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Assembling RNA-seq reads into full-length transcripts is crucial in transcriptomic studies and poses computational challeng-

es. Here we present TransMeta, a simple and robust algorithm that simultaneously assembles RNA-seq reads from multiple

samples. TransMeta is designed based on the newly introduced vector-weighted splicing graph model, which enables accu-

rate reconstruction of the consensus transcriptome via incorporating a cosine similarity–based combing strategy and a new-

ly designed label-setting path-searching strategy. Tests on both simulated and real data sets show that TransMeta

consistently outperforms PsiCLASS, StringTie2 plus its merge mode, and Scallop plus TACO, the most popular tools, in

terms of precision and recall under a wide range of coverage thresholds at the meta-assembly level. Additionally,

TransMeta consistently shows superior performance at the individual sample level.

[Supplemental material is available for this article.]

RNA-seq is a powerful technology for transcriptome analysis.
During the past five years, this technology has transitioned from
research to clinical use (Phillips et al. 2020), which provides an op-
portunity to view the complexity of eukaryotic transcriptomes and
identify the expressed transcripts and quantify their abundance
precisely at a whole-transcriptome level (Wang et al. 2009;
Wilhelm and Landry 2009; Marguerat and Bähler 2010; Ozsolak
and Milos 2011). Assembling RNA-seq reads into full-length tran-
scripts has become a crucial step and a challenging task.

For a single RNA-seq sample, there exist twomain approaches
to reconstruct transcripts: genome-guided and de novo. Genome-
guided approaches take advantage of an existing genome to which
the RNA-seq reads are first aligned by using mapping tools includ-
ingHISAT (Kim et al. 2015), HISAT2 (Kim et al. 2019), STAR (Dobin
et al. 2013), TopHat (Trapnell et al. 2009), or TopHat2 (Kim et al.
2013). Based on alignments, genome-guided assemblers such as
StringTie2 (Kovaka et al. 2019), Scallop (Shao and Kingsford
2017), TransComb (Liu et al. 2016b), iPAC (Yu et al. 2020), String-
Tie (Pertea et al. 2015), Cufflinks (Trapnell et al. 2010), Class2
(Song et al. 2016), Scripture (Guttman et al. 2010), IsoInfer (Feng
et al. 2011), IsoLasso (Li et al. 2011), iReckon (Mezlini et al.
2013), CEM (Li and Jiang 2012), Traph (Tomescu et al. 2013),
andMITIE (Behr et al. 2013) can be used to reconstruct transcripts.
Generally, these assemblers recover the transcripts by constructing
a graph model (splicing graph) based on the read alignments and
followed by an individual-designed path-searching algorithm.
When the genome is unknown or partially known, de novo assem-
blers such as TransLiG (Liu et al. 2019), BinPacker (Liu et al. 2016a),
Bridger (Chang et al. 2015), Trinity (MacManes and Eisen 2013),
ABySS (Simpson et al. 2009), SOAPdenovo-Trans (Xie et al.
2014), and IDBA-tran (Peng et al. 2013) have been available for re-
constructionof full-length transcripts directly fromRNA-seq reads.
Generally speaking, genome-guidedmethods aremore commonly

used because they are usually more accurate (Shao and Kingsford
2017).

Transcriptomic studies involve multiple samples. Construct-
ing a consensus transcriptome from multiple samples is critical
in an RNA-seq experiment for the subsequent quantification and
differential expression and splicing analyses (Niknafs et al. 2017;
Song et al. 2019). Thus, many meta-assembly computational
methods have been developed, which can be summarized by
two paradigms. The first one uses existing single-sample assem-
blers to reconstruct transcripts for each individual sample and
then merges the transcripts of each sample by merging tools
such as StringTie-Merge (Pertea et al. 2015) or TACO (Niknafs
et al. 2017); however, the precision of this paradigm is usually
low (Song et al. 2019). The second paradigm, such as the state-
of-the-artmeta-assembly tool PsiCLASS (Song et al. 2019), simulta-
neously analyzes multiple RNA-seq samples and outputs a set of
meta-annotations, as well as a set of transcripts for each sample.
PsiCLASS uses statistical methods to build the global subexon
graphs and generates the assembly by dynamic programming op-
timization and voting algorithms. Although it achieves higher pre-
cision, its recall is relatively low (Song et al. 2019).

Here, we present TransMeta, a multisample transcriptome as-
sembly algorithm that enables simultaneous and accurate assem-
bly of RNA-seq reads from multiple samples. TransMeta can
generate the consensus meta-assembly for multiple samples, as
well as a certain set of transcripts for each individual sample.

Results

Overview of the TransMeta model

TransMeta first builds the traditional splicing graphs for each sam-
ple in parallel and then constructs a vector-weighted splicing
graph (VWSG) with the edges and nodes being both weighted by
vectors rather than scalar numbers by integrating the individual
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splicing graphs. After that, TransMeta reconstructs the initial con-
sensus meta-assembly by using a cosine similarity–based combing
strategy and a label-setting path-searching strategy, and produces a
set of transcripts for each sample based on both the VWSGs and
the initial meta-assembly followed by an estimation of their ex-
pression levels. Finally, TransMeta generates the mature meta-as-
sembly by an extra filtering procedure (Fig. 1A–E).

