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Abstract 

Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts 
and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density 
in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of 
subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the 
controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of 
V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, 
we comprehensively address the following areas: information about all V-ATPase subunits and their 
isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and 
osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house 
data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of 
V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among 
V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors 
or activators targeting V-ATPase subunits in the treatment of osteoporosis. 
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1. Introduction 
Vacuolar ATPases (V-ATPases) are protein 

complexes that couple ATP hydrolysis to proton 
transport in intracellular compartments or across the 
plasma membrane. V-ATPases are important in 
maintaining the acidic environment of intracellular 
organelles, including secretory granules, endosomes, 
and lysosomes. The acidic intracellular environment 
is necessary for protein sorting, zymogen activation, 
and receptor-mediated endocytosis [1]. V-ATPases 
also control the extracellular acidification of 
osteoclasts, which is a key factor for bone resorption 
[2]. The V-ATPases-related regulation of extracellular 
acidification also exists in other tissues or cells such as 
kidney and metastatic cells [3-5]. 

V-ATPases are ubiquitously expressed in a 

variety of cell types and are considered the essential 
“housekeeping” enzymes in all eukaryotic cells; 
however, the specific functions of V-ATPases vary 
from cell to cell. Most cells only express a low level of 
V-ATPases to carry out housekeeping functions, but 
other cells, like osteoclasts, have abundant V-ATPases 
that control extracellular acidification and finally 
affect bone resorption and bone remodeling. In this 
review, we will describe the V-ATPases-involved 
bone phenotypes, the functions of V-ATPase subunits 
in osteoclasts, as well as the inhibitors targeting 
V-ATPases in the treatment of bone diseases. 

2. Structure of V-ATPase 
The mammalian V-ATPase proton pump is 

 
Ivyspring  

International Publisher 



 Theranostics 2018, Vol. 8, Issue 19 
 

 
http://www.thno.org 

5380 

composed of the peripheral V1 component and 
membrane-bound V0 component with at least 13 
subunits [6]. The V1 component drives ATP 
hydrolysis to energize and initiate the rotation of V0 
domain, which includes eight subunits, A through H. 
V0 domain utilizes the energy generated by V1 domain 
to translocate protons across the membrane and 

includes a through e subunits. V-ATPases also have 
two accessory subunits, AP1 and AP2 [1, 7-10]. Some 
V-ATPase subunits have multiple isoforms, which are 
expressed or function in a tissue-specific manner [9, 
11-13] (Table 1). N-glycosylation and other processes 
are crucial for the formation of subunit isoforms and 
protein stability [14, 15]. 

 

Table 1. Subunits of human V-ATPases 

Location Name Isoform (s)  Official 
Symbol  

Location (GRCh38.p7)  mRNA and Protein (s) Alias 
Gene Protein 

V1 A N/A ATP6V1A Chromosome 3, NC_000003.12 
(113747019,113812058) 

NM_001690.3 → NP_001681.2 ATP6V1A, ARCL2D, 
HO68, 
VA68 

ATP6V1A, ARCL2D, 
HO68,  
VA68 

B B1 ATP6V1B1 Chromosome 2, NC_000002.12 
(70935868,70965431) 

kidney isoform: NM_001692.3 → 
NP_001683.2 

ATP6V1B1, ATP6B1 ATP6V1B1, ATP6B1 

B2 ATP6V1B2 Chromosome 8, NC_000008.11 
(20197193,20226852) 

brain isoform: NM_001693.3 → 
NP_001684.2 

ATP6V1B2, HO57 ATP6V1B2, HO57 

C C1 ATP6V1C1 Chromosome 8, NC_000008.11 
(103021020,103073057) 

NM_001695.4 → NP_001686.1 ATP6V1C1, ATP6C, 
ATP6D 

ATP6V1C1, ATP6C,  
ATP6D 

C2 ATP6V1C2 Chromosome 2, NC_000002.12 
(10720973,10785110) 

isoform a: NM_001039362.1 → 
NP_001034451.1 

ATP6V1C2, ATP6C2 ATP6V1C2, ATP6C2 

isoform b:  
NM_144583.3 → NP_653184.2 

D D ATP6V1D Chromosome 14, NC_000014.9 
(67337864, 67360003, complement) 

NM_015994.3 → NP_057078.1 ATP6V1D, ATP6M ATP6V1D, ATP6M 

E E1 ATP6V1E1 Chromosome 22, NC_000022.11 
(17592136, 17628822, complement) 

isoform a:  
NM_001696.3 → NP_001687.1 

ATP6E, ATP6E2, 
ATP6V1E, ATP6V1E1 

ATP6E, ATP6E2, 
ATP6V1E, ATP6V1E1 

isoform b:  
NM_001039366.1 → NP_001034455.1 
isoform c:  
NM_001039367.1 → NP_001034456.1 

E2 ATP6V1E2 Chromosome 2, NC_000002.12 
(46511835, 46542557, complement) 

NM_001318063.1 → NP_001304992.1 ATP6V1E2, ATP6E1, 
ATP6EL2 

ATP6V1E2, ATP6E1, 
ATP6EL2 

F F ATP6V1F Chromosome 7, NC_000007.14 
(128862803,128865849) 

isoform 1:  
NM_004231.3 → NP_004222.2 

ATP6V1F, 
ATP6S14 

ATP6V1F, ATP6S14 

isoform 2:  
NM_001198909.1 → NP_001185838.1 

G G1 ATP6V1G1 Chromosome 9, NC_000009.12 
(114587714,114598872) 

NM_004888.3 → NP_004879.1 ATP6V1G1, ATP6G, 
ATP6G1, ATP6GL, 
ATP6J 

ATP6V1G1, ATP6G, 
ATP6G1, ATP6GL,  
ATP6J 

G2 ATP6V1G2 Chromosome 6, NC_000006.12 
(31544451,31546848, complement) 

isoform a (longest): 
NM_130463.3 → NP_569730.1 

ATP6V1G2, ATP6G, 
ATP6G2 

ATP6V1G2, ATP6G, 
ATP6G2 

isoform b:  
NM_138282.2 → NP_612139.1 
isoform c:  
NM_001204078.1 → NP_001191007.1 

G3 ATP6V1G3 Chromosome 1, NC_000001.11 
(198523222,198540945, complement) 

isoform a:  
NM_133262.2 → NP_573569.1 

ATP6V1G3, ATP6G3 ATP6V1G3, ATP6G3 

isoform b:  
NM_133326.1 → NP_579872.1 
isoform c:  
NM_001320218.1 → NP_001307147.1 

H H ATP6V1H Chromosome 8, NC_000008.11 
(53715543, 53843311, complement) 

isoform 1: 
NM_015941.3 → NP_057025.2 
NM_213620.2 → NP_998785.1. 
Two variants encode the same isoform 1 

ATP6V1H, CGI-11, 
SFD 

ATP6V1H,  
CGI-11,  
SFD 

isoform 2: 
NM_213619.2 → NP_998784.1 

V0 a a1 ATP6V0A1 Chromosome 17, NC_000017.11 
(42458844, 42522579) 

isoform a : 
NM_001130020.1 → NP_001123492.1 

ATP6V0A1, ATP6N1, 
ATP6N1A 

ATP6V0A1, ATP6N1, 
ATP6N1A 

isoform b:  
NM_001130021.1 → NP_001123493.1 
isoform c:  
NM_005177.3 → NP_005168.2 

a2 ATP6V0A2 Chromosome 12, NC_000012.12 
(123712318,123761755) 

NM_012463.3 → NP_036595.2 ATP6V0A2, ARCL, 
ARCL2A, ATP6A2 

ATP6V0A2, ARCL, 
ARCL2A, ATP6A2 

a3 TCIRG1 Chromosome 11, NC_000011.10 
(68038995, 68053846) 

isoform a (OC116): NM_006019.3 → 
NP_006010.2 

TCIRG1, ATP6V0A3, 
Atp6i 

TCIRG1, ATP6V0A3, 
Atp6i 

isoform b (TCIR7): NM_006053.3 → 
NP_006044.1 

TIRC7 TIRC7 

isoform c:  
NM_001351059.1 → NP_001337988.1 

    

a4 ATP6V0A4 Chromosome 7, NC_000007.14 NM_020632.2 → NP_065683.2 ATP6V0A4, ATP6N1B ATP6V0A4, ATP6N1B 
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Location Name Isoform (s)  Official 
Symbol  

Location (GRCh38.p7)  mRNA and Protein (s) Alias 
Gene Protein 

(138706294,138799839, complement) NM_130840.2 → NP_570855.2 
NM_130841.2 → NP_570856.2 
Three variants encode the same protein. 

c c ATP6V0C Chromosome 16, NC_000016.10 
(2513726, 2520223) 

NM_001198569.1 → NP_001185498.1 
NM_001694.3→ NP_001685.1 
Two variants encode the same protein. 

