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Presbyopia, the progressive loss of near focus as we age, is
the world’s most prevalent ocular affliction. Accommoda-

tive amplitude is at its maximum (~15 diopters) in the teen
years and declines fairly linearly thereafter (Fig. 1).1 By age 25
about half the maximum accommodative amplitude has been
lost, by age 35 two-thirds are gone, and by the mid-40s all is
gone. Clinical symptoms usually begin at age ~40. The
accommodative apparatus of the rhesus monkey is very similar
to the human structurally and functionally and develops
presbyopia at the same rate relative to lifespan (Fig. 1).

In primates, accommodation occurs in response to intent to
focus on a near object. The efferent arc of the reflex involves
stimulation of the parasympathetic efferent neurons in the
midbrain Edinger-Westphal nucleus, whose axons terminate
and synapse in the orbital ciliary ganglion. The 2nd order
parasympathetic neurons innervate the ciliary muscle (CM) and
the iridial pupillary constrictor muscle.2–4 The CM is tethered
by true tendons anteriorly to the scleral spur, trabecular
meshwork (TM)/Schlemm’s canal (SC), and the Schwalbe’s line
at the junction of the cornea and TM (Figs. 2, 3).5–9 Posteriorly,
the CM is also tethered by true elastic tendons inserting into the
elastic lamina of Bruch’s membrane at the ora serrata (Figs. 2–
4),5,10 where the pars plana zonules, the intermediate vitreous
zonules,11 and the posterior vitreous zonule insertion to lens
equator (PVZ INS LE) strands12 (the vitreous strands that
extend from the intermediate vitreous zonule posterior
insertion zone to the lens equator) all come together in a small
region that we call the intermediate vitreous zonule posterior
insertion zone (Fig. 3).11,13,14 From there, the elastic network of
the choroid extends posteriorly to the elastic fiber ring that
surrounds the optic nerve, in turn sending elastic fibers into the
lamina cribrosa (Fig. 2).15 Thus, in effect the CM and the
choroid form an elastic network16 that extends from the TM,
SC, and the limbal corneosclera posteriorly to the scleral canal/
lamina cribrosa, through which the optic nerve passes (Figs. 2,
3). During accommodation as the muscle contracts and moves
forward and inward, the posterior insertion zone of the vitreous
zonule as well as the vitreous zonule, the pars plana zonule, the
PVZ INS LE, and the choroid are all pulled forward (Supple-
mentary Video S1).

The posterior tendons insert into the elastic network of the
choroid, which is continuous with the elastic fibers of Bruch’s
membrane.16 Bruch’s membrane contains the basement mem-
brane of the retinal pigmented epithelium (PE) and, therefore,
is attached to the retina.17,18 Thus, in the in vivo eye the

choroid and the retina stretch in parallel with each other during
the accommodative response. The question remains how far
back the accommodative choroid/retina movement goes.

By ‘‘marking’’ points on retinal photographs (e.g., vascular
bifurcations) in aphakic (to avoid lens magnification artifacts
during accommodation) monkey eyes, movement of the retina
during accommodation can be quantified in terms of both
direction and magnitude (Fig. 5). Optical flow analysis shows
that the center of movement is at the optic nerve head, and the
magnitude of movement increases progressively toward the
periphery (Fig. 5).19 Thus, with every accommodation effort, a
peripheral ‘‘pull’’ is exerted on the nerve. Given that
accommodation involves constant contraction/relaxation of
the CM to adjust the ‘‘zeroing in’’ focusing mechanism, the
forces exerted on the nerve head are complex.