Benchmarking TransMeta

We evaluated the performance of TransMeta at both the meta-as-
sembly level and the individual sample level by comparing it
with the state-of-the-art multisample assembler PsiCLASS, which
can produce a meta-assembly for multiple samples and a certain
set of transcripts for each individual sample as well. Additionally,
we compared TransMeta with two of the current best single-sam-
ple assemblers, StringTie2 and Scallop, at the individual sample

level and with the combinations of StringTie2 with StringTie2-
merge and Scallop with TACO at the meta-assembly level. As did
Song et al. (2019) for their evaluation of PsiCLASS, we bench-
marked the TransMeta under two widely used aligners, HISAT2
and STAR, in terms of the standard criteria that have been widely
used in evaluation of transcriptome assemblers. To this end, we re-
phrase that an assembled transcript is defined as correctly assem-
bled if and only if its intron chain is exactly matched with a
reference transcript in the ground truth. This reference transcript
is considered to be accurately recovered. Then, the accuracy of
an assembler was measured by recall (the fraction of accurately re-
covered reference transcripts in the ground truth) and precision
(the percentage of correctly assembled transcripts out of all the
output transcripts). These metrics were calculated by using
Cuffcompare (v.2.2.1). The reference genome used in this research
was GRCh38. The running commands and versions of all these
tools are described in the Supplemental Notes.
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Figure 1. Flowchart of TransMeta. (A) Building individual splicing graphs for each sample in parallel. The nodes (exons) are namedwith lowercase letters;
the values on each edge are the weights of the edge. (B) Merging individual splicing graphs into the vector-weighted splicing graph (VWSG). The nodes
and edges in the VWSG are all the nodes and edges appearing in all the samples. Each edge in the VWSG is weighted by a vector, with the kth component of
the vector being the corresponding weight of the edge in the splicing graph of sample k. (C ) Using the cosine similarity–based combing strategy and the
label-setting technique to generate the initial meta-assembly. (D) Extracting assembly for each sample from the VWSG. (E) Producing the mature meta-
assembly.
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Evaluation on the simulated data set

We used the RNA-seq read simulator
RSEM (Li and Dewey 2011) to generate
three simulated data sets, which are S1
(20 samples, 100-bp length, 35–36 mil-
lion paired-end reads), S2 (25 samples,
76-bp length, 41–54 million paired-end
reads), and S3 (15 samples, 76-bp length,
69–81 million paired-end reads). The pa-
rameters (e.g., abundances, fragment and
read length distributions, and sequenc-
ing error model parameters) of the
RSEMwere taken from real RNA-seq sam-
ples. The detailed parameters and run-
ning commands for generating the
simulated data sets are described in the
Supplemental Notes. We then used the
mapping tools HISAT2 and STAR to gen-
erate the alignments for each sample and
ran the assemblers, followed by evaluat-
ing their performance at both the meta-
assembly level and individual sample
level.

Evaluation at the meta-assembly level

Typically, assemblers filter out their as-
sembled transcripts with lower estimated
expression levels via introducing a trade-
off parameter to balance the precision
and recall. With increased filtering pa-
rameter, the precision might generally
increase, whereas the recall decreases.
Hence, to evaluate the assemblers’ capa-
bility to balance precision and recall, we
drew a precision-recall curve for each as-
sembler based on awide range of its filter-
ing thresholds (for details of the
parameter settings for each assembler,
see the Supplemental Notes). On the
three simulated data sets under the
HISAT2 and STAR alignments, we ran
TransMeta and PsiCLASS with different
filtering thresholds to get the sets of
meta-assemblies, then ran StringTie2
and Scallop with their default settings
for each individual sample, and finally
merged them by using StringTie2-Merge and TACO, respectively,
with different filtering thresholds. Given the precision-recall
curves generated for all compared assemblers over a wide range
of filtering thresholds, we found that TransMeta consistently
had its precision-recall curves much higher than those of the com-
pared assemblers on the three simulated data sets under both
aligners HISAT2 and STAR. Specifically, on the simulated data set
S1 under the HISAT2 alignments, when we adjusted the coverage
thresholds of all the assemblers to set their assemblies all to the
precision of 0.7 (or any other value), the recall of TransMeta
reached about 0.38, which is ∼20% higher than that of PsiCLASS,
∼41% higher than StringTie2 system, and ∼90% higher than Scal-
lop+TACO (Fig. 2A). Evaluated based on the areas under the pre-
cision-recall curve (AUC) scores, we found that the AUC score of
TransMeta was ∼13.7% higher than that of PsiCLASS, 22.3% high-

er than that of StringTie2 system, and 49.8% higher than that of
Scallop+TACO. Under the STAR alignments, all the assemblers
performed similarly well as they did under theHISAT2 alignments.
The performance comparisons are summarized in Supplemental
Figure S1A. Further tests on the simulated data sets S2 and S3 under
aligners HISAT2 and STAR showed that TransMeta consistently
performed better as it did on data set S1 (Supplemental Fig. S2A,
B,E,F).

In general, it is more challenging to reconstruct transcripts
with relatively low expression than those with higher expression
(Canzar et al. 2016; Shao and Kingsford 2017). Therefore, we fur-
ther evaluated TransMeta’s performance in reconstructing tran-
scripts of different expression levels. We divided the expressed
transcripts into three parts equally according to whether their ex-
pression levels were low, medium, or high (for the detailed

C D

A B

Figure 2. Performance evaluations on the simulated data set S1 under the HISAT2 alignments. (A)
Precision-recall curves of the assemblers. The points on the curve of an assembler correspond to the fil-
tering thresholds of the assembler; the circled one, to the default value. (B) Distributions of numbers of
correctly recovered transcripts against the tools that were separately counted according to whether their
expression is low, medium, or high at the meta-assembly level. (C) The precision and recall of the assem-
blers on different samples at the individual sample level under their default settings. Different colors cor-
respond to different assemblers, and each point corresponds to a specific sample. (D) Distributions of
averaged numbers of correctly recovered transcripts against the tools that were separately counted ac-
cording to whether their expression is low, medium, or high at the individual sample level. The error
bars show the standard deviation across the samples.
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description of the expression levels, see the Supplemental Notes).
On data set S1, the comparison results showed that TransMeta cor-
rectly recovered much more medium-expressed transcripts than
the others, whereas its ability to correctly reconstruct low- and
high-expressed transcripts is comparable to the best performers
(Fig. 2B). In addition, the comparison results under the STAR align-
ments revealed that TransMeta consistently outperformed all the
others in recovering transcripts of different expression levels. We
further evaluated the assemblers on data sets S2 and S3 under
both the HISAT2 and STAR alignments. As we expected,
TransMeta demonstrated superior performance, similarly as it
did on data set S1 (Supplemental Figs. S1B, S3A,B,E,F).