ATP6V0C, ATP6L, 
ATP6C 

ATP6V0C, ATP6L, 
ATP6C 

b  b  ATP6V0B Chromosome 1, NC_000001.11 
(43974648, 43978300) 

isoform 1:  
NM_004047.4 → NP_004038.1 

ATP6F, ATP6V0B ATP6F, ATP6V0B 

isoform 2:  
NM_001039457.2 → NP_001034546.1 
isoform 3: NM_001294333.1 → 
NP_001281262.1 

d d1 ATP6V0D1 Chromosome 16, NC_000016.10 
(67438014, 67481186, complement) 

NM_004691.4 → NP_004682.2 ATP6V0D1, ATP6D ATP6V0D1, ATP6D 

d2 ATP6V0D2 Chromosome 8, NC_000008.11 
(86098910, 86154225) 

NM_152565.1 → NP_689778.1 ATP6V0D2, ATP6D2 ATP6V0D2, ATP6D2 

e e1 ATP6V0E1 Chromosome 5, NC_000005.10 
(172983760,173034897) 

NM_003945.3 → NP_003936.1  ATP6V0E1, ATP6H ATP6V0E1, ATP6H 

e2 ATP6V0E2 Chromosome 7, NC_000007.14 
(149872968,149880713) 

isoform 1: NM_145230.3 → NP_660265.2  ATP6V0E2 ATP6V0E2 

isoform 2:  
NM_001100592.2 → NP_001094062.1 
isoform 3:  
NM_001289990.1 → NP_001276919.1 

Accessory AP1 AP1 ATP6AP1 Chromosome X, NC_000023.11 
(154428632, 154436517) 

NM_001183.5 → NP_001174.2 ATP6AP1, ATP6IP1, 
ATP6S1,  
Ac45 

ATP6AP1, ATP6IP1, 
ATP6S1,  
Ac45 

AP2 AP2 ATP6AP2 Chromosome X, NC_000023.11 
(40580964, 40606637) 

NM_005765.2 → NP_005756.2  ATP6AP2, APT6M8-9, 
ATP6IP2, 
ATP6M8-9, PRR, 
RENR 

ATP6AP2, APT6M8-9, 
ATP6IP2, ATP6M8-9, 
PRR,  
RENR 

 
 
As shown in Figure 1, depending on ATP 

hydrolysis and reversible assembly process, the 
V-ATPase structure can be further divided into four 
parts: hexameric ring, central stalk, peripheral stalk, 
and proteolipid ring. The subunits A and B in the V1 

component have three copies and they form an A3B3 
hexameric ring in which ATP hydrolysis occurs. Three 
ATP catalytic sites are at the interfaces between 
subunits A and B [1]. Subunit A provides most of the 
residues for ATP binding. Other ATP binding sites 
may be located in subunit B [16-19]. The central stalk 
including subunit D and F bridges and stabilizes the 
interaction between V1 and V0 domains and couples 
the energy released from A3B3 to proton translocation 
in V0 [20, 21]. Subunit F is also crucial in ATP 
hydrolysis. The peripheral stalk, which contains three 
copies of subunits E and G, one or two copies of H 
[22], one copy of C, and the N-terminal domain of 
subunit a of the V0 domain, functions as a stator and 
tethers the A3B3 hexameric ring to subunit a for the 
next rotational catalysis. The central rotor and 
peripheral stalk maintain the stability of V-ATPase 
complex during catalytic rotation and proton 
translocation [23-25]. Finally, subunit c and b in V0 
form a proteolipid ring-like structure in the 
membrane layer [10, 26, 27]. Subunit d functions as a 
“boxing glove” on the top of the proteolipid ring, 
interacts with subunit a, and provides a connection 
between the central stalk of V1 and the proteolipid 
ring of V0 [1, 28, 29]. The proton transportation in 

V-ATPase relies much on the C-terminal domain of 
subunit a within the proteolipid subunits, in which 
the hemichannels allow protons to enter and leave the 
membrane [30-34]. The rotation of the central rotor 
initiates a series of proton translocations from subunit 
a to subunit c [35-37] (Figure 1). Subunits a3, d, A, C, 
and D are related to the coupling efficiency of ATP 
hydrolysis to proton transport, which alternatively 
regulates V-ATPase activity [38-42]. Besides ATP 
hydrolysis and proton transport, the reversible 
dissociation of V1 and V0 complexes also regulates 
V-ATPase functions [1, 43]. 

3. Subunits of V-ATPase and bone 
diseases 

V-ATPase complex plays a significant role in 
biological and physiological processes. Mutations in 
the coding genes and non-coding regions of V-ATPase 
subunits cause various syndromes [44, 45]. The 
subunits of V-ATPase are ubiquitously expressed, and 
some of them have tissue or cell-specific distributions. 
Thus, the phenotypes of V-ATPase-related human 
diseases vary from the nervous system, kidney, and 
skin to skeletal system and many other tissues. Some 
subunits might contribute to common polygenic 
diseases, such as cancer and diabetes (Table 2). The 
two most striking and entirely distinct types of bone 
diseases that involve V-ATPases are osteopetrosis and 
osteoporosis. 



 Theranostics 2018, Vol. 8, Issue 19 
 

 
http://www.thno.org 

5382 

 
Figure 1. Schematic map of V-ATPase. The mammalian V-ATPase proton pump is composed of peripheral V1 and membrane-bound V0. The V1 components 
include A-H subunits, whereas V0 includes a~e subunits. ATP hydrolysis and binding occur in the A3B3 hexameric ring. The central stalk D and F bridges and stabilizes 
V1/ V0 interaction and couples the energy released from A3B3 to proton translocation in V0. The peripheral stalks E, G, H, C, and N-terminal of subunit a (NTa) 
function as stators and tether the A3B3 hexameric ring to subunit a. The proton transport relies on the C-terminal of subunit a (CTa) and proteolipid-containing b, 
c, d, and e. 

Table 2. Subunits of V-ATPase and phenotypes in humans and animals. 

Gene Name Phenotype  
MIM Number 

Human Disease Data Mouse/Zebrafish Data 

ATP6V0A1 N/A N/A Zebrafish: abnormalities in endosomes, autophagosomes, and phagolysosomes, 
as well as the migration of neural crest cells [46, 47]. 

ATP6V0A2 219200 Cutis laxa, autosomal recessive, type II A (ARCL-2A)[45, 
48-51] 

N/A 

278250 Wrinkly skin syndrome [48-52] N/A 
TCIRG1 259700 Osteopetrosis, autosomal recessive 1 [44, 53, 54] Mouse: hypocalcemia and osteopetrorickets[55-57] 
ATP6V0A4 602722 Renal tubular acidosis, distal, autosomal recessive [58, 59] Mouse: distal renal tubular acidosis with hearing loss, severe metabolic acidosis, 

hypokalemia, early nephrocalcinosis, and bone loss [60, 61]. 
ATP6V0B N/A N/A Zebrafish: abnormal integument colorless, retina degeneration, and eye 

discoloration [62] 
ATP6V0C N/A Eye development and maintenance [63]; glial cell 

death/cancer/dopamine release/neurodegenerative 
disease [64, 65] 

Zebrafish: abnormalities in head size, surface structure quality, fin 
malformation, pigment cell quality, brain necrosis, retinal pigmented epithelium 
quality, melanocyte quality, pectoral fin quality, nervous system quality [63, 66, 
67]. 

ATP6V0D1 N/A N/A Zebrafish: manifestation in animal organ development, eye development, 
multicellular organism development, pigmentation, sensory organ development 
[63, 68, 69]. 

ATP6V0D2 N/A N/A Mouse: increased bone intensity [70, 71]. 
ATP6V0E1 N/A N/A N/A 
ATP6V0E2 N/A N/A  

Restricted tissue distribution in kidney and brain [72] 
N/A 

ATP6V1A 617403 Autosomal recessive cutis laxa type IID[73] Zebrafish: several abnormalities including suppression of acid-secretion from 
skin, growth retardation, trunk deformation [74]. 

ATP6V1B1 267300 Renal tubular acidosis with deafness [58, 75] Mouse: acidosis, tubular, renal, with progressive nerve deafness [76] 
ATP6V1B2 124480 Deafness, congenital, with onychodystrophy, autosomal Mouse: hearing loss [77] 
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dominant [77] 
616455 Zimmermann-Laband syndrome [78]  
N/A Depression and hippocampal neurocognitive deficits [79]  

ATP6V1C1 N/A N/A N/A 
ATP6V1C2 609946 Deafness, autosomal recessive 47; DFNB47 [80] N/A 
ATP6V1D N/A N/A 

Cell division [81] 
N/A 

ATP6V1E1 617403 Autosomal recessive cutis laxa type IID (ARCL2D)[73] Zebrafish: abnormal ventral fin [82] 
ATP6V1E2 N/A N/A 

Acrosome acidification [83] 
N/A 

ATP6V1F N/A  Zebrafish: oculocutaneous albinos, defects in melanosomes and retinal 
pigmented epithelium [63] 

ATP6V1G1 N/A Bone loss [84] N/A 
ATP6V1G2 N/A N/A Mouse: no obvious phenotype due to compensating increased G1 level [85]. 
ATP6V1G3 N/A N/A N/A 
ATP6V1H N/A Bone loss [86, 87] Mouse and zebrafish: bone loss [86, 87] 

N/A: no available data. 
 

3.1 Subunits of V-ATPase and osteopetrosis 
Osteopetrosis is a rare bone disorder with 

increased bone density. In the OMIM catalogue, 
autosomal recessive osteopetrosis is divided into 
seven subtypes (osteopetrosis, autosomal recessive 
1~7, OPTB1~7; OMIM 259700, 259710, 259730, 611490, 
259720, 611497and 612301) while autosomal dominant 
osteopetrosis is divided into two types (osteopetrosis, 
autosomal dominant 1~2, OPTA1~2; OMIM166600, 
607634). The clinical phenotypes of osteopetrosis vary 
considerably from the early onset life-threatening 
severe cases to mild cases in which the patients 
usually do not realize their conditions. Generally, 
osteopetrosis is clinically divided into three groups, 
i.e., infantile malignant autosomal recessive 
osteopetrosis (ARO), intermediate autosomal 
recessive osteopetrosis (IARO) and autosomal 
dominant osteopetrosis (ADO II). ARO has a fatal 
outcome within the first decade of life. 