Between the optic nerve and the lens lies the vitreous,
which until recently has not been imaged during accommoda-
tion. Dynamic imaging of the vitreous during the accommoda-
tive response is possible in the monkey eye by using contrast
agents (triamcinolone, Triesence; Alcon, Fort Worth, TX, USA)
suspended inside the vitreous fluid/gel and clinging to the
vitreous membranes and ultrasound biomicroscopy (UBM)
(Supplementary Videos S2–S12). Still images (UBM and
endoscopy) show that there are interconnections between
the accommodative apparatus and the vitreous (Fig. 6). During
accommodation, the central vitreous, including Cloquet’s canal
(Supplementary Video S9), moves posteriorly (Supplementary
Videos S7–S9) while the peripheral vitreous is pulled forward
by the CM (Supplementary Videos S2, S5, S6, S10; Fig. 7). The
iris bows backward, collapsing the posterior chamber (Supple-
mentary Videos S3–S5) and fluid flows posteriorly around the
lens equator toward the anterior hyaloid and then further into
the cleft between the intermediate vitreous zonule and the pars
plana. These intravitreal movements occur in the presence or
absence of the iris (Supplementary Videos S2, S3, S5–S9). We
cannot understand how these data are consistent with the
catenary theory of accommodation,20,21 and these incompati-
bilities need further exploration.

Aging of the Accommodation Apparatus

The proximate cause of presbyopia is a loss of crystalline lens
deformability,22 which proceeds along the same timeline as the
loss of accommodation with age (Fig. 8).22 However, there is
also an age-related loss of morphologic responses to pilocarpine
in rhesus monkey and human CM (Figs. 9, 10).23–25 In both
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humans and nonhuman primates, CM structure and function is
preserved long after presbyopia is complete. In monkeys there
is little to no histologic or ultrastructural change,26 the number
of muscarinic cholinergic receptors and their intrinsic activity
is unchanged,27 and the value of the Michaelis constant (Km)
and the maximum rate of reaction (Vmax) of the enzymes
responsible for the synthesis and degradation of the choliner-
gic neurotransmitter acetylcholine (choline acetyltransferase
and acetyl cholinesterase) are unchanged (Fig. 11).27 In short,
nothing suggests that the CM is incapable of normal
contraction. Indeed, isolated CM strips from monkeys of all
ages, placed in a perfusion chamber/tissue bath and connected
to force transducers/strain gauges, generate the same contrac-
tile force in response to the same dose of the cholinomimetic
drugs carbachol and aceclidine throughout the lifespan (Fig.
11).28 Yet, in situ by histologic metrics after tissue fixation in
the presence of pilocarpine or atropine23,25 or in live monkeys
by UBM video imaging in real time with stimulation of CM
contraction via an electrode permanently implanted in the
midbrain Edinger-Westphal nucleus,29,30 CM movement pro-
gressively decreases with aging, more so in the forward vector
than the centripetal vector) (Table 1).29 This constellation of
findings suggests posterior restriction of CM forward and
inward movement, so that in essence the contraction becomes
isometric.19,23 This has obvious implications for presbyopia
pathophysiology—essentially a lens and CM double hit against
accommodation, but that discussion is for another day. Of more
immediate interest is the nature of the restriction and its
implications for the optic nerve.

In the rhesus monkey, which develops presbyopia on the
same time scale relative to lifespan as the human, the posterior
CM tendons and the elastic lamina of Bruch’s membrane
become ‘‘collagenolized’’ and stiffen with age (Figs. 4, 9,
10).16,25 Consequently, the CM’s mobility when it contracts is
limited, whether measured histologically postmortem25 or in
vivo by UBM.13,29,30 In both humans and monkeys, the forward
movement in young eyes at the ora serrata is ~1.0 mm
(Supplementary Video S1; Table 2),24 declining gradually to
about 0.40 mm and 0.15 mm in elderly monkeys24 and
humans,13 respectively. Near the optic nerve head, the
movement is considerably less, about 0.13 mm in the young

monkey, declining to ~0.02 mm in the elderly (Tables 2, 3)19

(Croft MA, et al. IOVS 2014;55:ARVO E-Abstract 2647).
Engineering/physical principles tell us that if the ‘‘rubber
band’’ in the young eye becomes a ‘‘steel cable’’ in the older
eye and if the contractile force generated by the muscle is
unchanged, the force transmitted to the insertion (i.e., the
lamina cribrosa and perhaps the optic nerve itself) is
dramatically increased.19 At present, we have no method for
measuring these forces at the nerve head or the nerve, but
techniques in development may allow that, at least in the
monkey (Fernandes J, et al. IOVS 2019;59:ARVO E-Abstract
2434) . The effects that these forces or their change with age
might have on the healthy functioning of the optic nerve are
unknown. Interestingly, the prevalence of POAG in humans
begins to rise from essentially 0% at about the same age that the
last vestiges of accommodation are lost (i.e., the mid-40s), to
~5%, ~10%, and ~25%, respectively, in elderly (over 75 years)
Caucasians, African Americans, and pure blood Black Afro-
Caribbeans.31 In older (aged ‡80) Latinos living in the Los
Angeles area, the prevalence of POAG is 21.8%.32