Evaluation at the individual sample level

TransMeta and PsiCLASS are the so-called meta-assemblers, but
they may also produce a certain set of transcripts for each sample.
Thus, we compared their performance with the single-sample as-
semblers StringTie2 and Scallop using their default settings at
the individual sample level. On all the 60 samples from the three
simulated data sets under both HISAT2 and STAR alignments,
TransMeta consistently showed superior performance. Specifi-
cally, averaged on the 20 samples of data set S1 under the HISAT2
alignments, the recall of TransMeta reached about 0.38, whichwas
∼5.6% higher than that of PsiCLASS and >11.4% higher than
those of StringTie2 and Scallop. Meanwhile, TransMeta had the
highest precision (Fig. 2C). And, under the STAR alignments, a
similar trend was observed (Supplemental Fig. S1C). We further
tested them on the simulated data sets S2 and S3 under both the
HISAT2 and STAR alignments and observed that TransMeta per-
formed better as it did on data set S1 (Supplemental Fig. S2C,D,
G,H). We also tested them on all three simulated data sets S1, S2,
and S3 under both aligners HISAT2 and STAR in correctly identify-
ing transcripts of different expression levels as we did in the last
section.Weobserved again that TransMeta consistently performed
better. It can be seen from Figure 2D (resp. Supplemental Fig. S1D)
that TransMeta consistently performed the best for all the expres-
sion levels on the simulated data set S1 under the aligner HISAT2
(resp. STAR) and from Supplemental Figure S3, C, D, G, and H
that TransMeta retained superiority on both S2 and S3 under
both aligners HISAT2 and STAR.

Additional evaluation on the simulated data set S1

According to the above tests, TransMeta showed good and robust
performance on all the simulated data sets S1–S3. The assemblers
possessed highly similar performance trends across the three sim-
ulated data sets. Thus, the following additional tests were made
based on data set S1. First, as is known, for the simulated data
set, the ground truth was knownwith certainty. Therefore, we fur-
ther ran HISAT2 via using the options ‐‐ss and ‐‐exon, which, re-
spectively, provided the splice sites and exons in the ground
truth to HISAT2 during building the index, toward producing
more accurate alignments. Subsequently, based on the newly gen-
erated alignments, we ran all the assemblers and evaluated their
performance and found that TransMeta maintained the best per-
formance (Supplemental Fig. S4). Second, in the TransMeta pack-
age, we provided an option -g for the annotation-guided
assembly, where -g provided a set of reference transcripts to guide
the assembly procedure. Under the annotation-guided mode, we
compared TransMeta with StringTie2 (other tools did not have
such an option) under the HISAT2 alignments, and the results
showed that TransMeta significantly outperformed StringTie2

(Supplemental Fig. S5A). Third, at the individual sample level un-
der the HISAT2 alignments, we additionally drew the precision-re-
call curves based on the filtering threshold for all the assemblers,
and TransMeta also achieved the highest precision-recall curve
(Supplemental Fig. S5B). Fourth, we further compared all the as-
semblers with gtfmerge, a simple tool that took the union of the as-
sembled transcripts from each individual sample. Because gtfmerge
simply took the union, the number of transcripts generated by it
was quite large. As a result, its precision was quite low, although
its recall was relatively higher. Therefore, we computed the F-score,
a harmonic mean of recall and precision (calculated as 2 ×preci-
sion× recall / (precision+ recall)) to evaluate the overall perfor-
mance of each assembler. Based on the results, TransMeta
performed the best (Supplemental Table S1).

Evaluation on the real data sets

We can explicitly know the ground truth for the simulated data,
but simulated data sets that are generated by using mathematical
models cannot capture the entire features of real biological data.
For this reason, the performance evaluation based on real RNA-
seq data sets is of great necessity. Although the ground truth of
the real data sets cannot be known precisely, it is generally safe
to assume that an assembler is more accurate if it recovers more
known annotated transcripts. In this research, all the reference
transcripts from the NCBI-RefSeq annotations were primarily set
as the ground truth, as in previous studies (Kovaka et al. 2019),
to benchmark TransMeta. However, as we know, there are different
versions of reference annotation libraries; thus, we additionally set
the GENCODE annotations as the ground truth to make the
analysis.

In this research, five human RNA-seq data sets were used for
evaluating the performance of the assemblers, which are R1, the
liver cells data set with 73 samples; R2, the fetal retinal pigment ep-
ithelium cells data set with 48 samples; R3, the urinary bladder ep-
ithelial cells data set with 35 samples; R4, the NHDF primary
human fibroblasts cells data set with 21 samples; and R5, OCT em-
bedded kidney tumor tissue cells data set with 12 samples. The ac-
cession number of each data set can be found in the Supplemental
Notes. It is worth mentioning that data set R1 was previously used
by Song et al. (2019) in their evaluation of PsiCLASS.We aligned all
the RNA-seq data to the reference genome using HISAT2 and STAR
and ran the assemblers. Then we assessed the performance of
TransMeta at both the meta-assembly level and the individual
sample level.

