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The morphological and chemical 
properties of fine roots respond 
to nitrogen addition in a temperate 
Schrenk’s spruce (Picea 
schrenkiana) forest
Haiqiang Zhu1,2,4, Jingjing Zhao3,4 & Lu Gong1,2*

Fine roots (< 2 mm in diameter) play an important role in belowground ecosystem processes, and their 
physiological ecology is easily altered by nitrogen deposition. To better understand the response of 
physiological and ecological processes of fine roots to nitrogen deposition, a manipulation experiment 
was conducted to investigate the effects of exogenous nitrogen addition (control (0 kg ha−1 a−1), 
low (5 kg ha−1 a−1), moderate (10 kg ha−1 a−1), and high nitrogen (20 kg ha−1 a−1)) on the biomass, 
morphological characteristics, chemical elements and nonstructural carbohydrates of fine roots in a 
Picea schrenkiana forest. We found that most fine roots were located in the 0–20 cm of soil layer across 
all nitrogen treatment groups (42.81–52.09% of the total biomass). Compared with the control, the 
biomass, specific root length and specific root area of the fine roots increased in the medium nitrogen 
treatment, whereas the fine roots biomass was lower in the high nitrogen treatment than in the other 
treatments. In fine roots, nitrogen addition promotes the absorption of nitrogen and phosphorus and 
their stoichiometric ratio, while reducing the content of nonstructural carbohydrates. The content 
of nonstructural carbohydrates in the small-diameter roots (< 1 mm in diamter) in each nitrogen 
treatment group was lower than that in the large-diameter roots. Correlation analysis showed that 
soil carbon and nitrogen were positively correlated with fine root biomass and specific root length and 
negatively correlated with the nonstructural carbohydrates. Our findings demonstrate that medium 
nitrogen addition is conducive to the development of fine root morphology, while excessive nitrogen 
can suppress the growth of root systems.

Fine roots (< 2 mm in diameter) are the main organ through which plants absorb nutrients and water; therefore, 
these structures play a key role in carbon (C) distribution and nutrient cycling of terrestrial  ecosystems1,2. Fine 
roots are the most active part of the root system and are sensitive to variations in soil and atmospheric envi-
ronments due to nitrogen (N)  deposition3. Nitrogen is not only an essential element for plant growth but also 
a limiting factor for tree growth and productivity in temperate  forests4. Nitrogen deposition can affect forest 
productivity (e.g., plant biomass), soil nutrient cycling (e.g., soil N availability) and tree root systems (e.g., root 
production and morphology)5,6. Fine roots can adapt to changes in soil nutrient availability and the environment 
through changes in the plasticity of nutrient  capture7. Therefore, exploring fine root responses to N deposition 
is necessary to understand the overall response of belowground ecosystem processes to environmental changes.

Over the past century, human activities such as rapid industrialization, the burning of fossil fuels, and the 
use of N fertilizers have led to a 3–5-fold increase in atmospheric N  deposition8, which may affect soil nutrient 
availability and fine root  growth9. Several traits of root morphology can reflect the ability of trees to obtain avail-
able nutrients in  soil10. For instance, the specific root length (SRL) and specific surface area (SRA) of fine roots 
are important parameters for measuring fine root resource allocation and nutrient  absorption11. Fine root tissue 
density (RTD) has been used as an important indicator of plant survival and growth  strategy12. Extensive studies 
have shown that fine root morphology is closely related to the changes in soil nutrient availability caused by N 
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deposition, although the degree of many responses is still  controversial13,14. For example, in N-deficient forest 
ecosystems, nitrogen addition can increase the SRL of fine roots, which allows the roots to obtain more nutri-
ent and water  resources15. However, excessive N deposition may reduce fine root SRL and the ability to acquire 
 nutrients10,16. Other studies have suggested that the N addition has no significant effect on  SRL17. Additionally, 
different responses have been observed between soil N availability and RTD and SRL. For example, Ostonen 
et al.10 found that the RTD and SRL of Norway spruce decreased with increasing soil N availability, but Comas 
and  Eissenstat18 found that RTD was significantly negatively correlated with SRL in temperate forests. There are 
three different types of responses of fine root biomass to N deposition: increased, unchanged or  decreased17,19. 
The discrepancies in the responses of fine root morphology to N deposition may be ascribed to plant species 
(such as carbon allocation strategies), habitat conditions, and soil environments. Thus, studying the responses 
of fine root biomass and morphology to N deposition is necessary for understanding the impact of N deposition 
on the belowground processes.