Other forces are also at play. Outstanding histologic and
other research has been reported regarding the vitreous
structure20,21,33–45 and its possible role in accommodation
and presbyopia.46 Jongbloed and Worst33 reported on the
cistern structure within the vitreous compartment. The base of
the cistern resides in the optic nerve (ON) region and the
branches of the cistern extend forward to the anterior vitreous.
In the in vivo rhesus monkey, we have shown that the tips of
the cistern branches in the anterior vitreous attach to the
intermediate vitreous zonule (Croft MA, et al. IOVS

2016;57:ARVO E-Abstract 1378; Supplementary Videos S2, S5,
S6). As the CM contracts and moves forward and inward, the
lens thickens (the anterior lens pole moves anteriorly and
becomes more sharply curved) and the central posterior lens
pole/capsule moves backward (Supplementary Video S12),12,21

the fibrillar structures within the central vitreous19 (Croft MA,
et al. IOVS 2014;55:ARVO E-Abstract 2647) (Croft MA, et al.
IOVS 2015;56:ARVO E-Abstract 3568) (Croft MA, et al. IOVS

2016;57:ARVO E-Abstract 1378) (Croft MA, et al. IOVS

2017;58:ARVO E-Abstract 2477) (Croft MA, et al. ESCRS
Abstract 2014 FP-5069) (including the anterior hyaloid,14

FIGURE 1. (A) Duane’s curve showing accommodative amplitude (subjectively measured) of 4,200 patient eyes plotted versus age. Reprinted from
Duane A. Normal values of the accommodation at all ages. JAMA. 1912;59:1010–1013. (B) Rhesus monkey % lifespan plotted versus accommodative
amplitude (objectively measured) induced by central electrical stimulation of the Edinger-Westphal nucleus superimposed over Duane’s curve
(reprinted with permission from Neider MW, Crawford K, Kaufman PL, Bito LZ. In vivo videography of the rhesus monkey accommodative
apparatus: age-related loss of ciliary muscle response to central stimulation. Arch Ophthalmol. 1990;108:69–74. � 1990 American Medical
Association and Croft MA, Glasser A, Heatley G, et al. Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and
ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci. 2006;47:1076–1086. � 2006 Association for Research in Vision
and Ophthalmology).
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FIGURE 2. The CM and the choroid functionally form an elastic network that extends from the TM to the back of the eye (A) and ultimately attaches
to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes (B). (A) PVZ INS LE is the vitreous
strand that extends from the intermediate vitreous zonule posterior insertion zone to the lens equator. (B) Reprinted with permission from Croft
MA, Lütjen-Drecoll E, Kaufman PL. Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head
pathophysiology. Exp Eye Res. 2017;158:187–189. � 2016 Elsevier Ltd.; and Tektas O-Y, Lütjen-Drecoll E, Scholz M. Qualitative and quantitative
morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG. Invest Ophthalmol Vis Sci.
2010;51:5083–5091. � 2010 Association for Research in Vision and Ophthalmology.
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Cloquet’s canal, and possibly the cistern trunk33) move
posteriorly toward the optic nerve head (Supplementary
Videos S2, S5–S8, S12). The accommodative posterior move-
ment of the central vitreous includes the region of the vitreous
very near the optic nerve head itself (Supplementary Videos
S7–S9). This strongly suggests that there is a fluid wave—and

consequently a pressure change—impacting the nerve head.
Simultaneously, the fibrillar peripheral vitreous, some of which
is attached to the intermediate vitreous zonule (including the
tips of the cistern branches near the anterior vitreous33;
Supplementary Videos S2, S5, S6), moves anteriorly and
inwardly (Supplementary Videos S2, S5, S6, S10).14 Disaccom-