T cell immune regulator 1(TCIRG1) encodes 
subunit a3 of V-ATPase and its mutations are the 
primary cause of autosomal recessive osteopetrosis 
[44, 53, 88] and infantile malignant osteopetrosis [54, 
89]. The mutations in TCIRG1 underlie 50% of ARO 
patients [53]. The TCIRG1 variants include deletions, 
insertions, nonsense substitutions, and splice site 
mutations, may cause severe abnormalities in the 
protein product and likely represent null alleles [44, 
53, 88]. Besides ARO, TCIRG1 mutations are also 
related to autosomal dominant severe congenital 
neutropenia [90]. In animal studies, mice deficient in 
Tcirg1 (Atp6i) show severe osteopetrosis. Atp6i-/- 
osteoclast-like cells lose the function of extracellular 
acidification but retain intracellular lysosomal proton 
pump activity [57]. Deletion of the 5-prime portion of 
Tcirg1 gene in mice causes hypocalcemia and 
osteopetrorickets phenotype with high bone mass 
[91]. Transgenic mice carrying a dominant missense 
mutation (R740S) in Tcirg1 gene also exhibit high bone 
density without affected osteoblast parameters [55]. 

Besides subunit a3, so far, no other V-ATPase 

subunits have been reported to be involved in 
osteopetrosis. Only Atp6v0d2-deficient mice show 
increased bone mass. Subunit d2 has been suggested 
to play important roles in coupling proton transport 
and ATP hydrolysis as well as the assembly of ATPase 
complexes [39, 40]. Subunit d2 is also involved in the 
regulation of osteoclast function and bone formation. 
Although mutations in the human ATP6V0D2 gene 
have not been reported in osteopetrosis, Atp6v0d2 
gene-knockout mice have increased bone density and 
defective osteoclasts because of the requirement for 
fusion of preosteoclasts resulting in osteopetrosis [70, 
71, 92]. ATP6V0D2 has recently been identified as a 
novel chondrocyte hypertrophy-associated gene [93]. 

3.2 Subunits of V-ATPase and osteoporosis or 
bone loss 

Osteoporosis is a common metabolic bone 
disease that is characterized by reduced bone mineral 
density (BMD) and increased risk of osteoporotic 
fractures. In particular, genes involved in the 
functions of osteoclasts have been associated with the 
risk of osteoporosis [94-96].  

H subunit is a small subunit of V-ATPases that 
connects the V1 and V0 domains. We previously 
reported that partial loss of ATP6V1H function 
resulted in osteoporosis/osteopenia in a population of 
1625 Han Chinese as well as in an Italian pedigree [86, 
87]. Atp6v1h+/- knockout mice generated by the 
CRISPR/Cas9 technique had decreased bone 
remodeling and a net bone matrix loss. Similarly, 
Atp6v1h+/- osteoclasts showed impaired bone 
formation and resorption activity. The increased 
intracellular pH of Atp6v1h+/- osteoclasts downregu-
lated TGF-β1 activation, thereby reducing induction 
of osteoblast formation [86]. In a CRISPR/Cas9 
zebrafish model, atp6v1h deficiency also caused bone 
loss [86, 87]. In another bivariate GWAS study, 
ATP6V1G1 was implicated as a novel pleiotropic gene 
affecting human BMD [84]. The above controversial 
effects of V-ATPase subunits on BMD suggest that the 
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deficiency of V-ATPase subunits might not always 
lead to increased bone mass. 

3.3 Other subunits of V-ATPase related to 
BMD 

3.3.1 Genetic factors for osteoporosis (GEFOS) 
information 

GEFOS Consortium is a large international 
collaboration of groups studying the genetics of 
osteoporosis using the meta-analysis of GWAS data 
with high-density SNP arrays. The BMD of GEFOS 
was measured at the femoral neck and lumbar spine 
using dual-energy X-ray absorptiometry in 32,961 
subjects (http://www.gefos.org/?q=content/data- 
release) [97]. We screened the variants of V-ATPase 
subunits in GEFOS data and in-house data to find 
whether more subunits are involved in BMD 
regulation. Based on our VEGAS analysis results of 
2012 GEFOS-released data [98, 99], ATP6V1A, 
ATP6V0A1, ATP6V1E2, ATP6V0A4, ATP6V1F, 
ATP6V1G2 and ATP6V1G3 are related to BMD (Table 
3). Further analysis showed that SNPs in other 
subunits of V-ATPase are also associated with BMD 
(Table S1). A detailed analysis of the GWAS data of 
1627 Han Chinese [100, 101] revealed that other SNPs 
of V-ATPase subunits might be related to BMD (Table 
S2). 

3.3.2 Subunits of V-ATPase possibly related to BMD 
Not much information is available on the 

location and functions of the above BMD-related 

subunits (A, E2, G2, G3, a1 and a4) of V-ATPase in 
osteoclasts.  

Subunit A: The mRNA level of Atp6v1a has been 
reported in rat osteoclasts and may respond to fluid 
shear stress changes [102]. No other information 
about subunit A in osteoclastic function is available. 
The mutations in ATP6V1A gene caused autosomal 
recessive cutis laxa type IID (ARCL2D) [73]. Subunit 
A interacts with the N terminal of Wolfram syndrome 
1 (WFS1) protein in human embryonic kidney (HEK) 
293 cells and human neuroblastoma cells, which 
might be important both for pump assembly in the 
endoplasmic reticulum (ER) and for granular 
acidification [103]. ATP6V1A also controls the 
extracellular acidification of intercalated cells in 
kidney, and its phosphorylation is regulated by the 
metabolic sensor AMP-activated protein kinase 
(AMPK) at Ser 384 [104]. Subunit A has also been 
detected in intracellular structures such as trans-Golgi 
network (TGN) of principal cells and narrow/clear 
cells in the epididymis and vas deferens [105]. The 
morpholinos against atp6v1a in zebrafish result in 
several abnormalities including suppression of 
acid-secretion from the skin, growth retardation, 
trunk deformation, and loss of internal Ca2+ and 
Na2+[74]. 

Subunit E2: Unlike testis-specific subunit E1, 
subunit E2, the isoform of E1 shows a ubiquitous 
distribution [83, 106]. Subunit E2 was found to be 
present in the perinuclear compartments of 
spermatocytes and rat epididymis [83, 105]. 

 

Table 3. Association of V-ATPase subunits and bone mass in GEFOS. 

 FNK* P value SPN* P value 
Chr Gene name nSNPs Start Position Stop Position Male Female Total Male Female Total 
3 ATP6V1A 30 113465865 113530905 0.00596 0.00142 2.00×10-5 0.08991 0.195804 0.023298 
2 ATPV1B1 29 71162997 71192561 0.921079 0.204795 0.17182817 0.533467 0.410589 0.433566 
8 ATP6V1B2 20 20054703 20079207 0.415584 0.675325 0.60539461 0.662338 0.908092 0.705295 
8 ATP6V1C1 53 104033247 104085285 0.638362 0.917083 0.94705295 0.413586 0.497502 0.434565 
2 ATP6V1C2 31 10861774 10925236 0.125874 0.381618 0.15284715 0.416583 0.579421 0.686314 
14 ATP6V1D 17 67804580 67826720 0.411588 0.955045 0.77922078 0.386613 0.644356 0.234765 
22 ATP6V1E1 44 18074902 18111588 0.195804 0.375624 0.32467532 0.651349 0.25974 0.084915 
2 ATP6V1E2 10 46738985 46747096 0.282717 0.100899 0.01359864 0.882118 0.021498 0.203796 
7 ATP6V1F 3 128502856 128505903 0.713287 0.40959 0.49350649 0.564436 0.031597 0.456543 
9 ATP6V1G1 8 117349993 117361152 0.96004 0.812188 0.75624376 0.390609 0.121878 0.172827 
6 ATP6V1G2 5 31512227 31514625 0.724276 0.145854 0.16683317 0.323676 0.361638 0.325674 
1 ATP6V1G3 12 198492351 198510075 0.163836 0.017698 0.08691309 0.466533 0.42957 0.155844 
8 ATP6V1H 62 54628102 54755871 0.088911 0.301698 0.13386613 0.999001 0.528472 0.358641 
17 ATP6V0A1 12 40610861 40674597 0.448551 0.175824 0.10589411 0.164835 0.0061 0.022598 
12 ATP6V0A2 35 124196864 124246301 0.797203 0.382617 0.71628372 0.717283 0.103896 0.462537 
7 ATP6V0A4 86 138391038 138482941 0.025597 0.944056 0.84615385 0.034497 0.536464 0.614386 
1 ATP6V0B 4 44440601 44443972 0.94006 0.769231 0.83616384 0.458541 0.364635 0.508492 
16 ATP6V0D1 12 67471916 67515089 0.664336 0.846154 0.71128871 0.427572 0.55045 0.460539 
8 ATP6V0D2 93 87111138 87166454 0.204795 0.874126 0.87112887 0.904096 0.30969 0.361638 
5 ATP6V0E1 21 172410762 172461900 0.183816 0.326673 0.16883117 0.708292 0.183816 0.438561 
7 ATP6V0E2 3 149570056 149577801 0.657343 0.667333 0.60639361 0.288711 0.913087 0.85015 

#TCIRG1 (ATP6V0A3) and ATP6V0C genes were not included in the analysis because of the insufficient SNPs in the GEFOS data base. FNK: femoral neck; SPN: lumbar 
spine; nSNP: number of SNP. Bold font shows the genes with a significant P value (P<0.05). 
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Subunit F: The mRNA level of subunit F has 
been reported in human prostate carcinoma cells and 
biopsy specimens from the antral mucosa [107, 108]. A 
zebrafish atp6v1f model was used to study its role 
during eye development. Atp6v1f mutant zebrafish 
showed oculocutaneous albinos and defects in 
melanosomes and retinal pigmented epithelium [63]. 

