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ABSTRACT
To evaluate the promising advantages of massively parallel sequencing (MPS) in our 
casework, we analysed a total of 33 Y-chromosomal short tandem repeats (Y-STRs) 
with traditional capillary electrophoresis (CE) and 25 Y-STRs using the newer MPS 
technology. We studied the outcome of both technologies in 64 father-son pairs 
using stock and custom-designed kits. Current MPS technology confirmed the 13 
mutational events observed with CE and improved our understanding of the complex 
nature of STR mutations. By detecting isometric sequence variants between unrelated 
males, we show that sequencing Y-STRs using MPS can boost discrimination power.

Introduction

Y-chromosomal short tandem repeats (Y-STRs) are 
especially helpful to analyse the male proportion of 
complex female—male mixtures, which is a typical 
scenario of samples in sexual assault cases. While 
autosomal STRs can easily be used to identify indi-
viduals, Y-STR profiles tend to be identical amongst 
patrilineal relatives because of their non-recombining 
inheritance mode along paternal lineages. Therefore, 
a male perpetrator most likely cannot be differen-
tiated from his brother or father using Y-STRs [1]. 
While this feature of Y-STRs is detrimental when 
trying to differentiate paternally related individuals, 
it is beneficial for analysing deep-rooted pedigrees 
[2] and familial searching [3].

Currently, the standard technique used in forensic 
genetics is to type STRs with capillary electrophoresis 
(CE) analysis. This analysis method is fast (profiles 
can be generated within 1 day) and affordable for 
the average crime laboratory. Furthermore, the 
resulting data handling is straightforward, as STR 
length alleles are defined by the number of repetitive 
motifs by most standard software packages. This 
enables practitioners to report and compare results 
very easily. In contrast, massively parallel sequencing 
(MPS) is more time-consuming (at least 2 days 
hands-on in the laboratory and approximately 30 h 
sequencing time) and expensive, depending on how 

many samples are pooled per run [4]. However, MPS 
has some advantages compared with CE analysis: (1) 
the lack of specific shared fluorescent markers makes 
it possible to multiplex more than 100 markers in 
one reaction instead about 30 markers with CE anal-
ysis [5–7] and (2) MPS reveals the actual sequence 
of the variation rather than just its length, and is 
therefore able to detect sequence variants within 
alleles (isometric variants), which are not distinguish-
able with CE analysis. Sequence variants can appear 
as intra-repeat single nucleotide polymorphisms 
(SNPs), SNPs within the flanking region, indels, or 
repeat pattern variants. Using these sequence vari-
ants, two individuals could be distinguished with 
one marker even if they have the same nominal 
allele [8] and are thus indistinguishable using CE. 
Various studies have shown an increase in the num-
ber of alleles per locus when these isometric variants 
are analysed by MPS, which results in a higher 
genetic diversity of STRs [8–22]. Additionally, 
sequencing can cover flanking sequences and is thus 
able to detect SNPs that are not detecta ble with CE 
[7,9,23,24]. However, SNPs have a rela tively low 
mutation rate of 10−8 per base per generation [25] 
and are therefore unlikely to contribute to the sep-
aration of male relatives.

To determine if Y-STR sequence variants may help 
to improve the differentiation of paternally-related 
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males in forensic casework, we compared the CE and 
MPS analysis methods based on mutations at 33 
Y-STRs and 25 Y-STR markers of 64 father-son pairs.

Materials and methods

Sample preparation

We collected buccal swap samples from 64 father-son 
pairs from European populations with written 
informed consent signed by all participants. Our 
analyses are based on self-declared family relations. 
DNA extraction was performed on the BioRobot® 
EZ1 (Qiagen, Hilden, Germany) using the EZ1 DNA 
Blood 200 µL Kit (Qiagen). Quantification of DNA 
samples was performed with the Rotor-Gene Q 
(Qiagen) and the Investigator Quantiplex Kit 
(Qiagen) or with the Quantus™ Fluorometer 
(Promega Corporation, Madison, WI, USA) and the 
QuantiFluor® ONE dsDNA Kit (Promega 
Corporation).