FIGURE 3. Accommodation summary: CM, lens, iris and cisternal branch tip close-up. (A) Unaccommodated state. Thick black line (1) represents
the intermediate vitreous zonule that extends between the intermediate vitreous zonule posterior insertion zone and the zonular plexus (which
resides between the walls of the ciliary processes). Thick blue line (2) represents the vitreous strand that extends from the intermediate vitreous
zonule posterior insertion zone and attaches to the posterior lens equator (PVZ INS-LE).12 Thin green lines represent other vitreous strands that
extend from the posterior vitreous body to the pars plana region (3) or the pars plicata region (4). Thin pink lines (5, 6, 7) represent vitreous
strands that extend from the anterior vitreous to the pars plana (5), the pars plicata (6), or the posterior lens surface (7). (B) Accommodated state.
Legend as for (A), but structures are now in the accommodated state. Note backward bowing of the iris and anterior hyaloid. The lens is thickened
and the lens equator has moved away from the sclera. The muscle apex is in a more forward and inward position. Fluid flows around the lens
equator toward the anterior hyaloid and then further into the cleft between the intermediate vitreous zonule and the pars plana region during
accommodation, as represented by the red arrows.

TABLE 1. Average Maximum Amplitudes of Accommodation, Forward Ciliary Body, Ciliary Process, and Lens Movement in Young, Middle-Aged, and
Older Eyes

Age Accommodation, D FCB (8)* n*

Centripetal Movement, mm* % Decline†

CP Lens Accommodation, D FCB

Centripetal

CP Lens

Young, 6–9.5 y

Mean 15.2 61.8 8 0.44 0.31 – – – –

SEM 1.0 5.7 0.02 0.01

Middle-aged, 12–15 y

Mean 8.1 27.9 7 0.35 0.22 46.7 54.8 19.4 30.4

SEM 0.5 4.4 0.03 0.03

Middle-aged vs. young

P 0.001 0.001 0.012 0.022

Older, 17–26 y

Mean 2.4 23.9 8 0.32 0.14 84 61.3 26.7 54.3

SEM 0.6 3.0 0.05 0.03

Older vs. young

P 0.001 0.001 0.08 0.001

Middle-aged vs. older

P 0.001 0.258 0.584 0.166 37.3 6.5 7.3 23.9

Data are mean 6 SEM accommodative amplitude (diopters) at supramaximal (~25% above that necessary to induce maximum accommodation)
stimulus levels in 28 eyes of 23 rhesus monkeys. Reprinted with permission from Croft MA, McDonald JP, Nadkarni NV, Lin TL, Kaufman PL. Age-
related changes in centripetal ciliary body movement relative to centripetal lens movement in monkeys. Exp Eye Res. 2009;89:824–832. � 2009
Elsevier Ltd.

* Data are mean 6 SEM forward ciliary body movement (FCB: in units of degrees as previously defined [Fig. 2] [Ref. 30]), centripetal ciliary
process movement (CP), and lens movement amplitude (mm) at standard supramaximal stimulus settings. Age ranges: young eyes (6–9.5 years),
middle-aged eyes (12–15 years), and older eyes (17–27 years). A P � 0.05 represents a significant difference between the young age group versus
the other age groups by two sample t-test.

† Percent decrease is calculated as ([middle-aged / young]� 1) 3 100 or ([older / young]� 1) 3 100 for each variable. For instances in which
there were two eyes from one monkey, the data were averaged to provide one data point. A subset of the CP and centripetal lens equator movement
data (16 eyes of 12 monkeys) was adapted with permission from Croft et al. Accommodative ciliary body and lens function in rhesus monkeys.
Invest Ophthalmol Vis Sci. 2006; 47:1076–1086. � Association for Research in Vision and Ophthalmology.
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FIGURE 4. (A) Oblique-tangential section of the posterior attachment of the CM in a young monkey. The elastic tendons (arrows) that originate
from the muscle bundles (CM) are connected by smaller elastic fibrils to a network of elastic fibers (asterisk) surrounding the vessels of the
posterior ciliary body. This network is continuous with the elastic layer of Bruch’s membrane next to the PE. Due to the obliquity of the cut, the
elastic lamina is partly resolved into its substructure, which consists of a meshwork of elastic fibers. In some areas, elastic tendons are in close
contact (arrowheads) with the walls of the pars plana capillaries (C) (paraffin section, resorcin-fuchsin/van Giesson stain, 31000). (B) Oblique-
tangential section of the posterior attachment of the CM in a 34-year-old monkey. Region and orientation of the section are comparable with (A).
The elastic tendons (arrows) that originate from the muscle bundles (CM) are thickened and have an irregular shape with fuzz borders and a
notched appearance. Although a histologic stain for elastic fibers is used, neither the elastic tendons nor the elastic lamina of Bruch’s membrane
(white arrows) stain positive. The connective tissue between the elastic tendons and the ciliary PE is thickened and hyalinized (asterisks) (semithin
section, rescoring-fuchsin stain, 31000). (A, B) Reprinted with permission from Tamm E, Lütjen-Drecoll E, Jungkunz W, Rohen JW. Posterior
attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci. 1991;32:1678–1692. � 1991
Association for Research in Vision and Ophthalmology.

