation [6] are 
potentially due to changes in glycosylation machinery, we 
assessed the RNA-seq data for transcripts of glycosylation 
enzymes. Volcano plots were generated featuring human 
glycosidases or glycosyltransferases (annotated according 
to Carbohydrate-Active enZYmes Database [53]; Fig. 7A). 
Overall, of the 237 transcripts identified in the RNA-seq 
data that play a role in the glycan biosynthetic pathway, the 
abundance of 106 transcripts significantly changes during 
the time course of differentiation.

Several observations emerge from the integration of these 
RNA-seq data with our structure-based glycomics analysis. 
First, our RNA-seq data reveal that the glycosylation enzyme 
beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) 
increases with differentiation time (Fig. 7B). This result 
is consistent with our previously reported glycan structure 
data, where relative signal abundance for glycan structures 
that contain α2,3-sialylation (linkages which are synthesized 
by ST3GAL4) increases over time of differentiation (exam-
ple of one structure shown in Fig. 7C, D). While we do not 
know to which proteins this glycan structure is attached, 
the importance of this enzyme for cardiomyocyte function 
is evidenced in a previous finding that targeted deletion of 
St3gal4 in mice leads to decreased sialylation on voltage-
gated sodium channels that alters channel gating and is con-
sistent with increased susceptibility to arrhythmia [25].

Second, we previously observed differences in glycan 
structures between hPSC-CM and primary isolated human 
cardiomyocytes that we thought might be related to differ-
ences in expression of glycosylation enzymes required to 
generate these glycan structures. Specifically, we proposed 
that a combination of the fucosyltransferase FUT8, expressed 
in tandem with ST6GAL1 or ST6GAL2, would be required 
to generate a structure found uniquely in the cardiomyocytes 
isolated from human hearts. The structure requiring both 
enzymatic reactions is shown in Fig. 7E. Our new RNA-
seq data further refines this hypothesis, as only ST6GAL1 is 
robustly expressed in hPSC-CM (Fig. 7F). Therefore, due 
to the minimal expression of transcripts for ST6GAL2 and 
FUT8 in hPSC-CM, the glycan found uniquely in primary 
isolated human cardiomyocytes (Fig. 7E) is likely synthe-
sized primarily by these two enzymes.

While we do not yet know the physiological significance 
of the glycosylation changes observed for hPSC-CM over 
time of differentiation, nor the differences between hPSC-
CM and primary cardiomyocytes, the analyses presented 
here provide examples of how the integration of different 
data types can further refine hypotheses for future stud-
ies that integrate changes in the pathway of glycosylation 
(transcriptomics, proteomics) with measurements of the end-
products (glycoproteomics, glycomics).
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Fig. 7   Glycosylation pathway enzymes are dynamic over stages 
of hPSC-CM differentiation. A Volcano plots of RNA-seq data for 
237 transcripts annotated as either glycosylhydrolases or glycosyl-
transferases. Plots show log2 fold change versus the -log10 p-values 
for hPSC-CM differentiation days 30, 45, or 60 compared to day 15. 
Transcripts for which the transcript levels are significantly changed 
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labeled with gene symbols. B Transcript abundance for ST3GAL4 
from RNA-Seq data showing an increase with time of differentiation. 

C Relative abundance of the glycan structure shown in (D) across 
days of hPSC-CM differentiation. E Glycan structure we previously 
identified [6] in primary cardiomyocytes but not hPSC-CM for which 
the combination of FUT8 and either enzyme ST6GAL1 or ST6GAL2 
would be required to generate the linkages indicated by (*). F RNA-
seq data from hPSC-CM showing that only ST6GAL1 is robustly 
expressed in hPSC-CM. The minimal expression for ST6GAL2 and 
FUT8 in hPSC-CM is consistent with the lack of detection of the gly-
can shown in panel e in these cells
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New approaches are needed to promote assessment 
of protein glycosylation

Analysis of protein glycosylation is challenging and not yet 
routinely used to assess hPSC-CM. As described above, 
protein glycosylation is the result of a complex biosyn-
thetic pathway, and no single analytical approach currently 
enables the determination of full structural detail of the 
glycan attached to specific amino acids within a protein. 
Rather, complementary approaches that separately deter-
mine released glycan structure and glycan composition for 
a specific site must be integrated to fully determine glycan 
structures present at a specific glycosite on a protein.

Analytical approaches that provide structural detail 
are necessary to inform which metabolic precursors and 
enzymes within the glycosylation pathway are required to 
generate glycan structures. But these methods do not directly 
provide insight into whether the glycosylation enzymes are 
regulated transcriptionally or if there is a change in the pool 
of nucleotide sugars used for glycan biosynthesis. Combined 
transcriptomic, metabolomic, and proteomics approaches 
are required to inform whether differences in glycoproteins 
observed among cell types or conditions are due to tran-
scriptional regulation of enzymes within the biosynthetic 
pathway or of the glycoprotein itself, or availability of meta-
bolic precursors.