Elucidating the chemical components of fine roots are necessary for understanding changes in their external 
morphology and function. Nitrogen and phosphorus (P) are often limiting macronutrient elements, and their 
dynamic changes can reflect the growth rate and nutrient limitation of plants. In N-limited temperate forest 
ecosystems, the fine root N content increased with increasing soil N and P contents due to N  addition17,20,21. 
However, the contents of N and P in fine roots decreased with greater N availability in other  studies22. In forest 
ecosystems, a change in N and P can further lead to a transformation from the limitation of a single nutrient 
resource to the limitation of both N and  P22,23. This may be in part due to differences in the nutrient absorption 
and utilization of roots of different sizes. Nonstructural carbohydrates (NSC) are related to fine root respiration 
and can provide energy for new root growth and nutrient absorption. Changes in the content of NSC affect plant 
response strategies to environmental  changes24. Moderate N addition may increase NSC in fine root and promote 
the absorption of  N25, while excessive N can reduce the content of NSC. To date, research efforts have focused 
on the physiological responses of fine roots to N deposition, but the biological and abiotic correlates of fine root 
dynamics have received less attention due to the genetic basis of these traits for most tree species, the complexity 
of fine root structure, and the differences in soil environment and research methods  used9,17. Therefore, research 
on the response of fine roots to N deposition in different regions and species is urgently needed.

The branched structure of fine roots may influence their functions, e.g., their roles in plant chemistry, mor-
phology and  physiology26,27. The responses of fine roots to N deposition differs between diameter classes. For 
example, the contents of N and P in fine roots was shown to decrease with increasing root order, while the NSC 
content showed the opposite  pattern28. Some studies have found that the effects of N deposition are greater on 
lower order roots than on higher order  roots9,29. Other studies have shown that the biomass of fine roots in the 
upper soil layers is significantly higher than that in other soil  layers15 and that N addition significantly increases 
the SRL and SRA of fine roots in the upper soil layer (0–30 cm)30. However, Yan et al.31 demonstrated that N 
addition reduced the SRA of fine roots. The vertical distribution of fine roots and their response to N addition 
not only determine the strategies plants use to obtain soil resources but also reflect the adaptability of plants to 
the environment. Knowing how the morphological and chemical properties of fine roots in different diameter 
classes and soil layers change with N deposition is helpful for understanding the mechanisms of plant adaptation 
strategies to environmental changes in arid zones.

Tianshan Mountain is an important part of the arid mountain-basin system and contains the largest moun-
tain forest distribution area (N-deficient ecosystem) in Xinjiang. Schrenk’s spruce is the dominant species in the 
Tianshan forest ecosystem and plays an important role in fixing N, releasing oxygen, regulating the climate, and 
maintaining the ecological environment. However, the N deposition in this area has increased due to human 
activities, such as grazing, tourism and coal mining, which in turn affect the soil properties and belowground 
processes of Schrenk’s spruce forest. Fine roots are environmentally sensitive components of the belowground 
processes of forest ecosystems, and changes in their characteristics can reflect the ability of trees to acquire 
 nutrients10. However, research on the influence of N deposition on the fine root characteristics of Schrenk’s 
spruce is still insufficient. We conducted an exogenous N addition experiment to explore the responses of the 
morphological and chemical properties of fine roots and their relationships with soil factors in different soil 
layers and diameter classes of Schrenk’s spruce to improve our understanding of N deposition in forest systems 
of arid areas. Here, we verify the following hypotheses: (1) medium N addition increases fine root biomass, SRL 
and SRA and decreases NSC content and (2) there are positive correlations between fine root physiological and 
ecological characteristics and soil N.