CE analysis
A total of 33 Y-STR markers were amplified by 
combining 22 Y-STR markers of the PowerPlex® 
Y23 System (Promega Corporation) and 11 Y-STR 
markers of an adapted RM-Yplex assay (13 Y-STRs 
in total) based on Alghafri et  al. [26]. The modified 
primer mix can be found in Supplementary File S1. 
Instead of the DYS518 marker that was used by 
Alfghafri et  al. [26], the marker DYS464 was added 
to the multiplex PCR. This multi-copy Y-STR marker 
with at least four copies on the Y chromosome was 
selected for its outstanding diversity [27,28]. The 
primer sequence for DYS464 was taken from Redd 
et  al. [29] and labelled with ATTO 550. PCR ampli-
fication was performed in a final volume of 15 µL 
per reaction: 7.5 µL Platinum™ Multiplex PCR 
Master Mix (Thermo Fisher Scientific, Waltham, 
MA, USA), 3.3 µL primer mix according to 
Supplementary File S1, 3.2 µL PCR grade water, and 
1 µL DNA template (1 ng/µL). To confirm a dupli-
cation observed within the marker Y-GATA-H4 in 
one sample we performed an additional PCR using 
the Yfiler™ Plus PCR Amplification Kit (Thermo 
Fisher Scientific) with this sample and the sample 
of the associated son. CE ana lysis was carried out 
on the 3500 Genetic Analyzer (Applied Biosystems, 
Forster City, CA, USA) and data were analysed using 
the GeneMapper IDX version 1.4 software (Thermo 
Fisher Scientific).

MPS analysis
Library preparation for sequencing analysis was 
performed with the ForenSeq™ DNA Signature 

Prep Kit (Verogen, San Diego, CA, USA) according 
to the manufacturer’s instructions. For PCR ampli-
fication, primer mix A was used, which includes 
25 Y-STR markers. All samples were sequenced 
with the MiSeq FGx (Illumina, San Diego, CA, 
USA) using the MiSeq FGx Reagent Kit (Verogen). 
For better coverage, the library input volume was 
increased from 7 µL to 10 µL. Data analysis was 
done using an in-house analysis pipeline (as 
explained below), allowing us to analyse the 
marker DYS456, which is included in the primer 
mix of the ForenSeq™ DNA Signature Prep Kit 
but excluded from the ForenSeq™ Universal 
Analysis Software (UAS, Verogen). Allele-stutter 
differentiation was done following the forward-, 
back-, and double-back-stutter models given by 
Bright et  al. [30] and the vendor-provided expected 
stutter percentages (same for UAS and the in-house 
pipeline). All results with less than 10 reads were 
discarded.

In-house analysis pipeline

To be able to assess the analysis done by the UAS 
software, we re-analysed the raw FASTQ files using 
a bioinformatic pipeline called “wintermute” 
(open-source software available online at https://
github.com/545ch4/wintermute, publication in prepa-
ration). This tool was prototyped as part of the EU 
funded DNASeqEx (DNA-STR Massive Sequencing 
& International Information Exchange) project, 
which aimed to enable the user to understand the 
variability and composition of the huge number of 
single reads/sequences within an MPS FASTQ file. 
In the first step, the software assigns each read to 
one or more targets (derived from the target primer 
that was used). All sequences of those 
sequence-buckets are then multi-aligned to generate 
one or more consensus sequence that represents the 
sequence-bucket. The software does not generate 
reliable results for the flanking regions of the Y-STRs 
used here. As the sequence quality declines over 
read length (approx. beginning at 120 bp), the soft-
ware was unable to generate merged flanking 
sequences of longer Y-STR (e.g. DYS448 and 
DYS389II). Therefore, we decided to exclude all 
flanking sequences for reasons of consistency.