Subunit G2: Subunit G2 has a brain-specific 
distribution [109]. ATP6V1G2 was found to be 
associated with myocardial infarction according to 
analysis of SNPs and transcriptome sequencing [110, 
111]. The mRNA of ATP6V1G2 was detected in 
lipopolysaccharide-stimulated human macrophages 
[112] and human neuroblastoma cell line SH-SY5Y 
[113].  

Subunit G3: Subunit G3 is expressed in kidney 
and rat epididymis [105, 109]. Its protein is used as a 
novel immunohistochemical marker for 
differentiating subtypes of chromophobe renal cell 
carcinoma (RCC) including clear cell, papillary RCCs 
[114, 115], and osteosarcoma [116]. 

Subunits a1 and a4: Subunit a has four isoforms, 
a1-a4, among which subunit a3 plays an essential role 
in osteoclasts and bone density. Subunit a4 is 
expressed in α intercalated cells in both human and 
mouse kidney [117] as well as inner ear, olfactory 
epithelium, the uterus of pregnant animals, 
embryonic visceral yolk sac, prostatic alveoli, 
ampullary glands, epididymis, and vas deferens [118]. 
It is also associated with autosomal recessive distal 
renal tubular acidosis [58, 59, 109]. Atp6v0a4-knockout 
mice showed distal renal tubular acidosis with 
hearing loss, severe metabolic acidosis, hypokalemia, 
early nephrocalcinosis, and bone loss [60, 61]. 
Mutations in ATP6V0A4 were associated with 
atypical progressive sensorineural hearing loss in a 
Chinese patient with distal renal tubular acidosis 
[119]. A zebrafish study showed that rbc3a and 
atp6v0a1 promote endosomal maturation to 
coordinate Wnt signaling in neural crest [46]. 

3.4 Identification of subunits of V-ATPase 
involved in osteoclast formation  

To further identify the relationship between 
osteoclasts and the subunits described above, we 
primary cultured mouse osteoclasts with induction by 
macrophage colony-stimulating factor (M-CSF) and 
receptor activator of nuclear factor kappa-B ligand 
(RANKL) and analyzed the mRNA levels of 13 
V-ATPase subunits using RNA sequencing and 
Q-PCR. While we could not detect the expression of 
all subunit isoforms, at least one isoform was 
expressed representing each of the 13 V-ATPase 
subunits either by FPKM analysis or by Q-PCR 
analysis. Among the 15 expressed isoforms, nine 

(60%) showed an increased level of mRNA during 
osteoclastogenesis. Tcirg1 and Atp6v0a1 showed a 
time-dependent increase, and the other seven genes 
showed a sharp increase on day 4 and then dropped 
down on day 7, suggesting that subunits b, d2, A, B2, 
C1, D, and H contribute more to the early maturation 
stage of osteoclasts, and subunit a1 and a3 might play 
more important roles in late osteoclast maturation 
(Figure 2). Both RNA sequencing and Q-PCR analysis 
showed that the mRNA levels of subunits a4, e2, B1, 
C2, E2, G2, and G3 are quite low or undetectable in 
mature osteoclasts. In the above GEFOS analysis, 
ATP6V0A4, ATP6V1G2, and ATP6V1G3 are probably 
related to bone density. The low mRNA levels of a4, 
G2, and G3 in the mature mouse osteoclasts suggest 
that these subunits might affect bone density by their 
interactions with other subunits of osteoclasts or 
through a more complicated and systematic pathway 
instead of the osteoclast-specific pathway.  

4. Functions of V-ATPase subunits in 
osteoclasts 

The controversial effects of various subunits of 
V-ATPase on bone phenotypes imply their 
complicated biological functions in vivo and in vitro. 
While analyzing the bone phenotypes of various 
V-ATP subunits, we need to be cognizant of whether 
the subunits are specifically expressed in osteoclasts, 
the pathway(s) by which the subunits affect osteoclast 
function, and whether it is a common phenomenon or 
unique to a particular subunit. At present, there are 
only limited human or animal data on the 
relationships between subunits a3, d2, B2 [120, 121], 
C1[122-126], and H and osteoclast functions. It is, 
therefore, difficult to conclude that a particular 
subunit is specifically expressed in osteoclasts and 
only regulates osteoclastic function. As per our 
mRNA screening of ATPase subunits in mouse 
osteoclasts, more subunits, such as b, c, e1, A, D, E1, F 
and G1, have potential functions in osteoclasts. Thus, 
it is necessary to consider the direct or indirect 
functions of V-ATPase subunits in osteoclasts and 
non-osteoclasts while exploring the mechanisms of 
V-ATPase-regulated bone phenotypes. 

4.1 Direct roles 

4.1.1 Regulation of extracellular acidification  
V-ATPases complexes containing subunits a3, 

d2, and C1 are present on the ruffled borders of 
osteoclasts to maintain the acidic extracellular 
environment [127]. Subunit a3 of V-ATPase controls 
the extracellular acidification of bone resorptive 
lacunae [57]. Atp6v0d2 is highly expressed in mature 
mouse osteoclasts, and its depletion abolishes their 
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extracellular acidification [71]. Subunit C1 is also 
highly expressed in osteoclasts and interacts with the 
a3 subunit on the ruffled borders. Deficiency of C1 
subunit causes severely impaired osteoclast 
acidification activity and bone resorption [122] 
(Figure 3A). 

4.1.2 Maintenance of pH homeostasis of intracellular 
compartments 

V-ATPases exist within intracellular 
compartments including endosomes and lysosomes. 
They control the acidification of these vesicles and 
regulate membrane trafficking processes such as 
receptor-mediated endocytosis, intracellular 
trafficking of lysosomal enzymes from Golgi 
complexes to lysosomes, protein processing and 
degradation, and transportation of small molecules 
and ions. The low pH in the intracellular 
compartments enables endocytosis of ligands or other 
proteins including low-density lipoprotein (LDL) and 
their dissociation from their receptors [128, 129]. 
ATP6V1H is localized in osteoclasts, and its deficiency 
causes an increase in intracellular pH and inhibition 
of the formation and function of osteoclasts such as 
bone resorption [86] (Figure 3A). 

V-ATPase complex also facilitates the entry of 
many viruses, and endosomal acidification enables 
fusion of viruses with infected cells [130, 131]. Subunit 
H is a representative example that helps HIV 
internalization [132]. During infection of group A 

rotaviruses (RVAs), the outer capsid proteins of the 
RVA strain bind to cell surface receptors and 
phosphorylate PI3K, Akt, and ERK, which, in turn, 
directly interact with subunit E to acidify late 
endosomes for uncoating of RVAs [133]. Also, 
ATP6V0C is related to human cytomegalovirus 
(HCMV) [134].  

4.1.3 Assembly of cytoskeletal F-actin  
Subunit C1 regulates cytoskeletal F-actin 

assembly during osteoclast activation [123-125] and 
the reversible dissociation of V-ATPases [126]. Local 
treatment of AAV-shRNA-Atp6v1c1 attenuates the 
bone erosion and inflammation caused by 
periodontitis. Atp6v1c1 silencing severely impairs 
osteoclast acidification and bone resorption as well as 
F-actin ring formation, whereas cell differentiation 
does not appear to be affected [135] (Figure 3A).  

Subunit B2, and not the B1 isoform, is located in 
intracellular vesicles and on ruffled membranes of 
osteoclasts [120, 121]. Phosphatidylinositol 3-kinase 
(PI 3-kinase) is involved with the association of B2 
and F-actin that is important for recruitment of 
V-ATPase complexes to the osteoclasts’ ruffled border 
during polarization and bone resorption [136-139]. 
Alteration of B2 and F-actin association by the 
mutated binding site does not influence V-ATPase 
assembly or ATP hydrolysis [138, 139].  

 

 
Figure 2. mRNA expression of V-ATPase subunits in mouse osteoclasts. Mouse osteoclasts were primary cultured from bone marrow cells by inducing 
with M-CSF (50ng/mL) and RANKL (100ng/mL). Total mRNA of cells was extracted at 0, 4, and 7 days of induction. (A) RNA sequencing results. The average FPKM 
value was obtained from cells induced by M-CSF/RANKL for 7 days; n=3. (B) Q-PCR results from one representative experiment. ≥2-fold change was regarded as 
statistically significant (P<0.05). Among the 15 expressed isoforms, nine showed a statistically significant increased level of mRNA during osteoclastogenesis.Tcirg1 and 
Atp6v0a1 showed time-dependent increases. Seven other isoforms showed a greater increase on day 4 than on day 7. Other isoforms with smaller than 2-fold change 
are not presented in the figure. Error bars represent standard deviation. Each experiment was repeated at least three times. 
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Figure 3. Functions of V-ATPases in osteoclasts. (A) Direct regulation 
of extracellular and intracellular pH. V-ATPases on ruffled borders maintain the 
acidic extracellular environment for bone resorption. V-ATPases in endosomes 
and lysosomes keep pH homeostasis of intracellular compartments. V-ATPases 
are associated with cytoskeletal F-actin. (B) V-ATPases are required for the 
fusion of preosteoclasts. (C) Indirect roles in osteoclasts. V-ATPases regulate 
endocytosis, vesicle trafficking, protein processing, and degradation as well as 
enzyme secretion and enzymatic activities. 