FIGURE 5. (A) Removal of the lens substance by extracapsular lens extraction allowed direct measurement of the accommodative movement of the
choroid/retina by using known landmarks. Very little accommodative movement of the choroid/retina in the region of the optic nerve. (B) Results of
optical flow analysis in one young monkey (courtesy of Bosco Tjan) shows that the choroid/retina is stretched and that the center of the stretch is
centered around the optic nerved region, and choroid/retina moves by 0.1 mm in the optic nerve region during accommodation.19 Reprinted with
permission from Croft MA, Lütjen-Drecoll E, Kaufman PL. Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and
optic nerve head pathophysiology. Exp Eye Res. 2017;158:187–189. � 2016 Elsevier Ltd.
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FIGURE 6. (A) Endoscopy image in the same 28-year-old monkey as panel D, showing vitreous strands (blue arrowheads) that attach to the
accommodative apparatus in the region of the pars plana and pars plicata. PTAZ, posterior tine of the anterior zonula. (B, C) Ultrasound
biomicroscopy images obtained using the Sonomed VuMax (UBM-V) in a 6-year-old rhesus monkey shows newly visualized vitreous strands that
extend from the vitreous body and attach to the accommodative apparatus in the region of the pars plicata (B) and pars plana (C). See also the
schematic drawing in Figure 3. (D) Endoscopy image in a 28-year-old rhesus monkey shows vitreous strands that are attached to the choroid/retina
and extend anteriorly toward the central anterior vitreous body.

FIGURE 7. Accommodation: diagram demonstrating the accommodative/disaccommodative movements inside the vitreous. During accommoda-
tion, the CM contracts and moves forward and inward, releasing tension on the anterior zonula and, thus, facilitating lens thickening. In addition,
during accommodation, the CM pulls the intermediate vitreous zonule (black line), the choroid, and the peripheral vitreous forward; the central
vitreous moves backward (including Cloquet’s canal, see Supplementary Videos S7–S9) toward the optic nerve head, and the backward movement
of the central vitreous also facilitates lens thickening. During accommodation, the capsule facilitates lens shape change into a more spherical form
and we view close range objects. The PVZ INS-LE strand (green line) is pulled forward by the CM contraction, supporting the accommodative
forward movement of the posterior lens equator and also facilitating lens shape change.12 Fluid flows around the lens equator toward the anterior
hyaloid and then further into the cleft between the vitreous zonule and the pars plana region during accommodation (see Fig. 3). The reverse for
everything just described in this figure is true during disaccommodation. TM, trabecular meshwork.
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modation gives the reverse movements (Fig. 7).14 In addition to
pressure gradients, these fluid movements may generate shear
stress at the nerve head. Whether these vitreal forces are bad,
good, or irrelevant for the nerve is impossible to say, but we
can say that they likely gradually decrease with age (see below)

and become small once presbyopia becomes complete, again
at about the age when POAG begins to appear.47,48 And, of
course, any of the effects may not be on the nerve directly but
rather on the astrocytes and other glial elements associated
with the nerve head and the lamina.49 Although accommoda-
tive vitreous movements may be reduced to a small amount
with age, several other phenomena occur with age and also
need to be considered. There is an age-related increase in lens
thickness. The anterior lens pole encroaches on the anterior
chamber, and the posterior lens pole is in a more posterior
position in the older eye, encroaching on the anterior central
vitreous. With age, the CM moves far less in a forward direction
(65% and 85% loss in monkeys and humans, respectively), but
the movements in the centripetal direction are less reduced
(i.e., ~20%).29,30 Furthermore, the central vitreous liquifies
with age,50 perhaps allowing more pressure on the optic nerve
via the fluid current, lens position, and accommodative
pressure spikes.