Evaluation at the meta-assembly level

We ran the assemblers with different filtering thresholds as we did
for the simulated data sets. On the whole, TransMeta maintained
its superiority over other tools. Specifically, we can see from Figure
3A, which shows the comparison results under the HISAT2 align-
ments, that TransMeta has improved precision-recall compared to
other tools across all the five data sets at the meta-assembly level.
As an illustration, we considered precision 0.5 (or any other value),
which means that we adjusted the filtering parameters of each as-
sembler to make their precision reach about 0.5. Then on the five
tested data sets R1–R5 under the HISAT2 alignments, the recalls of
TransMeta reached about 0.11, 0.15, 0.16, 0.14, and 0.17, respec-
tively; those of the second-best assembler PsiCLASS were about
0.07, 0.11, 0.12, 0.11, and 0.14, respectively; those of StringTie2
were about 0.05, 0.09, 0.11, 0.09, and 0.12, respectively; and those
of Scallop+TACO were relatively worse. It means that under the
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same precision level, TransMeta correctly identified ∼21%–57%
more transcripts than PsiCLASS and 42%–120% more than the
StringTie2 system. The precision of Scallop+TACO cannot reach
0.5 no matter how we adjusted their filtering parameters (Fig. 3A).
Furthermore, in terms of the AUC, TransMeta showed an improve-
ment of ∼17%–35% over PsiCLASS, as well as 19%–62% over the
StringTie2 system on the five data sets, whereas Scallop+TACO
showed relatively poor performance. After repeating the evaluation
by using the aligner STAR instead of HISAT2, we observed results
comparable to those obtained by using the aligner HISAT2 (Supple-
mental Fig. S6A).

Evaluation at the individual sample level

As in the simulated data set, we investigated the performance of
the assemblers at the individual sample level. Again, TransMeta
achieved the best performance under its default settings. Specifi-
cally, on 187 out of the 189 individual samples from the five differ-
ent RNA-seq experiments, both the recall and precision of
TransMeta consistently were the highest. For instance, averaged
on the 73 samples from R1, TransMeta correctly reconstructed
∼19.6% more transcripts than PsiCLASS, as well as 62.1% and
75.2% more than the single-sample assemblers StringTie2 and
Scallop, respectively. Meanwhile, its precision was the highest on
all 73 samples, which were on average ∼15% higher than those
of PsiCLASS and over twofold higher than those of StringTie2
and Scallop (Fig. 3B). Again, we obtained comparable test results
by replacing HISAT2 with STAR (Supplemental Fig. S6B).

Additional evaluation on the real data sets R1–R5

According to the above tests and analyses, TransMeta showed sat-
isfactory performance. However, we additionally performed the
following test. First, as mentioned above, there are different ver-
sions of reference annotation libraries. Therefore, we further set

the GENCODE annotations as the ground truth for performance
evaluation under both the HISAT2 and STAR alignments, and as
expected, TransMeta outperformed the alternatives (Supplemental
Fig. S7). Second, we further drew the precision-recall curves at the
individual sample level, where TransMeta achieved the highest
curves on all the tested samples (Supplemental Fig. S8). Third,
for the real data sets, setting all the annotations as the ground truth
can possibly cause biases in the accuracy evaluation because, for a
certain sample, some annotated transcripts may not be expressed.
Therefore, we further used thewell-knownRNA-seq quantification
tool kallisto to quantify each sample in the five real data sets R1–R5
(the running command of kallisto is detailed in the Supplemental
Notes), andwe selected the expressed transcripts (the ones with es-
timated TPM>0) as the ground truth for each sample, and the
union of each sample’s expressed transcripts as the ground truth
for the meta-assembly. Then we evaluated the performance of
the assemblers under such ground truth in terms of precision
and the number of correctly recovered transcripts. As expected,
TransMeta performed the best (Supplemental Figs. S9, S10).
Fourth, as in the simulated data set, we evaluated the annota-
tion-guided mode for TransMeta and StringTie2 (Supplemental
Fig. S11). Fifth, we also compared all the assemblers with the
gtfmerge tool (Supplemental Tables S2–S6).

Evaluation on small-scale data sets

We next investigated TransMeta’s multisample strategy on small
data sets, which are R6, the CD20+ cell data set with six samples,
and R7, the MCF-7 breast cancer cells data set with three samples.
R6 was obtained from NCBI Sequence Read Archive (SRA; https
://www.ncbi.nlm.nih.gov/sra), and R7 was obtained from the
ENCODE project. The accession number of both data sets can be
found in Supplemental Notes.We then evaluated the performance
at both meta-assembly and individual sample levels under the

A

B

Figure 3. Performance evaluations on the five real data sets R1–R5 under the HISAT2 alignments. (A) Precision-recall curves of the assemblers. The points
on each curve correspond to the filtering thresholds of each assembler; the circled one, to the default value. (B) The precisions and recalls of the assemblers
on different samples at the individual sample level under their default settings. Different colors correspond to different assemblers, and each point corre-
sponds to a specific sample.
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HISAT2 alignments. The comparison results showed that, at the
meta-assembly level on both small-scale data sets, TransMeta
achieved the highest precision-recall (Fig. 4A). At the individual
sample level, TransMeta maintained the best performance as
well (Fig. 4B).