 
Golgi-associated V-ATPase activity relies on 

actin and the Golgi pH. Actin depolymerization 
promotes dissociation of V1 and V0 domains followed 
by translocation of subunit B2 from Golgi membranes 
to the cytosol. Actin may regulate Golgi pH 
homeostasis, which can maintain the coupling of 
V1-V0 domains of V-ATPase through the binding of 
microfilaments to subunits B and C [140]. 

4.1.4 Fusion of preosteoclasts  
Subunit d2 is required for the fusion of 

preosteoclasts. Atp6v0d2-deficient mice have defective 
osteoclasts and increased bone mass [70, 71, 92] 
(Figure 3B). 

4.2 Indirect roles 

4.2.1 Effects on endocytosis and vesicle trafficking 
V-ATPase complex functions as a proton pump 

and acidifies endosomes and lysosomes. 
V-ATPase-specific inhibitors or acidotropic agents 
may inhibit endosomal acidification, thus affecting 
endocytosis, vesicle trafficking, and the processing of 
secretory and lysosomal proteins [1, 141]. 
Atp6v0c-mutant mice show acidification defects in 
endocytosis and Golgi complex that affect the 
development of embryonic and extraembryonic 
tissues [142]. Subunit c and a2 interact with two small 
GTPases, Arf6 and ARNO, respectively; inhibition of 
these interactions causes an alteration in endocytosis. 
Recruitment of Arf6 and ARNO from the cytosol to 
endosomal membranes causes intra-endosomal 
acidification [143]. In yeast, regulator of the 
H+-ATPase of vacuoles and endosomes (RAVE) is 
essential for the reversible assembly of V-ATPase. 
RAVE complex consists of Rav1p, Rav2p, and Skp1p, 
which play an essential role in RAVE regulation of 
V-ATPase activity [144]. It is unclear whether 
V-ATPases promote membrane fusion in the 
endocytic and exocytic pathways independent of their 
acidification functions [145]. 

4.2.2 Effects on endoplasmic reticulum (ER) 
Besides endosomes and lysosomes, V-ATPases 

are also localized in the ER. The functions of 
V-ATPases in the ER are related to protein processing 
and degradation. Mutation analysis shows that R444L 
causes subunit a3 to be stuck in the ER instead of 
lysosomes. The oligosaccharide moiety of the mutant 
protein is misprocessed, and its degradation is 
through the ER-associated degradation pathway. 
R445L mutated protein is also degraded quickly in 
differentiated osteoclasts due to itsaltered protein 
conformation [146]. Archazolid, a V-ATPase inhibitor, 
affects the secretion of cytokines TNF-α, interleukin-6, 
and -8, and causes accumulation of these cytokines at 
the ER [147]. 

4.2.3 Effects of V-ATPases on enzyme activity 
There are several reports on V-ATPases and 

cathepsins. Cathepsin K (CTSK), an important 
enzyme for osteoclasts to resorb bone matrix, requires 
V-ATPase to keep an acidic environment for its 
normal activity [148]. Archazolid induces secretion of 
the pro-forms of cathepsin B and D. By inhibiting 
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mannose-6-phosphate receptor-dependent trafficking, 
Archazolid abrogates the cathepsin B maturation 
process, reduces the intracellular mature cathepsin B 
protein abundance, and decreases cathepsin B activity 
[149].  

Other enzymes related to V-ATPases include 
members of the matrix metalloproteinase (MMP) 
family. We recently observed that deficiency of 
subunit H affected MMP9 and MMP13 in the bone 
system [87]. In pancreatic cancer cells, V-ATPase 
colocalizes with cortactin, an F-actin-stabilizing 
protein, which helps in the release of MMPs. 
V-ATPase selectively modulates specific MMPs such 
as MMP9 and MMP2, which might be linked to an 
invasive cancer phenotype [150]. Treatment with 
concanamycin or Atp6v1e shRNA affects MMP9 and 
MMP2 activities. Targeting inhibition of a2 subunit 
suppresses the activities of MMP9 and MMP2 in 
ovarian cancer cells and plays a critical role in tumor 
invasion [151] (Figure 3C).  

4.3 Signaling pathways in osteoclasts involving 
V-ATPases 

Cellular signaling pathways play critical roles in 
cell-cell and cell-environment interactions and 
maintaining extrinsic and intrinsic homeostasis. The 
important association between V-ATPases and 
cellular signaling has been documented in cancer cell 
biology to affect apoptosis, tumor cell invasion, 
migration, and metastasis [128, 152]. Recent findings 
have shown that V-ATPases also affect cellular 
signaling pathways in osteoclasts and bone 
metabolism [86] (Figure 4A-C). 

4.3.1 WNT/β-catenin signaling pathway 
WNT signaling is initiated by the binding of 

WNT ligand to its receptor Frizzled (FZ), forming a 
complex with a specific co-receptor low-density 
lipoprotein receptor-related protein 5 or 6 (LRP5/6). 
WNT signaling includes β-catenin-dependent 
canonical and β-catenin-independent noncanonical 
signaling pathways. WNT signalings, such as Wnt3a 
and LRP5/6, have been shown to influence bone mass 
[153, 154] or inhibit osteoclast differentiation by 
activating canonical and noncanonical cAMP/PKA 
pathways [153-159]. Lack of LRP5/6 may impair 
osteoclast progenitor proliferation [155]. 

V-ATPases influence WNT signaling through its 
trafficking and activation pathway including blocking 
the phosphorylation of its receptor and its 
internalization after ligand binding. In addition, 
localization and activation of the WNT receptor 
require an adaptor (Pro) renin receptor (PRR), one of 
the accessory subunits of the V-ATPase complex. 
WNT secretion also requires its binding to the carrier 

protein Wntless (WLS), and V-ATPase-controlled 
vacuolar acidification facilitates the release of 
palmitoylated WNT3A from WLS in secretory vesicles 
[160].  

 

 
Figure 4. Signaling pathways in osteoclasts involving V-ATPases. (A) 
WNT/β-catenin signaling pathway. V-ATPases influence WNT signaling through 
its trafficking and activation pathways. The accessory subunit of V-ATPase AP2 
(PRR) activates WNT receptor. (B) Notch signaling. Acidic endosomes enable 
S3 cleavage through secretase and NICD release in a V-ATPase-dependent 
manner. (C) mTOR signaling. V-ATPases sense the signals of amino acid 
sufficiency and transfer it to mTORC1. V-ATPases also control the off/on 
switch of the V-ATPase-regulator complex. 

 

4.3.2 Notch signaling pathway 
Notch signaling connects the communication 

between signal-sending and signal-receiving cells. As 
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a single pass transmembrane receptor, Notch receptor 
includes extracellular and intracellular domains 
(NICD). The ligand binding to the extracellular 
domain of the Notch receptor activates its successive 
proteolytic cleavage and releases NICD, which then 
translocates to the nucleus and alters gene 
transcription, cell identity, and growth. Notch 
signaling affects osteoclastic differentiation, 
maturation, and its resorption activity. Both osteoclast 
precursors and bone stromal cells are regulated by 
Notch signaling [161-168]. Notch2 in osteoclasts 
controls bone resorption via PYK2-c-Src-microtubule 
signaling pathway [162]. 

The proper processing, trafficking, and 
activation of Notch signaling require V-ATPase 
participation [169]. The acidic environment of early 
endosomes enables S3 cleavage through secretase and 
NICD release in a V-ATPase-dependent manner [170]. 
Mutant V-ATPase affects the internalization of Notch 
signals and causes its accumulation in lysosomes as 
well as a substantial loss in the physiological and 
ectopic Notch activation of endosomes [170]. 
Rabconnectin-3 α and β (Rbcn-3A and B) regulate the 
V-ATPase proton pump and mutations in Rbcn-3A 
and Rbcn-3B cause defects in endocytic trafficking and 
the accumulation of Notch in late endosomal 
compartments in Drosophila [171]. 

4.3.3 mTOR signaling pathway 
The mechanistic target of rapamycin (mTOR), 

the former mammalian target of rapamycin, is a 
member of phosphatidylinositol 3-kinase-related 
kinase family. mTORC1 is a central node of cellular 
signaling, and its activity is influenced by multiple 
factors such as growth factors, stress, energy status, 
and cellular amino acid levels, whereas mTORC2 is 
involved in survival signaling. The inhibition of 
V-ATPases impairs lysosomal acidification and alters 
lysosomal amino acid efflux, which also shows an 
mTOR-dependent regulation mechanism [172]. 