Results

We used CE analysis to examine 22 Y-STR markers 
of 64 father-son pairs using the PowerPlex® Y23 
System and used MPS analysis for 25 Y-STRs of the 
same sample set using the ForenSeq™ DNA Signature 
Prep Kit. DYS393 and DYS458 are included in the 
PowerPlex® Y23 System, but not in the ForenSeq™ 
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DNA Signature Prep Kit. DYF387S1, DYS460, 
DYS505, DYS522, and DYS612 are included in the 
ForenSeq™ DNA Signature Prep Kit, but not in the 
PowerPlex® Y23 System. In total, 20 Y-STR markers 
were analysed using both kits (Supplementary File 
S2). Comparing MPS results with CE results, all 
allele designations were concordant with the excep-
tion of one drop-out (in DYS392) because of low 
coverage of this sample. There were some stutters 
above the stutter filter, namely in DYS385ab, DYS392, 
DYS456, and DYS576, and some additional sequence 
variants (drop-ins) slightly above a peak height ratio 
(PHR) of 10% in DYS437 and DYS448. All drop-ins 
were below a PHR of 13% and were therefore not 
calculated as “real” alleles. Notably, the two alleles 
of the DYS385ab marker were sometimes unbalanced 
in the MPS analysis (minimum 21.5% PHR for 
DYS385b). Additionally, a duplication at Y-GATA-H4 
in one sample was observed with both CE and MPS 
(MPS: 495 reads, 76% PHR for the CE allele 10).

Furthermore, we used CE to examine 13 rapidly 
mutated Y-STRs using a modified RM-Yplex assay 
developed by Alghafri et  al. [26] (including DYS464 
in place of DYS518) of the same sample set. DYF399S1, 
DYF403S1, DYF404S1, DYS449, DYS464, DYS526, 
DYS547, DYS626, and DYS627 are included in the 
RM-Yplex assay, but not in the ForenSeq™ DNA 
Signature Prep Kit. DYF387S1, DYS570, DYS576, and 
DYS612 are included in both the RM-Yplex assay and 
ForenSeq™ DNA Signature Prep Kit (Supplementary 
File S2). Similar to our previous results, all allele desi-
gnations were concordant, except some stutters above 
the stutter filter in DYF387S1 and DYS612.

In total, 13 mutations were detected when ana-
lysing 22 Y-STR markers of 64 father-son pairs with 
CE using the PowerPlex® Y23 System (Supplementary 
File S2): two events at marker DYS19, two events 
at DYS448, and one event each at DYS385ab, 
DYS389I, DYS389II, DYS456, DYS458, DYS481, 
DYS549, DYS643, and Y-GATA-H4. All mutations 
were either one-repeat losses or one-repeat gains, 
with the exception of the mutational event at 
Y-GATA-H4, which was caused by a duplication. 
Mutational events occurred at markers with simple 
repeat structures (DYS385ab, DYS456, DYS458, 
DYS481, DYS549, DYS643, Y-GATA-H4), at markers 
with complex repeat structures (DYS389I, DYS389II, 
DYS448), and at one marker with a compound 
repeat structure (DYS19). They were observed in 
sequences with a trimeric repeat structure (DYS481), 
a tetrameric repeat structure (DYS19, DYS385ab, 
DYS389I, DYS389II, DYS456, DYS458, Y-GATA-H4), 
a pentameric repeat structure (DYS643), and a hexa-
meric repeat structure (DYS448).