Evaluation on large-scale data sets for the meta-assemblers TransMeta and

PsiCLASS

TransMeta and PsiCLASS are the so-called meta-assemblers that
simultaneously analyzemultiple samples. To evaluate their perfor-
mance in producing meta-assemblies on large-scale data sets, we
randomly selected 100, 200, 300, 400, and 500 subsets from the
poly(A)-selected lymphoblastoid samples from the GEUVADIS
population variation project andmapped them to the reference ge-
nome using HISAT2. Based on the alignments, we ran TransMeta
and PsiCLASS with different filtering thresholds. As Figure 5, A
through E, shows, TransMeta consistently achieved higher preci-
sion-recall on the five subsets with different numbers of samples.

Comparison of running time and memory usage

To evaluate the computational efficiency of the assemblers, we
compared the CPU time and memory usage of all the assemblers
on the five real data sets R1–R5 based on both the HISAT2 and
STAR alignments. The meta-assemblers TransMeta and PsiCLASS
were run with 25 threads, and the single-sample assemblers
StringTie2 and Scallop were run sequentially to assemble individ-
ual samples. The comparisons are detailed in Supplemental Table
S7. For instance, on data set R1 with 73 samples under the
HISAT2 alignments, TransMeta took ∼133 min with a peak mem-
ory of 11 GB, whereas PsiCLASS took ∼228 min with a peak mem-
ory of 11.7 GB, StringTie2 took 188 min with <1 GB memory, and
Scallop took 251 min with a peak memory of ∼4.9 GB. These sta-
tistics implied that TransMeta might not be the most efficient,
but it could be quite acceptable for practical use.

Discussion

This research introduced a new method, TransMeta, that can
simultaneously assemble RNA-seq reads of multiple samples. It
can output a consensus assembly for an RNA-seq experiment
with multiple samples, as well as a certain set of transcripts for
each individual sample. It consistently performs the best on

both real and simulated data sets at both the meta-assembly and
individual sample levels.

It is critical for an RNA-seq experiment to determine the set of
expressed genes and transcripts for the subsequent quantification
and differential expression and splicing analyses. However, tran-
scriptome reconstruction for the single sample has limited utility
for downstream analyses of transcriptional dynamics across
many samples (Niknafs et al. 2017). Following the declaration by
Song et al. (2019), we developed the TransMeta to construct the
consensus transcriptome from multiple input RNA-seq data sets.
At the meta-assembly level, the assemblers are capable of recover-
ing more correct transcripts than those at the single-sample level.
As stated in a previous study (Tasnim et al. 2015), such superiority
could be attributed to the fact that with more alignments of RNA-
seq reads from multiple samples being taken into account, more
splicing patterns can be detected; as a result, more transcripts
can be discovered (thus improving the recall). However, at the
same time, the detectable splicing patterns become more compli-
cated, which increases the difficulty of recovering full-length tran-
scripts. To tackle this problem, we built the VWSG model, upon
which we designed the cosine similarity–based combing strategy
and a label-setting path-searching strategy, making TransMeta a
robust meta-assembler.

In the VWSG, the edges and nodes are weighted by vectors
rather than scalar numbers with the element in kth position of
the vectors being the corresponding weight in the sample k. Based
on the VWSG, TransMeta generalizes the transcriptome assembly
from one dimension (single-sample level) to higher dimensions
(multiple-sample level). We treat the vector weights of the edges
(or nodes) in VWSG as points in S-dimensional space (where S is
the number of samples). Thus, when S is equal to one, that is the
case for the single sample. Therefore, the VWSG inspired us to gen-
eralize the core ideas of the traditional single-sample-based assem-
bler into the multiple-sample-based approaches. Inspired by the
TransComb (Liu et al. 2016b) paper, we thus introduced a con-
strained program to hunt for the potential right connections be-
tween the incoming and outgoing junctions of an exon (i.e.,
“combing strategy” mentioned in TransComb), which took both
the vector weights (i.e., the sequence depth information of each
sample) and the paired-end information into account, and consid-
ered the cosine similarity between the vector weights of the junc-
tions to design the constraints and the object function. Then,
based on the generalized combing strategy of the junctions, a

A B

Figure 4. Performance evaluations on the two small-scale data sets R6 and R7 under the HISAT2 alignments. (A) Precision-recall curves of the assemblers.
The points on each curve correspond to the filtering thresholds of each assembler; the circled one, to the default value. (B) The precisions and recalls of the
assemblers on different samples at the individual sample level under their default settings. Different colors correspond to different assemblers, and each
point corresponds to a specific sample.

TransMeta: multisample transcriptome assembler

Genome Research 1403
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276434.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276434.121/-/DC1


dynamic label-setting path-searching strategy was modified to-
ward accurately recovering the full-length transcripts.

Althoughwehave shown the significant advantages of Trans-
Meta, there remains room for improvement in the future. For in-
stance, the current version of TransMeta is not compatible with
long-read RNA-seq data sets (e.g., PacBio or Nanopore). We plan
to integrate long reads into TransMeta in our future research.

The software was developed to be user-friendly and is expect-
ed to play a crucial role in new discoveries of transcriptome studies
in RNA-seq experiments withmultiple samples, especially in com-
plicated human diseases related to abnormal splicing events and
expression levels, such as cancer, and most genetic diseases.

Methods

To comprehensively use the information from different RNA-seq
samples, TransMeta builds a novel graph model, namely, the
VWSG, in which each edge (node) is weighted by a vector rather
than a scalar number. TheVWSG integrates the sequence depth in-
formation of multiple samples and plays a critical role in the as-
sembly procedure. Depending on the VWSG, TransMeta extracts
reliable consensus paired paths and uses a cosine similarity–based
combing strategy and a label-setting path-searching strategy to re-
construct the transcripts (for the flowchart of the TransMeta algo-
rithm, see Fig. 1A–E).