A novel polypeptide translated by long 
non-coding RNAs exists in the late 
endosome/lysosome and interacts with the lysosomal 
V-ATPase, which may negatively regulate mTORC1 
activation by amino acid stimulation, rather than by 
growth factors [173, 174]. mTOR activity is essential 
for osteoclastic function and bone metabolism 
[175-177]. It regulates osteoclast formation by 
modulating the C/EBP-β isoform ratio [177]. mTOR 
and AMPK function as the nutrient and energy 
sensors of osteoclasts and regulate osteoclastogenesis 
[176].  

mTOR1 activity is dependent on V-ATPase 
function. V-ATPases sense the signal of amino acid 
sufficiency and transfer it to mTORC1. V-ATPases 

also control the off/on switch of the 
V-ATPase-Ragulator complex, which plays a vital role 
in the activation of AMPK in lysosomes [128]. Amino 
acid starvation strengthens the association of 
Ragulator with the V1 segment of V-ATPase instead of 
V0 [178]. mTOR undergoes both lysosomal and 
proteasomal degradation, which follows the guanine 
nucleotide exchange of Rag small GTP-binding 
protein activated by V-ATPase [179, 180]. In 
osteoclasts, mTOR activation and deactivation rely on 
the lysosomal environment. The direct evidence for 
the interaction between V-ATPase and mTOR1 in 
osteoclasts is that R740S mutation in subunit a3 alters 
mTOR1 expression and activity in osteoclasts [175]. 

4.3.4 GTP-binding protein-coupled receptors 
(GPCR) signaling pathway 

 GPCRs belong to a large family with seven 
transmembrane domains and constitute extracellular 
sensing components and intracellular signal 
transduction cascade. The representative GPCRs that 
regulate osteoclasts and bone metabolism include the 
parathyroid hormone receptor (PTHR) [181, 182]. 

V-ATPases regulate GPCRs through the 
modulation of intracellular pH. Acidification of 
intracellular components induces dissociation of PTH 
from PTHR and stimulates the signaling of activated 
receptors and their recycling [128]. PTH also induces 
the phosphorylation of subunit a via 
cAMP-dependent protein kinase (PKA), which 
positively regulates the catalytic activity of the pump 
[179]. In addition, V-ATPase-mediated endosomal 
acidification provides negative feedback on PTH 
signaling. Normal pH enables binding of arrestin, and 
lower endosomal pH causes enhanced retromer 
binding and turns off PTH receptor signaling [183].  

5. Complex contributions of V-ATPase 
subunits to bone phenotypes 
5.1 Interactions between V-ATPase subunits 

The direct interactions between various subunits 
of V-ATPase have been studied for the past decades to 
clarify the assembly and mechanisms of V-ATPase 
complex using bioinformatic model systems, 
mutation analysis, binding experiments, etc. In the 
model of the V1 component of Thermus thermophilus 
V-ATPase, interactions between A3B3 and D/F 
subcomplexes were observed, and asymmetry was 
realized by rigid-body rearrangements of the relative 
position between A and B subunits [184].  

Based on hybridization or pull-down analysis, 
subunit a3 is connected with subunits d2 or B2. The 
connection between a3 and B2 was found to be quite 
important for the trafficking of ruffled border 
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V-ATPase in activated osteoclasts [136] and this 
interaction was affected by benzohydrazide 
derivative IPI and KM91104 [3,4-dihydroxy-N-(2- 
hydroxybenzylidene) benzohydrazide] [185]. 
According to acryo-EM reconstruction model of yeast 
V-ATPase, when the V1 segment was released from 
V0, the N-terminal cytoplasmic domain of subunit a 
changed its conformation and bound to the rotor 
subunit d [186]. N-termini of subunits a3 and d2 had 
high-affinity interactions as found by glutathione- 
S-transferase (GST) pull-down assay, and were 
co-expressed in mammalian cells [71]. Luteolin 
inhibited V-ATPase activity by interfering with a3-d2 
interaction without affecting the transcription or 
protein levels of these subunits [187-190], and Janus 
kinase (JAK) signaling pathway was involved in this 
process [191].  

Using an RNA sequencing technique, the mRNA 
response of all V-ATPase subunits was observed in 
haploinsufficiency mouse osteoclasts (Atp6v1h+/-), and 
some subunits showed increased expression (Table 
4). Subunit d2 showed a two-fold increase in 
expression, whereas other subunits spatially close to 
subunit H, such as subunits B2, C1, D, A, and G1, 
exhibited a varied level of increased expression to 
compensate for the subunit H haploinsufficiency. 
Subunit H has been regarded as a functional bridge 
between V1 and V0 and its absence resulted in an 
inactive V1/V0 complex by reducing communication 
between the two components [192]. Thus, subunit H 
might function as a negative regulator of osteoclastic 

formation and function, and the upregulated mRNA 
levels of the other V-ATPase subunits might not 
definitely lead to increased V-ATPase function.  

5.2 Interactions between osteoclasts and 
osteoblasts 

Although there is no direct evidence for 
V-ATPases in osteoblasts, increasing data imply some 
functions of V-ATPases in osteoblasts and bone 
formation. For example, deletion of the 5-prime 
portion of the Tcirg1 gene (subunit a3) in mice caused 
hypocalcemia and osteopetrorickets phenotype 
combined with decreased bone formation [91]. 
Atp6v0d2-deficient mice had enhanced bone 
formation and osteopetrosis [70, 71, 92]. Atp6v1h+/- 
mice showed a decrease in cartilage and bone 
formation with reduced bone formation rate and 
mineral apposition rate. The numbers of osteoblasts, 
the area of osteoblast surfaces as well as the osteoblast 
ALP level were reduced in Atp6v1h+/- mice [86]. 
ATP6V1H was recently detected in mouse bone 
marrow stromal cells and deficiency of ATP6V1H 
impaired their osteogenic differentiation and 
enhanced adiogenic differentiation[193]. 

5.3 Systemic factors 
A variety of systemic factors may affect bone 

metabolism, including growth factors and hormones. 
Due to the ubiquitous distribution of V-ATPases, 
various subunits of V-ATPase may affect bone 
phenotypes in a general and complex fashion. 

 

Table 4. Comparison of mRNA levels of V-ATPase subunits in mouse osteoclasts.a 

Gene Name Length Atp6v1h+/+ Expression Atp6v1h+/-Expression log2 Fold Change (Atp6v1h+/-/Atp6v1h+/+) Padj Up/ Down b P value 
Atp6v1b2 2742 23955.49 42023.38 0.810836 1.24×10-6 - 2.02×10-8 
Atp6v0d2 2518 4611.703 9576.583 1.054211 0.00014 Up 5.98×10-6 
Atp6v1c1 2117 4933.716 6962.68 0.496968 0.000454 - 2.47×10-5 
Atp6ap2 2376 4700.42 7147.419 0.604633 0.008669 - 0.00096 
Atp6v1d 1410 4022.583 5443.382 0.436381 0.029975 - 0.004732 
Atp6v1a 3959 14607.46 19902.6 0.446251 0.036436 - 0.006087 
Atp6v1g1 1109 4890.781 6122.023 0.323943 0.039252 - 0.006736 
Atp6v0b 996 11082.52 14157.32 0.353262 0.04682 - 0.008451 
Atp6v0e 800 5985.754 7517.969 0.32881 0.096098 - 0.021782 
Atp6v1e1 1219 5479.907 6871.928 0.326563 0.09754 - 0.022242 
Tcirg1 2719 25921.58 31894.51 0.299154 0.101496 - 0.023429 
Atp6v0c 1150 61788.39 77716.21 0.33088 0.137199 - 0.035293 
Atp6v1f 635 4880.556 5955.098 0.28708 0.208681 - 0.063749 
Atp6v1g2 1632 59.3336 42.74398 -0.47313 0.412445 - 0.169455 
Atp6v0a1 3997 8717.704 6991.545 -0.31834 0.53171 - 0.249876 
Atp6v0d1 1617 10210.97 8998.879 -0.1823 0.612442 - 0.31818 
Atp6v0a2 5357 2573.471 2373.729 -0.11656 0.657228 - 0.356739 
Atp6ap1 2189 22026.99 19970.68 -0.14139 0.658755 - 0.358188 
Atp6v0e2 1849 5.238299 3.990053 -0.39269 0.816266 - 0.549267 
a All data were generated by our group. Osteoclasts were primary cultured from wild-type and Atp6v1h+/-mice as previously reported. Total mRNA of cells was extracted 
after induction by M-CSF and RANKL for 7 days [86]. High-quality RNA was obtained and RNA sequencing analysis was performed. All coding genes of V-ATPase subunits 
were compared between two groups. N=3.  
b Bold: Up / Down: log2-fold change >1 or -1 and P value <0.05; Bold font shows the mRNA changes with a significant P value (P < 0.05). 
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5.3.1 Immune factors 
Subunit a3 has two transcript variants, the longer 

isoform OC116 and the shorter isoform TIRC7. The 
short one uses a transcription start site within the 
exon 5 of the longer variant (OC116) and includes the 
downstream intron as part of its 5' UTR. TIRC7 is 
expressed in T lymphocytes and is essential for 
normal T cell activation. OC116 isoform encodes 
osteoclast-specific subunit a3, while TIRC7 mRNA is 
expressed by alloactivated T lymphocytes as a T cell 
inhibitory receptor [194, 195]. Six new alternative 
splice events in TCIRG1 were observed in 28 human 
tissues, implying that more functions of TCIRG1 
might exist besides immune response and bone 
resorption [196]. 

5.3.2 Insulin and other hormone factors 
Insulin activates ERK1/2 MAP kinase of 

osteoclasts and induces the expression of NFATc1 and 
Atp6v0d2. The insulin-induced expression of Atp6v0d2 
was blocked by the ERK1/2 inhibitor or knockdown 
of insulin receptor [197]. The acidifying secretory 
vesicles in B-cells of pancreatic islets are the major site 
of proinsulin to insulin conversion. Subunit a3 is 
expressed in the endomembrane of secretory vesicles 
of normal islet B-cells but is absent in insulinoma cells, 
suggesting that subunit a3 may have a profound effect 
on the efficiency of proteolytic cleavage of proinsulin 
[198].  