During accommodation in both young monkeys and
humans, there is a slight change (a small notch) in the scleral
contour in the region of the limbus (Fig. 12).14 In older resting
presbyopic eyes, there is inward bowing (increased concavity)
of the sclera in the region of the limbus, and the inward
bowing is more pronounced during accommodation (Fig.
12).14 Although older forward muscle movements are reduced,
a substantial amount of centripetal muscle movement remains.
Coupled with the posterior lens pole being positioned more
posteriorly with age, the inward bowing of the sclera and the
presence of the cisternal trunk in the region of the optic nerve
(with the branches of the cistern extending to and attaching to
the vitreous zonule) may all contribute to a greater pressure
spike toward the optic nerve during accommodation in the
aged eye.

Focusing requires a continuous zeroing in on the target,
much as a gunner acquires a target’s range. This constant, high
frequency, microcontraction/relaxation generates its own force

FIGURE 8. The age-dependent decline in the ability of the human lens
to undergo accommodative changes with mechanical stretching
matches and can fully account for the decline in accommodative
amplitude over the human life-span. Reprinted with permission from
Glasser A, Campbell MC. Presbyopia and the optical changes in the
human crystalline lens with age. Vision Res. 1998;38:209–229. � 1998
Elsevier Ltd.

FIGURE 9. Ciliary muscle shape from an 8-year-old and a 34-year-old enucleated rhesus monkey eye placed in atropine or pilocarpine solution. The
young 8-year-old monkey eye undergoes pilocarpine induced accommodative configurational change. The older eye fails to undergo an
accommodative configuration change due to the loss of elasticity of the choroid which attaches to the posterior end of the ciliary muscle. Reprinted
with permission from Lütjen-Drecoll E, Tamm E, Kaufman PL. Age-related loss of morphological responses to pilocarpine in rhesus monkey ciliary
muscle. Arch Ophthalmol. 1988;106:1591–1598. � 1988 American Medical Association.
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fluctuations on the surrounding structures and fluidics, which
may also affect the optic nerve and may diminish with age.

The anterior longitudinal region of the CM, with its
tendinous attachment to the scleral spur, TM, inner wall of
SC, and Schwalbe’s line, is also challenged by aging.51–55 The
TM stiffens55–62 and forward CM movement is severely
restricted29 (more than is the centripetal vector) by the
posterior stiffening,23 so that the TM deformation and recovery
associated with accommodation and disaccommodation are

FIGURE 10. Data plotted are mean apical position of the CM grouped
according to age, drug, and section location. Red bars represent
sections obtained from the middle (farthest from the original
meridional cut), where the CM posterior tendon is intact. Green bars

represent sections taken from the margin (closest to the original
meridional cut), where some of the posterior and outer attachments of
the CM have been severed. These data show that there is an age-related
posterior restriction. The restriction is removed once the posterior
attachment is severed. Adapted with permission from Tamm E, Croft
MA, Jungkunz W, Lütjen-Drecoll E, Kaufman PL. Age-related loss of
ciliary muscle mobility in the rhesus monkey: role of the choroid. Arch

Ophthalmol. 1992;110:871–876. � 1992 American Medical Associa-
tion.

FIGURE 11. (A) The number of muscarinic cholinergic receptors (Bm) and their receptor affinity (Kd), (B) the Km, and (C) the Vmax of the
enzymes responsible for the synthesis and degradation of the cholinergic neurotransmitter acetylcholine (choline acetyltransferase [ChAT] and
acetyl cholinesterase [AChE], are all unchanged with age; reprinted with permission from Gabelt BT, Kaufman PL, Polansky JR. Ciliary muscle
muscarinic binding sites, choline acetyltransferase and acetylcholinesterase in aging rhesus monkeys. Invest Ophthalmol Vis Sci. 1990;31:2431–
2436. � 1990 Association for Research in Vision and Ophthalmology. (D) There was no age-related change in contractile force of isolated rhesus
monkey CM strips stimulated with muscarinic agonist carbachol (1 lM). From Poyer JF, Kaufman PL, Flügel C. Age does not affect contractile
responses of the isolated rhesus monkey ciliary muscle to muscarinic agonists. Curr Eye Res. 1993;12:413–422. Reprinted with permission from
Taylor & Francis Ltd.