Building the VWSG

The VWSG is a consensus graph that reflects the sequence depth
information of all the RNA-seq samples. To generate the VWSG,
we first build the traditional splicing graphs for the individual sam-
ples and then integrate them into the so-called VWSG.

Building the traditional splicing graphs for each sample in parallel

For each RNA-seq sample, given the alignments of the RNA-seq
reads to a reference genome, we first cluster all the aligned reads
into different gene loci according to the overlap of the aligned co-
ordinates of reads. For each gene locus, an exon (a region that is
continuously covered by aligned reads) is denoted as e = [el, er],
where el and er are the starting and ending sites of the exon in
the genome, and each splice junction is denoted as j = jl→ jr, where
jl and jr are the two coordinates of the splice junction; consequent-
ly, a traditional splicing graph that corresponds to the gene locus
could be built.

Then, the sequence depth informationwill be projected onto
the exons (nodes) and splice junctions (edges) of the splicing
graph as their weights. Specifically, the weight of each exon is de-

fined as the average coverage of the aligned reads to this exon,
and the weight of every single splice junction is defined as the
number of spliced reads that span it. Note that if a read is aligned
tomultiple sites, supposeN, the contribution of this read is record-
ed as 1/N.

Furthermore, taking the paired-end sequence information
into account, we generate a set of paired paths on each splicing
graph, denoted as P. Specifically, for each pair of the mated reads
r1 and r2, suppose that r1 spans a path sp1 =ni1→ni2→…→nip,
and r2 spans sp2 =nj1→nj2→…→njq in the splicing graph, and
sp1 and sp2 share a same subpath spoverlap=nm1→nm2→…→nmk,
satisfying p+ q−k≥3, where spoverlap is the prefix subpath of one
and suffix subpath of the other, then the mated reads r1 and r2
determine the paired path sp by connecting sp1 and sp2 via the
overlapped subpath spoverlap, which is added to P. For the case of
single-end reads, if a read spans subpath sp = ni1→ni2→…→nip
in the splicing graph and P≥3, thenwe add sp to P. Noting that dif-
ferent paired-end (or single-end) reads may produce the same
paired path, for each paired path p in P, we set the number of
paired-end (or single-end) reads that generate it as its coverage, de-
noted by cov(p).

Integrating traditional splicing graphs of individual samples into VWSG

To make full use of the sequence depth and paired-end sequence
information from all the samples of an RNA-seq experiment, we
then build the VWSG for each gene locus by integrating the tradi-
tional splicing graphs from all samples together. For each gene lo-
cus, we denote Gk= (Ek, Jk) (k∈ [1, S]) as the splicing graph in
sample k (suppose there are S samples in an RNA-seq experiment),
where Ek is the set of exons (nodes), Jk is the set of splice junctions
(edges), and, for each exon e in Ek and j in Jk, we denote cov(e) and
cov(j) as the weight of the exon and the splice junction,
respectively.

We first generate an unweighted consensus graph, GU= (EU,
JU) inwhich the nodes in EU and edges in JU, respectively, represent
all the exons and splice junctions appearing at least once in
Gk = (Ek, Jk) (k∈ [1, S]), which is achieved in the following
way. Initialize GU=G1; then for k from two to S, for each
node (exon), e′ = [e′l, e′r ] in Ek, if there exists node (exon)
eU = [el,er ] in EU such that they overlap, we then set
EU = EU < {[min(el, e′ l), max(ere′r)]}−{eU } and EU = EU < { e′}
otherwise, and further set JU = JU < Jk. After that, for those coordi-
nates of splice junctions appearing in an exon, we split the exon
into several partial exons accordingly. That is, if for any splice junc-
tion j = jl�jr in JU and any exon e = [el, er ] in EU, such that el< jl<
er, wewill split e into e′ = [el, jl] and e′′ = [jl + 1, er ], and in addition,
we add a new splice junction (i.e., derived splice junction)

A B C D E

Figure 5. Comparisons of TransMeta and PsiCLASS on the large-scale data sets under the HISAT2 alignments at the meta-assembly level. (A–E)
Precision-recall curves of TransMeta and PsiCLASS on 100, 200, 300, 400, and 500 subsets of GEUVADIS samples. The points on each curve correspond
to the filtering thresholds of each assembler; the circled one, to the default value.
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e′ = [el, jr−1] to JU. For the case el< jr< er, e is split into
e′ = [el, jr−1] and e′′ = [jr , er ], and the derived splice junction is
J = (jr−1) � jr . Therefore, in the unweighted consensus graph,
we divide the splice junctions into two categories: the nonderived
(the ones that are captured by the mapping tools) and the derived
(the ones that are produced by the aforementioned separating
exons).

Next, we weight the exons and junctions in GU with vectors
in the following way. For each splice junction j (exon e) in GU, ini-
tialize a vector vwj (vwe) of size Swith all its components being zero.
Then, for each nonderived splice junction j in JU, for k from one to
S, if j∈ JK, then vwj= vwj+ cov( j)Ik, where Ik is a vector with its kth
component being one and all other components being zero.
For the cases of derived splice junction j = jl→ jr, for k from one to
S, if there exists an exon e′ = {e′l, e′r } in Ek, such that
e′l , jl( jr) , e′r , then vwj= vwj + cov(e′)Ik, where Ik is a vector with
its kth component being one and all other components being
zero. And then, for each node (exon) e = (el, er) in EU, for k from
one to S, if there exists an exon e′ = {e′l, e′r } in Ek such that there
is an overlap between them, then vwe= vwe + cov(e′)Ik,where Ik is a
vector with its kth component being one and all other compo-
nents being zero.