A mouse model with a null mutation at the 
subunit a3 locus exhibited a reduced level of insulin 
without changing the processing of insulin. In this 
respect, subunit a3 was believed to regulate the 
exocytosis process of insulin secretion [59]. V-ATPase 
functioned as a sensor of cytosolic pH, and was 
required for full activation of the cAMP-dependent 
PKA pathway in response to glucose in the Min6 
β-cell line and contributed to insulin secretion [199]. 
Bafilomycin exposure also inactivated the insulin/IGF 
signaling pathway intermediate FOXO1 and 
increased the insulin content in neonatal islets [200]. 

The accessory subunits of V-ATPase such as AP1 
(Ac45) and AP2 (PRR) are related to insulin. Ac45 was 
highly expressed in Langerhans cells of islets. 
Downregulation of Ac45 reduced insulin secretion 
and proinsulin II processing [201]. AP2 was abundant 
in islets including both α and β cells and modulated 
both glucagon-like peptide-1 receptor (GLP1R) and 
insulin processing to affect insulin secretion [202]. 
AP2 (PRR), another accessory protein of V-ATPase, 
was expressed in pituitary adenoma cells and 
regulated growth hormone (GH) release via 
V-ATPase-induced cellular acidification [203]. The 
PRR blocker could reduce body weight and fat mass 
and improve insulin sensitivity in high-fat-fed mice. 

Knocking out the PRR gene of adipose tissue also 
prevented weight gain and insulin resistance [204].  

5.3.3 Growth factors 
V-ATPases and specifically its subunits B2, c, 

and E were found to be involved in TGF-β1-mediated 
epithelial-to-mesenchymal transition (EMT) in rat 
proximal tubular epithelial cells (NRK52E) [205]. 
Since TGF-β1 activation is pH sensitive [206, 207] and 
TGF-β1 regulates the functions of osteoclasts and 
osteoblasts [208, 209], changes in the intracellular pH 
of Atp6v1h +/- osteoclasts altered the level and activity 
of TGF-β1, which further affected osteoblasts and 
osteoclasts [86]. Atp6v0a2-knockout mice showed 
delayed mammary morphogenesis associated with 
aberrant activation of Notch and TGF-β pathways 
[210]. 

The low pH in intracellular components was also 
found to be responsible for ligand dissociation and 
receptor trafficking of epidermal growth factor 
receptors (EGFRs) and insulin receptor. There were 
differential routings of internalized EGFRs induced 
by EGF, TGF α, and the superagonist EGF-TGF alpha 
chimera E4T. Bafilomycin treatment blocked EGFR 
but not c-Cbl degradation [211]. 

6. Future applications of V-ATPase 
inhibitors in osteoporosis 

Osteoporosis is characterized by relatively 
increased bone resorption, and current osteoporosis 
therapeutics are mainly based on antiresorptive 
treatment [212, 213]. The anti-resorptive molecules 
antagonize integrin or inhibit Src tyrosine kinase, 
V-ATPases, chloride channels or cathepsin K. 
Bisphosphonates and Denosumab, the antibody 
against RANKL, are widely recommended as the 
first-line antiresorptive therapy [214]. Some of these 
have disadvantages such as coupling of inhibition of 
bone resorption and bone formation. Thus, the 
specificity of the antiresorptive therapy is essential.  

As reviewed above, bone resorption requires 
V-ATPases activity and localization of some subunits 
of V-ATPase in osteoclasts. Successive generations of 
antiresorptive drugs based on V-ATPase complex or a 
specific subunit are becoming increasingly attractive. 
However, future efforts should focus on reducing side 
effects, minimizing the frequency of dosing, and 
increasing efficacy to halt osteoporotic bone loss 
[215-220].  

6.1 V-ATPase inhibitors as anti-resorptives 

6.1.1 Non-osteoclast-specific inhibitors of V-ATPase 
The representative inhibitors of V-ATPase 

include bafilomycin A1 and B1, concanamycin A, and 
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plecomacrolides. These highly specific V-ATPase 
inhibitors have been widely used in experimental cell 
biology for decades. Besides these inhibitors, 
macrolactone, archazolid, benzolactoneenamide and 
apicularen type inhibitors have also been shown to 
bind to the V0 component of V-ATPase. The agents are 
linked to the holoenzyme at or near the a/c subunit 
interface [213, 221, 222]. Many V-ATPase inhibitors 
show anti-tumor effects by targeting EMT or changing 
intracellular pH [223-226]. Other new inhibitors 
including FK506 might be possible new therapies for 
treating neurodegenerative diseases [227]. 

6.1.2 Osteoclasts-specific inhibitors of V-ATPase 
The above inhibitors have broad effects and, 

therefore, many other osteoclasts-specific inhibitors of 
V-ATPases have become more attractive for 
osteoporosis treatment in recent decades [185, 191]. 
SB242784 is one of the attractive inhibitors with high 
potency and selectivity for the osteoclast V-ATPase 

[228]. Other inhibitors targeting osteoclastic 
V-ATPases include FR167356, FR202126, FR177995, 
Diphyllin, saliphenylhalamide (saliPhe) and 
Iejimalides (IEJLs) [229-232]. These inhibitors are 
summarized as follows (Table 5). 

SB242784: (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2- 
methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-
pentadienamide, a novel indole derivative optimized 
from bafilomycin, SB242784 exhibited inhibitory effect 
on bone resorption of chicken osteoclasts and human 
osteoclastoma in a low nanomolar range. Compared 
with the inhibition efficiency on V-ATPase complexes 
from other tissues including kidney, liver, spleen, 
stomach, brain, and/or endothelial cells, SB242784 
showed a greater than 1000-fold selectivity for the 
osteoclast V-ATPase [228]. Administration of 
SB242748 for six months as a potential 
anti-osteoporosis therapy prevented bone loss in 
ovariectomized rats [228, 233]. 

 

Table 5. Osteoclast-specific V-ATPase inhibitors. 

Name Class of Derivatives Targeting Sites Selectivity In vivo In vitro Other Effects 
SB242784 indole derivative 

from bafilomycin 
c, a, or V0 
domain 

high  Inhibited retinoid-induced 
hypercalcemia in 
thyroparathyroidectomized rats 
Prevented bone loss in 
ovariectomized rats 

Inhibited V-ATPase activity in 
chicken osteoclasts (IC50 of 29 
nM), human osteoclastoma (IC50 
of 22 nM) and human osteoclastic 
bone resorption (IC50 of 3.4 nM) 

 

Iejimalides 24-membered ring 
macrolides 

V0 domain low N/A Irreversibly inhibited 
V-ATPase-mediated intracellular 
acidification in osteoclasts with 
potent cytotoxicity 

Anti-tumor activity in vivo 
and in vitro 
Inhibited 
V-ATPase-mediated 
intracellular acidification 
in yeast cells 

FR167356 benzamide unknown high 
selectivity 
in 
inhibiting 
osteoclast 
plasma 
membrane 
V-ATPase  

Reduced retinoic acid-induced 
hypercalcemia in 
thyroparathyroidectomized rats 
Prevented bone loss in 
ovariectomized rats 

Inhibited plasma membrane 
V-ATPase complex (IC50 of 190 
nM) and lysosomal V-ATPase 
activity  

Blocked macrophage and 
kidney V-ATPase activity 

FR202126 benzamide unknown low Reduced hypercalcemia induced 
by retinoic acid in 
thyroparathyroidectomized-OVX 
rats 
Prevented alveolar bone loss in 
experimental periodontitis in rats 

Prevented bone 
resorption by murine osteoclasts 
(IC50 2.6–20 nM) 

Unclear effects on other 
cell types expressing 
plasma membrane 
V-ATPases 

FR177995 benzamide unknown low Reduced bone loss in 
adjuvant-induced model of 
arthritis in rats; attenuated 
inflammation and articular 
cartilage damage 

 Non-specific inhibition of 
lysosomal and endosomal 
V-ATPase activity in 
dendritic cells 

Diphyllin natural lignin 
compound  

unknown low N/A Inhibited V-ATPase-mediated 
lysosomal and extracellular 
acidification (IC50 of 14 nM) 
Enhanced osteoclast number and 
survival without cytotoxic effects 
(up to 100 nM) 

Anti-cancer, 
anti-inflammatory effects 

KM91104 Benzohydrazide 
derivative 

a3-B2 
interaction 

medium N/A Inhibited osteoclast resorption 
with an IC50 of ∼1.2μM  

 

Enoxacin fluoroquinolone 
antibiotic 

actin binding 
site on B2 

low  Interfered with osteoclast 
formation and activity (IC50 of 
∼10μM) 

Phototoxicity, neurological 
problems, severe 
tendinitis, adverse 
immune activity, and renal 
failure 

Salicylihalamide A 
(saliA), 
saliphenylhalamide 
(saliPhe) 

benzolactoneenamide 
family 

V0 domain low Inhibited osteoclastic bone 
resorption and attenuated 
titanium particle-induced 
osteolysis in mice 

 Anti-tumor agent 
Treatment of urinary tract 
infections and gonorrhea 
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FR167356, FR202126, and FR177995: This group 

of inhibitors exhibited a higher inhibitory effect on 
plasma membrane V-ATPase than on the lysosomal 
V-ATPase in osteoclasts and inhibited bone resorption 
in a dose-dependent manner. FR167356 also inhibited 
the V-ATPase complex of the kidney with similar 
efficacy [229].  