Using MPS analysis (ForenSeq™ DNA Signature 
Prep Kit, 27 Y-STR loci) we confirmed 12 of 13 muta-
tional events in the same cohort (DYS19, DYS448, 

DYS385ab, DYS389I, DYS389II, DYS456, DYS481, 
DYS549, DYS643, and Y-GATA-H4; Supplementary 
File S2). Two mutations at DYS458 and DYS612 could 
not be confirmed because of the absence of these 
markers either in the ForenSeq™ DNA Signature Prep 
Kit or the PowerPlex® Y23 System. All mutations 
observed with MPS analysis were length-based muta-
tions with the exception of the duplication at 
Y-GATA-H4 mentioned earlier. No additional 
sequence-based mutations were found. However, by 
sequencing these Y-STRs, we were able to determine 
the specific part of the repetitive stretch that causes 
the length variation: DYS19—the first repeat (of two 
compound repeats), DYS389I—the first repeat (of two 
compound repeats), DYS389II—the third repeat (of 
four compound repeats), DYS448—the first repeat (of 
three compound repeats), and DYS612—the third 
repeat (of three compound repeats) (Supplementary 
File S2). All mutational events occurred at the longest 
uninterrupted repeat sequence (LUS) [31].

By analysing the same sample set with our modi-
fied RM-Yplex assay (13 Y-STR markers with up to 
24 Y-STR alleles), we identified eight mutational 
events (Supplementary File S2) and were able to con-
firm the mutational event at DYS612 found with the 
ForenSeq™ DNA Signature Prep Kit. All remaining 
seven mutations occurred at markers not included in 
the PowerPlex® Y23 System nor in the ForenSeq™ 
DNA Signature Prep Kit: two at DYF399S1, three at 
DYF403S1, one at DYF404S1, and one at DYS526. 
Each of these markers, categorized as RM Y-STR with 
an average mutation rate of 10−2 per locus per gen-
eration [32], belongs to the Y-STR multicopy marker 
and contains a complex repeat structure 
(Supplementary File S2). All observed mutations 
showed either one-repeat losses or one-repeat gains.

We calculated the number of alleles per marker 
for CE analysis (PowerPlex® Y23 System) and for 
MPS analysis (ForenSeq™ DNA Signature Prep Kit) 
by looking at all 29 families combined (Supplementary 
File S2) and identified 112 alleles in our CE analysis 
results and 151 alleles in our MPS analysis results. 
Of these 151 alleles detected by MPS, 128 alleles were 
length-based alleles, which are detectable with CE 
and MPS in the same manner. The remaining 23 
isometric alleles were found to be different based only 
on their sequence, as they were not detectable with 
CE: eight at DYF387S1, six at DYS389II, two each at 
DYS448 and DYS481, three at DYS570, and one each 
at DYS612 and DYS635 (Figure 1, Supplementary File 
S2). Most of these markers were defined by a complex 
repeat structure (DYF387S1, DYS389II, DYS448, 
DYS612, DYS637), whereas only two of them by a 
simple repeat structure (DYS481, DYS570).

When looking for the specific part of the repeti tive 
stretch that caused the length variation, we found that 
more repeats than only the LUS tended to vary in 
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complex markers: two repeats each in DYF387S1 and 
DYS448, three repeats in DYS389II, and one repeat 
(LUS) in DYS635. Additionally, alleles longer than 23 
(CE length-based) at DYS635 carried an insertion of 
[TACA]2[TAGA]4 (Supplementary File S2).

Discussion

In summary, we identified the same 13 mutational 
events in 64 father-son pairs with CE analysis 
(PowerPlex® Y23 System) and with MPS analysis. 
Compared with traditional CE analysis, we were 
unable to differentiate more father-son pairs with 
MPS analysis than with CE using the PowerPlex® 
Y23 System. All mutational events detected by MPS 
were length-based variants, which is in concordance 
with CE analysis.

Mutations were observed at all types of markers, 
including simple and complex repeat structures and 
trimeric to hexameric repeat structures. Our results 
suggest that tetranucleotide repeats are more prone 
to mutations than other motifs [32–34], mutation 
events are mostly restricted to the LUS of a com-
pound/complex STR marker [31,32,34,35], and the 
LUS length correlates with the mutability of an STR 
marker [32–34,36–38].