After the above procedure, we generate the VWSG, in which
the exons and splice junctions are all weighted by vectors of
dimension S with the kth component being the correspond-
ing weight in the kth sample. And, for each splice junction
j (exon e), we also define a consensus weight cwj

(cwe) as the norm of its vector weight vwj (vwe), that is,

cwj =
��������������������������

vw2
j1 + vw2

j2 + . . .vw2
jS

√

cwe =
��������������������������

vw2
e1 + vw2

e2 + . . .vw2
eS

√
( )

,

where vwjk (vwek) is the kth component of vwj (vwe).
Because of the sequencing or mapping errors, there are quite

a few spurious splice junctions in the VWSGs. Usually, the
weight of the spurious splice junction is relatively low; hence,
we use the following heuristic criteria to remove the potential
false positives: (1) We remove a splice junction j in JU with all
the components in vwj less than one; (2) if there is an exon
with multiple out- (or in-) splice junctions, we remove the splice
junction j with its consensus weights cwj <10% the total out- (or
in-) consensus weights; and (3) for an exon e, if there exists a de-
rived splice junction from e′ to e and a derived splice junction
from e to e′ ′, while a nonderived splice junction j from e′ to e′ ′,
then if cwe is less than cwj, we remove e and all splice junctions
associated with it.

Moreover, we map the paired paths of each sample to the
VWSG and generate a consensus paired path set CP, where each
paired path p in CP is weighted by a vector, vwp, of dimension S
with its kth component being cov(p) in kth sample, and p is also
weighted by a consensus weight, cwp, as in the aforementioned
definition. To minimize the false positives, for each paired path
p in CP, if more than one-third of the components in vwp is zero,
we will remove p from CP.

Generating transcript-representing paths

Ideally, each expressed transcript corresponds to a path in the
VWSG= (E, J), where E is the set of exons (nodes), and J is the set
of splice junctions (edges). Therefore, establishing precise connec-
tions between the incoming and outgoing junctions for each exon
in VWSG is of great importance for accurately recovering the tran-
script-representing paths. Specifically, suppose that the number of
incoming (outgoing) junctions of exon e is m (n). There are up to
m× n possible connections between the incoming and outgoing
junctions of e. However, not all the connections are correct. Our
goal is to determine the potential correct connections such that

they would explain the to-be-predicted transcripts, which can be
achieved by the following combing strategy.

Combing the incoming and outgoing splice junctions of each exon based

on the cosine similarity

Note that each junction j in J is weighted by a vector vwj, which
could be regarded as a point (or vector) in an S-dimensional space
(where S is the number of samples). For the two splice junctions j
and j′, where j is an incoming junction of exon e and j′ is an outgo-
ing junction of e, if j and j′ are appearing in the same transcript
across multiple samples, then there will be a high possibility that
vwj and vwj′ possess some similarity. Subsequently, we take into ac-
count the cosine similarity, ametric that paysmore attention to di-
rections, which measures similarity as the cosine of the angle of
two vectors, and two similar vectors are expected to have a small
angle. Mathematically, the cosine similarity between two vectors
vwj and vwj′, respectively, on junctions j and j′, which are incident
with a node (exon), is defined as

cs( j, j′) = cs(vwj, vwj′ ) =
∑

S

i=1

vwji × vwj′ i

( )

/

(cwj × cwj′ ),

where vwji and vwj′i are the ith components of vwj and vwj′, respec-
tively, and cwj and cwj′ are the aforementioned consensus weights
of vwj and vwj′, respectively. Note that the similarity between vwji

and vwj′i increases as cs(vwj, vwj′ ) increases. We also define the co-
sine similarity between two sets of splice junctions J1 and J2, as

cs(J1, J2) = cs
∑

j1[J1

vwj1,
∑

j2[J2

vwj2

⎛

⎝

⎞

⎠,

that is, the cosine similarity between the sums of the weight vec-
tors for the splice junctions in J1 and J2.

Afterward, we heuristically designed the following con-
strained optimization program to hunt for the potential right con-
nections between the incoming and outgoing splice junctions of
an exon e in the VWSG. Denote by Jin and Jout, the sets of incoming
and outgoing splice junctions of e, respectively, the underlying
thought of the program is to partition Jin and Jout into M parts, re-
spectively, denoted by P1, P2, .., PM and P′1, P′2, .., P′M, where there
is a one-to-one correspondence between Pi and P′ i (1≤ i≤M) and
the cosine similarity between Pi and P′ i is relatively higher, which
implies that a splice junction, j, in Pi and j′ in P′ihas the higher pos-
sibility of being from the same transcript. Hence, the program is
designed as follows:

max min{cs(P1, P′
1), cs(P2, P′

2), . . . , cs(PM , P′
M )}

s.t.