RNA-seq data can inform splicing events and, conse-
quently, sample-specific databases for glycoproteomics 
studies. Alternative RNA splicing, where intron and exon 
elements are rearranged and joined to alter the mRNA cod-
ing sequence, results in the synthesis of multiple protein 
sequences from a single gene (Fig. 8). Alternative splicing 
can alter the presence or location of glycosite motifs, sig-
nal peptides, or transmembrane domains within the protein, 
each of which are critical for glycoprotein localization and 
function. Compared to proteins synthesized from canoni-
cal mRNA sequences (i.e., non-spliced mRNA), proteins 
translated from alternatively spliced mRNAs contain differ-
ent amino acid sequences and may have different biological 
functions [99]. Alternative splicing is a key mechanism that 
diversifies protein function during cardiomyocyte develop-
ment. During post-natal development of mouse heart, genes 
involved in membrane organization and vesicular traffick-
ing are regulated by alternative splicing [33]. Alternative 
splicing events in adult and fetal human heart are linked to 
protein synthesis and cell-cycle regulation [109].

To predict whether alternative splicing may affect sites 
of glycosylation in hPSC-CM proteins, we created a library 
of protein isoform sequences informed by RNA-seq data 
using a pipeline of STAR, rMATS, and JCAST [22, 47, 93]. 
Our analysis reveals that 19,068 predicted sites of N-gly-
cosylation (considering only NxS and NxT sequon motifs) 
across 3951 proteins are putatively different between the 

alternatively spliced isoforms compared to the canonical 
sequences (online resource 2). We found 2,913 (~ 35%) 
N-glycosylation sites shifted in position in the predicted 
isoforms, while 5126 sites (~ 62%) among 1764 proteins 
were lost, and 198 sites (~ 2%) among 164 proteins were 
gained. Of those proteins whose sites were lost or gained, 
122 are proteins with an SPC score of 3–4, meaning they are 
high confidence predicted surface proteins. As an example, 
the canonical sequence of FXYD domain-containing ion 
transport regulator 5 (FXYD5) contains one transmembrane 
domain and no predicted N-glycosites (UniProt). RNA-seq 
data predict an alternative isoform that contains a single 
N-glycosite motif in the extracellular domain, and by Pho-
bius [30], it is predicted to be entirely extracellular without 
a transmembrane domain (Fig. 9A). Previous studies have 
shown this protein is O-glycosylated [98], but to our knowl-
edge, N-glycosylation and lack of transmembrane domain 
for this protein have not been reported. As shown in Fig. 9B, 
RNA-seq predicts isoforms of LAMP1, CD82, ERBB3, and 
SLC33A1 each contain lost and/or gained sites of N-glyco-
sylation in comparison to their canonical isoforms. The loss 
of sites for LAMP1 and ERBB3 could explain why the CSC 
approach detects very few N-glycopeptides for these pro-
teins, while the mRNA levels are robust, as described above.

While the functional relevance of these putatively lost or 
gained glycosite motifs is unknown, nor have they been con-
firmed at the protein level, these data highlight the need for 
better tools to facilitate these types of analyses. Currently, 
the interrogation of RNA-seq data for predicted glycosite 
changes and integration of those predictions with experi-
mental data requires technical knowledge in different data 
analysis pipelines. Glycome data warehouses, data visuali-
zation, and data analysis tools are becoming increasingly 
available and richly populated [3–5, 15, 35, 57, 69, 112, 
117, 119, 122]), but we still lack efficient ways to fully inte-
grate all of the data types illustrated in Fig. 10. Specifically, 
tools that facilitate the use of sample-specific RNA-seq are 
needed to inform possible changes to protein sequence and 
glycosylation site occupancy that could be experimentally 
verified by MS or other approaches. Data analysis tools 
that make it easy to determine the presence of blood group 
motifs from glycomics data could impact the evaluation of 
hPSC-CM for regenerative medicine. Finally, annotation 
of experimental data with information related to available 
lectin or other anti-glycan reagents would facilitate orthogo-
nal approaches to visualize the location of specific glycan 
motifs within complex tissues and organs. Altogether, the 
development and implementation of bioinformatics tools 
that facilitate the analysis and integration of data from dis-
parate analytical workflows should facilitate the routine 
evaluation of protein glycosylation in hPSC-CM and other 
biological samples.
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Conclusions and future prospects

The biological importance of glycosylation during develop-
ment and disease is an emerging field of investigation with 

implications for hPSC-CM. In this perspective, we present 
evidence that glycosylation is dynamic during in vitro dif-
ferentiation and maturation of hPSC-CM. However, our view 
of protein glycosylation within hPSC-CM remains limited 
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Pflügers Archiv - European Journal of Physiology (2021) 473:1041–1059 1053



1 3

as does our understanding of the implications of aberrant 
glycosylation in hPSC-CM models as compared to pri-
mary CM. Considering the biological relevance of glyco-
sylation for cardiomyocyte function, studies of hPSC-CM 
are expected to benefit from the inclusion of strategies to 
assess protein glycosylation. Appropriate strategies would 
include transcriptomics to assess mRNA levels of proteins 
and enzymes involved in the biosynthesis of glycosylation 
as well as glycoproteins, MS to determine glycan structure 

and glycopeptide identity, and lectin and other anti-glycan 
affinity reagents to inform spatial localization. Continued 
studies to define protein glycosylation, its regulation, and 
physiological implications will be important for advancing 
the utility of hPSC-CM for research and clinical applica-
tions. We expect new facile approaches for integrating the 
vast and disparate datasets required to generate an accurate 
view of sample-specific protein glycosylation will promote 
the broad implementation of studies of protein glycosylation 
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for hPSC-CM. As these approaches evolve and become more 
readily accessible, we advocate that protein glycosylation 
should be considered when evaluating the suitability and 
applications of hPSC-CM products for drug testing, mod-
eling human development and disease, or regenerative 
medicine.
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