Unsurprisingly, when looking at the sequence 
variants between unrelated males, we found that the 
observed length variance is mainly explained by 
changes in the repetitive structure of a Y-STR. 
Hence, Just and Irwin et  al. [31] showed that the 
combination of a length-based allele and LUS length 
as a designator can represent more than 80% of the 
variability detected by sequencing. Our data concur 
with their observations, as nearly all isometric 
sequence variants could be transformed using this 
method without losing any information. Only one 
exception was found at marker DYS389II, where four 
different sequence variants (CE length-based allele 
30) would be denoted as two alleles (two times CE 

allele 30 + LUS allele 11 and two times CE allele 
30 +LUS allele  12). This finding may help improve 
existing simplified mutation models (SMM) and phy-
logenetical separation used in population genetics.

Our results are in agreement with earlier findings 
[9,39,40] that isometric sequence variants mostly 
occur at complex STR markers. The largest increases 
for additional sequence-based alleles were found at 
DYF387S1 (consistent with [9,41]) and DYS389II 
(consistent with [39,41–43]). This could be very 
important for deep-rooted pedigree and paternity 
analysis using Y-STRs because specific knowledge 
of the mutation event could facilitate the comparison 
of more complex mutation models to the simplified 
single step mutation model [44].

As Huszar et  al. [39] predicted, we could not find 
any SNP or indel because of the associated lower 
mutation rates of these mutational events. We there-
fore agree with their conclusion that male identifi-
cation using Y-STRs may not be greatly advanced 
by applying forensic MPS approaches [39]. In our 
MPS analysis, we found the same number of muta-
tional events as with CE analysis. However, when 
analysing the dataset with RM Y-STRs (CE), we 
found eight additional mutations. Thus, for diffe-
rentiation of father-son pairs, analysing more RM 
Y-STRs with CE seems to be a much more promising 
approach than just sequencing the common Y-STRs. 
Recently, Ralf et  al. [34] proposed 12 new RM 
Y-STRs with a mean mutation rate of 2.6 × 10−2, 
demonstrating high discrimination power. We also 
agree with Huszar et  al. [39] that applying MPS to 
RM Y-STRs is expected to increase discriminatory 
power as allele diversity increases. However, MPS 
analysis using the ForenSeq™ DNA Signature Prep 
Kit includes the results of autosomal STRs, Y-STRs, 
X-STRs, and seve ral SNPs at the same time. This 
would allow for easy individualization, except in 
female–male DNA mixtures where the male propor-
tion is masked by the female component.

Figure 1. observed allele increase with massively parallel sequencing (MPs) analysis using the Forenseq™ Dna signature Prep 
Kit (over 29 families).
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Though we did not find any additional 
sequence-based mutations between fathers and sons, 
we found many additional sequence-based alleles 
between unrelated males. These isometric variants 
are helpful to exclude a suspect or to deconvolute 
mixtures of multiple male contributors [39,43], and 
to detect private or rare mutations pointing to a 
remote patrilinear relation.

One major drawback of MPS is the amount of 
novel and challenging bioinformatics methodology 
necessary for analysing new data. When restricted to 
vendor-provided tools and protocols, researchers may 
miss important new features of this technology. 
Besides basic measurements like sequence reads, cove-
rage, and quality assessment, the major obstacle is a 
missing internationally standardized nomenclature 
[45], which would enable laboratories to exchange 
MPS data without an unnecessary reduction to CE 
alleles. In summary, we believe that Y-STR MPS ana-
lysis is much more demanding for the forensic crime 
laboratory than traditional CE analysis. Together with 
the much higher cost of MPS, this could explain the 
rather hesitative adoption of this new technology in 
the forensic genetics field. CE will likely remain the 
standard method for genetic profiling for the next 
several years, even though especially at Y-STRs MPS 
could reveal much more information and help to 
understand the mechanisms of mutational events 
beyond simplified models like SMM [44].
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