<
M

i=1
Pi = { j1, j2, . . . , jm}

<
M

i=1
P′

i = { j′1, j′2, . . . , j
′
n}

Pi > Pk = ∅ & P′
i > P′

k = ∅ if (i = k)
cs(Pi, P′

i) . cs(Pi, P′
k), i = 1, 2, . . . , M and i = k

cs(Pi, P′
i) ≥ r, 0 , r , 1

∃k [ [1, M] such that j [ Pk and j′ [ P′
k, if ( j, j′) , cp, cp [ CP

1 , M ≤ min (m, n)

⎧

⎪

⎪

⎪
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⎪
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⎪

⎪
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⎪

⎪
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⎩

,

where min{cs(P1, P′
1), cs(P2, P′

2), . . . , cs(PM , P′
M )} is the

minimum element in the set
{cs(P1, P′

1), cs(P2, P′
2), . . . , cs(PM , P′

M )}; Jin= { j1, j2, …, jm} is the
set of the incoming splice junctions of exon e, and
Jout = { j′1, j′2, . . . , j

′
n} is the set of the outgoing splice junctions;

Pi and P′ i are the subsets of Jin and Jout, respectively; ρ is a parameter
between zero and one indicating that the similarity between the
corresponding parts should be at least ρ; and CP is the set of the
consensus paired paths (for details, see the Supplemental
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Methods). Note that there could be no feasible solution for this
program, as such a case indicates that we cannot split the splice
junctions associated with exon e into different parts, and we will
set in this case that M=1, P1 = Jin, and P′1 = Jout. And it is worth
mentioning that in the case of S = 1 (i.e., only one sample), this
program does not work, because in a one-dimensional space, the
cosine similarity of any twononzero one-dimensional vectors is al-
ways equal to one.

When the above program is solved (the case in which it has
an optimal solution), we split the node (exon) e intoM new nodes,
denoted by by e1, e2, …, eM, and the splice junctions in Pi and P′i
are all incident to ei for i from one to M. We call this procedure
combing exon.

Recovering transcripts by a label-setting algorithm

After combing all the exons in VWSG, we use a label-setting algo-
rithm that is similar to the study of Niknafs et al. (2017) to recover
the transcripts via taking into account the consensus weights of
splice junctions and the cosine similarity between associated junc-
tions and the consensus paired paths. The basic idea of the label-
setting algorithm is to iteratively find the most highly expressed
transcript from the VWSG, which is implemented as follows.

Step 1. Labeling. Suppose that the edges (junctions) in the
VWSG are ordered by topological sort. Without loss of generality,
we number them as 1, 2…N. For each edge j= e→ e′ (where e and e′

are two nodes (exons) in the VWSG), we denote by predecessors(j)
the set of the incoming splice junctions of exon e, and by succes-
sors(j) the set of the outgoing splice junctions of node e′. Then
starting from a nonderived splice junction (or a derived splice
junction with its consensus weight larger than 10) j0 (j0 ∈ [1, N],
and j0 has not been covered by a predicted transcript) with the larg-
est consensusweight, the label-setting algorithmmaintains two la-
bels, MinExpj and Prej (Sucj), for the junction j≥ j0 (≤j0); hence, we
label j0 with MinExpj0 = cwj0, and Prej0 =null (Sucj0 =null). Then for
each junction j from j0 + 1 to N, if predecessors(j) is not empty,
choose a labeled junction j′ from predecessors(j) in the following
priority order: j′ with largest MinExpj′ and j′ → j being covered by
a consensus paired path; j′ with largest MinExpj′ and cs(j′, j) > ρ; or
j′ with largest MinExpj′, and set MinExpj=min{MinExpj′, cwj} and
Prej = j′. If none of predecessors(j) is labeled or predecessors(j) is emp-
ty, set MinExpi = null and Prej = null. For splice junction j from j0–1
to one, we use the same method to set MinExpj′ and Sucj.

Step 2. Tracing back. After all the splice junctions have been la-
beled, we will first extract the highest expressed transcripts based
on the labelsMinExp and Pre(Suc) of the junctions as follows: start-
ing at the junction of the largest MinExp linked with the destina-
tion (origin) and extending backward (forward) based on the
label Pre (Suc) until reaching j0. Then the highest expressed tran-
script ph in the VWSG is recovered.

Step 3. Updating VWSG.Defining cwmin as the vector weight of
the splice junction with minimum consensus weight in the ex-
tended path ph, we update the weight vwj to be vwj−cwminE, where
E is a vector with all its components being one. For each junction j
in ph, and if a component of vwj is less than zero, we simply set it to
be zero.

Repeat Step 1 to Step 3, until all the nonderived splice junc-
tions in VWSG have been covered by the predicted transcripts.
Finally, a transcript-representing path cover is obtained, which is
defined as the initial meta-assembly.

Predicting a set of transcripts for each sample

After producing the initialmeta-assembly,we attempt to produce a
set of transcripts for each individual sample, which can be easily

achieved in the VWSG based on the vector weight of each splice
junction. To do so, for each path (transcript) in the initial meta-as-
sembly, if more than half of its junctions are covered by the kth
sample (i.e., the kth component in corresponding vwj is not
zero), we will temporarily output it as a transcript of the kth sam-
ple. Meanwhile, we estimate the expression levels of the tran-
scripts for the kth sample, followed by filtering the false positives
that are actually the transcripts with relatively low estimated ex-
pression levels.

Generating the mature meta-assembly

Based on the estimated expression abundance of transcripts in
each individual sample, we generate the final set of meta-assem-
blies. We assign a score that is the transcript’s average estimated
abundance across the samples to each transcript in the initial
meta-assembly. Then we filter out the transcripts with a relatively
low score. We set the filtering score as a user-friendly parameter in
the TransMeta as different parameters may have different effects
for data with specific characteristics. Furthermore, TransMeta au-
tomatically outputs a set of meta-assemblies with different filter-
ing parameters.

Finally, we output both consensus meta-assembly for all the
samples and a certain set of transcripts for each individual sample.

Data access

The reference genome and transcripts used for evaluating the per-
formance of the assemblers are described in the Supplemental
Notes. The description of the simulated data sets and the accession
numbers for all the real data sets used in this study are in the
Supplemental Notes as well. The source code for the latest version
of the TransMeta package is available at GitHub (https://github
.com/yutingsdu/TransMeta) and as Supplemental Code.
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