TABLE 2. Presbyopia: Rhesus Monkey

Region

P Value of

Two Sample t

Comparison

by Region

Ora Serrata,

mm, UBM n

Optic Nerve, mm,

Fundus Photos n

Ora Serrata vs.

Optic Nerve

Young, 6–9 y

1.05 6 0.07* 4 0.13 6 0.03* 2† 0.009

Old, 17–24 y

0.40 6 0.12* 4 0.02 6 0.02 2 0.049

Young vs. old

P ¼ 0.024 P ¼ 0.205

Two sample t comparison by age group

Young þ old

0.69 6 0.14 8 0.08 6 0.035 4 0.003

Data are mean 6 SEM accommodative choroid/retina movement in
the region of the ora serrata (measured from UBM images) and
accommodative choroid/retina movement in the region of the optic
nerve (measured from fundus photos following extracapsular lens
extraction). Note accommodative choroid/retina movement is 10-fold
greater in the ora serrata region than in the region of the optic nerve,
and these movements decline with age (CM still generates force-
isometric contraction). The accommodative stretching of the choroid
may place accommodative tension spikes on the optic nerve region
(. . .increased stress on optic nerve astrocytes. . .increase in transform-
ing growth factor b [Ref. 49] . . .increase extracellular matrix. . . One
hypothesis: optic nerve more susceptible to glaucomatous damage.).

* Reprinted with permission from Croft et al. Extralenticular and
lenticular aspects of accommodation and presbyopia in human versus
monkey eyes. Invest Ophthalmol Vis Sci. 2013;54:5035–5048. �
Association for Research in Vision and Ophthalmology.

† Data include three eyes of two monkeys undergoing the same
protocol (to minimize the number of monkeys used). The data from the
two eyes of the same monkey were averaged and that number averaged
with the eye of the other young monkey for an n of 2 in this table. P

value of � 0.05 indicates a statistically significant difference between
groups (i.e., the amount of choroid/retina movement in the ora serrata
region was significantly greater in the young eye vs the old eye [P ¼
0.024] by two sample t-test). Due to the small sample sizes collected in
the region of the optic nerve, a separate analysis was using ANOVA and
adjusting for repeated measures (two eyes from one young monkey),
and the results are in Table 3.
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progressively lost. The deformation/recovery cycle may
contribute to the ‘‘self-cleaning’’ ascribed to the TM,63–65 and
thus, its loss may contribute to the TM stiffening59,60 and
accumulation of collagen and other extracellular matrix
materials seen with aging,51,66 especially in glaucomatous
eyes.59,60 These changes may impede the outflow of aqueous

humor, as evidenced by and perhaps accounting for the age-
related increase in outflow resistance seen in both mon-
keys56,67 and (at least in Western) human68,69 populations. We
do not know whether the internal contraction/relaxation
mechanisms possessed by the TM/SC67 might change with age
and affect CM movement and, thereby, the optic nerve.
Although all the biomechanics at play are not clear, altered
forces and decreased deformation of the TM during accommo-
dative effort seem likely, perhaps contributing to increased
outflow resistance.

CONCLUSIONS

The ocular anterior and posterior segments are linked both
structurally and functionally, and their intellectual separation in
both the clinical and research enterprises is counterproductive
to advances. The accommodative mechanism and its aging are
much more complex than generally realized, and extralentic-
ular changes with age may play an important role in the
pathophysiology of presbyopia, glaucomatous optic neuropa-
thy, impaired aqueous outflow, and the frustrating inability of
current intraocular lenses to provide more than 1.75 to 2.00
diopters of dynamic accommodation,70,71 which is not quite
enough for fine near vision in subpar lighting conditions.
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