Diphyllin: This compound has been shown to 
inhibit human osteoclastic bone resorption by 
inhibiting acid influx and lysosomal acidification 
compared with bafilomycin A1 [230].  

Salicylihalamide A (SaliA): SaliA belongs to the 
benzolactoneenamide family of V-ATPase inhibitors 
and may act on the V0 domain via a mechanism 
different from the classical macrolides such as 
bafilomycin and concanamycin [234]. A phenyl 
derivative of saliA, saliphenylhalamide (saliPhe), 
effectively inhibited osteoclastic bone resorption in a 
titanium particle-induced osteolysis mouse model 
[231]. 

IEJLs: These 24-membered ring macrolides were 
previously used in anti-tumor research and inhibited 
V-ATPase-mediated intracellular acidification in 
osteoclasts [232]. Other reports found that Iejimalides 
A~D also inhibited lysosomal V-ATPase activity and 
induced S-phase arrest and apoptosis in MCF-7 cells 
and HeLa cells without inhibiting actin 
polymerization [235, 236]. 

Artemisia capillaris: The anti-osteoporotic 
activity of Artemisia capillaris has recently been 
reported. Its extracts diminished osteoclast 
differentiation and bone resorption, attenuated 
acidification, and reduced tumor necrosis factor 
receptor-associated factor 6 (TRAF6) expression and 
its association with V-ATPase [237]. 

6.2 Targeting sites of V-ATPase inhibitors in 
anti-resorptives 

Subunit B2 of V-ATPase binds to F-actin with a 
profiling pocket-like structure. The inhibitor 
Enoxacin, a fluoroquinolone antibiotic, may target the 
interaction of F-actin and subunit B2 together with 
Binhib16 [216, 238, 239]. Some inhibitors target the 
interactions of V-ATPase subunits. The interaction 
between subunit a3 and B2 is crucial to the trafficking 
of ruffled border V-ATPase in activated osteoclasts 
that enables osteoclasts to keep acidified lacunae [136, 
138, 213]. KM91104 could affect the interaction 
without changing cell viability or RANKL-mediated 
osteoclast differentiation [185, 219]. Luteolin, a 
naturally occurring flavonoid, could inhibit V-ATPase 
against a3-d2 interaction and reduce bone resorption 
without affecting the levels of these subunits and 
V-ATPase assembly [187-190]. The inhibition of bone 

resorption did not affect osteoclastic actin ring 
formation and cellular viability [191].  

6.3 Prospects of V-ATPase inhibitors as 
anti-resorptives 

We have an in-depth understanding of the 
complicated effects of V-ATPase complex in the bone 
system from the literature, human GWAS data, and 
mouse data from our own research. Defects in 
subunits a3 and d2 result in increased bone density. 
Many V-ATPase inhibitors are designed against these 
two subunits to reduce the osteoclast bone resorptive 
activity. Although subunit H stimulates the formation 
and resorptive activity of osteoclasts in vitro, its 
deficiency in vivo results in bone loss [86]. Thus, the 
traditional concepts based on the anti-resorptive 
V-ATPase inhibitors might not be adequate, and the 
directions of drug design need to be adjusted. The 
design of future anti-resorptive drugs should take a 
more comprehensive and multifaceted approach 
rather than focusing on a specific subunit of V-ATPase 
given the versatile functions of ATPases in osteoclasts 
as well as other cell types. 

First, it is important to take into consideration 
the interactions among various subunits of V-ATPase 
that have direct physical interactions with a3-d2 and 
a3-B2. Meanwhile, the transcript levels of some 
V-ATPase subunits is changed with reduced levels of 
subunit H. However, the nature of these interactions 
between subunit H and those subunits is not clear and 
probably involves both direct and indirect contacts. 
Thus, a comprehensive understanding of the network 
of V-ATPase subunits will help us predict the net 
effect of V-ATPase in osteoclasts. 

Second, the emphasis so far has been on the 
location of osteoclastic V-ATPases on ruffled borders 
and their function of extracellular acidification. In this 
review, we describe possible versatile locations and 
functions of intracellular V-ATPase via direct or 
non-direct involvements. As is evident by our Q-PCR 
analysis, the mRNA levels of most V-ATPase subunits 
are increased during osteoclastogenesis. The locations 
of these subunits in osteoclasts are not clear and may 
be either on the ruffled borders or in the intracellular 
components including endosomes, lysosomes, and 
ER. Most importantly, the functions of intracellular 
V-ATPases in osteoclasts may vary from pH 
regulation and endocytosis to protein recycling, as 
well as involvement in several signaling pathways 
such as Wnt, Notch, mTOR and GPCR pathways, 
which are essential for the development of bone and 
osteoclasts. 

Third, the precise functions of most subunits of 
V-ATPase in osteoclasts are not well understood yet. 
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For example, besides influencing osteoclast function, 
subunit d2 affects bone mass by regulating 
osteoblasts. Subunit H targets the interaction between 
osteoclasts and osteoblasts through the TGF-β1 
pathway. GEFOS analysis data imply that some 
subunits of V-ATPase are related to bone density 
without being present in osteoclasts.  

In summary, in the future, direct or indirect 
functions of V-ATPases in osteoblasts as well as other 
cell types related to the bone system should be 
explored. Furthermore, the effects of V-ATPase 
inhibitors not only on osteoblasts but also on other 
cell types should be taken into consideration. It is of 
note that expressions of Tcirg1, Atp6v0d2, and 
Atp6v1b2 were recently detected in atherosclerotic 
lesions in mice, which might act against plaque 
calcification [240], providing an interesting 
perspective for the potential use of V-ATPase 
inhibitors in patients suffering from atherosclerosis 
and osteoporosis simultaneously. We believe that a 
new balance should be established between finding 
osteoclast-specific V-ATPase inhibitors or activators 
and considering their possible effects on other cells 
and tissues as well as their secondary effects on 
osteoclasts.  

Related materials and methods 
1. GEFOS and VEGAS analysis 

GEFOS 2012 meta-analysis data including 32,961 
subjects from 17 studies (http://www.gefos.org/?q= 
content/data-release) were used in our study [99]. 
SNPs in the genomic DNA of all V-ATPase subunits 
and the 50kb upstream and downstream region of 
certain genes were selected and analyzed with 
VEGAS methods [98]. The overall impacts of SNPs of 
a specific gene, as well as a single SNP, were 
compared.  

2. In-house analysis 
1627 Chinese volunteers were recruited from 

Midwestern Chinese Han adults living in Xi'an and 
Changsha cities. The analytical methods have been 
described previously [86, 100, 101]. Five groups were 
generated based on the Z-score; thresholds were -2, -1, 
1, 2. All SNPs of V-ATPase subunits were selected and 
compared among groups (Table S2).  

3. Osteoclasts culture and mRNA detection 
At present, the locations and functions of 

V-ATPase subunits in osteoclasts have only been 
verified in a few subunits. To investigate whether 
more V-ATPase subunits are involved in 
osteoclastogenesis, osteoclasts were cultured, and 
Q-PCR was used to detect the mRNA levels of all 
V-ATPase subunits. The details are as follows: Bone 

marrow cells were separated from the femur and tibia 
of 6-week-old C57BL/6 mice and were treated with 
red blood cell lysis buffer (Solarbio, China) for 5 min. 
Subsequently, the cells were cultured in the presence 
of M-CSF (50ng/mL) (R&D, USA) for 24 hand then 
treated with M-CSF (50ng/mL) and RANKL 
(100ng/mL)(R&D, USA) for 4 or 7 days [86]. Total 
mRNA of cells at 0d, 4d, and 7d were extracted using 
the E.Z.N.A. total RNA kit (Omega, China). The 
PrimeScriptTM RT Reagent Kit was used to synthesize 
cDNA (TaKaRa, Japan). Realtime PCR was performed 
to analyze the mRNA levels of V-ATPase subunits 
using SYBR® Premix Ex TagTM (TaKaRa) and ABI 
7500 real-time PCR system (Applied Biosystems) 
[241]. The primers of all subunits of V-ATPase are 
listed in Table S3. 

4. RNA sequencing 
Atp6v1h knockout mice were generated using the 

CRISPR/Cas9 system. Osteoclasts were cultured as 
described above from wild-type and heterozygous 
mice (Atp6v1h+/-). All animals were treated in 
accordance with the ethical guidelines of the School of 
Stomatology, the Fourth Military Medical University 
(Xi’an, China). Total mRNA of cells was extracted 
after induction with M-CSF and RANKL for 7 days 
[86]. High-quality RNA from each sample was 
combined into a single large pool to maximize the 
diversity of transcriptional units. The RNA library 
was constructed using Illumina’s TruSeq RNA 
Sample Preparation Kit (Illumina Inc, San Diego, CA, 
USA). The integrity of the RNA library was evaluated 
using Agilent 2100 Bioanalyzer (Agilent RNA 6000 
Nano Kit). The amplified flowcell was used for 
paired-end sequencing on BGISEQ-500. After cleaning 
and quality checks, clean reads were generated. All 
coding genes of V-ATPase subunits were used to 
compare wild-type and heterozygous mice. 

Supplementary Material  
Supplementary tables. 
http://www.thno.org/v08p5379s1.pdf  
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