Results
Variations in fine root biomass. The multivariate analysis of variance indicated that the N treatment 
had a significant effect on fine root biomass (Fig. 1, Table S1). The fine root biomass was significantly higher 
in the 0–20 cm layer than in the other soil layers in each treatment (P < 0.05). In the four N treatment levels, 
the biomass in the 0–20 cm soil layer accounted for 42–52% of the total biomass (Fig. 1a). In the high nitrogen 
(HN) treatment, the fine roots biomass in the 0–20 cm, 20–40 cm and 40–60 cm soil layers decreased by 14%, 
25%, and 26%, respectively, compared with that in the control (CK) (Fig. 1a). However, the fine root biomass 
showed a slight increase in the medium nitrogen (MN) addition treatment (Fig. 1a). No significant difference 
was observed in fine root biomass between the N treatments and diameter classes (Fig. 1b). In the CK and low 
nitrogen (LN) treatments, the biomass of fine roots 1.5–2 mm in diameter was higher than that of fine roots in 
other diameter classes; the fine roots in the 1.5–2 mm class accounted for 37% of the total fine root biomass, 
but no statistical significance was found (Fig. 1b). However, in the MN treatment, the fine root biomass of roots 
< 1 mm increased by 35.52% compared with than in the CK treatment (Fig. 1b).
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Variations in fine root morphology. Nitrogen addition had a significant effect on SRL, SRA, and RTD 
(P < 0.01) (Fig.  2). Of the N treatments, the MN treatment significantly increased the SRL of each soil layer 
(P < 0.05) (Fig. 2a). The SRA value in the LN treatment was significantly lower than that in the other N addi-
tion treatments (P < 0.05) (Fig. 2b). The maximum value of RTD of the fine roots occurred in the LN treatment 
(2.20–2.46 g/cm3), which was 1.6–1.9 times higher than that in the other treatments (1.09–1.54 g/cm3) (P < 0.05) 
(Fig. 2c).

The interaction of N addition and diameter had a significant effect on SRL, SRA, and RTD (P < 0.01) 
(Fig. 2d–f). In the CK and LN treatments, the SRL of roots < 1 mm in diameter was significantly greater than 
that of roots in the other two diameter classes, and in the MN and HN treatments, the SRL of roots 1–1.5 mm 
in diameter was significantly higher than that of roots in the other two diameter classes (P < 0.05). Except in the 
LN treatment, the SRA of roots 1–1.5 mm in diameter was larger than that of roots < 1 mm and 1.5–2 mm in 
diameter (Fig. 2e). The RTD of was significantly higher in the roots < 1 mm in diameter in the N addition treat-
ment than in the roots in the other two diameter classes (P < 0.05).

Variations in the chemical properties of the fine roots. The chemical properties of the fine roots dif-
fered significantly in response to N addition (P < 0.05) (Fig. 3). The fine root N and P contents (%) of each soil 
layer increased with increasing N addition (Fig. 3a,b). However, the NSC content (%) of the fine roots showed 
the opposite pattern (Fig. 3d). No significant differences in the fine root N: P were observed among the N addi-
tion treatments (Fig. 3c).

There was a significant effect of N addition and diameter class on the fine root N, N:P, and NSC (Fig. 4). The 
maximum values of N and P in all the diameter classes occurred in the HN treatment; these values were signifi-
cantly higher than those in all the other treatments (Fig. 4a,b). The minimum value of NSC appeared in the HN 
treatment, and no significant differences were found for this trait among the N addition treatments (Fig. 4d). 
Among all the treatment groups, the NSC contents were lower in the roots < 1 mm in diameter than in the roots 
in the other two diameter classes, but significance was found in only the CK treatment (Fig. 4d).

Relationships between the fine roots characteristics and soil factors. There were differences in 
the correlations between the soil physical and chemical factors and fine root morphology and chemical proper-
ties under the different N treatments. In the CK treatment, the soil C, N, and P were significantly positively cor-
related with the fine root SRL and significantly negatively correlated with NSC content (Fig. 5). A significant pos-
itive correlation was also found between the fine root biomass and soil C. The RTD was significantly negatively 
correlated with the soil N and P (Fig. 5). In the LN treatment, the soil C was positively correlated with the fine 
root biomass and N:P ratio (Fig. 6). In the MN treatment, the soil C and N were significantly positively correlated 

Figure 1.  Fine root biomass for N treatments of different (a) soil layers and (b) root diameter classes. 
Lowercase letters indicate difference between soil layers (a) and between diameter classes (b); capital letters 
indicate differences between N treatments in the same soil layer (a) and diameter class (b). CK control, LN low 
N treatment, MN medium N treatment, HN high N treatment. The error bars represent the standard deviation. 
N nitrogen level, L soil layers, D diameter class. **P < 0.01 level of significance; *P < 0.05 level of significance; ns 
no significant.
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Figure 2.  Mean fine root SRL, SRA, and RTD at different soil depths (a–c, respectively) and within different 
root diameter classes (d–f, respectively). SRL specific root length, SRA specific root area, RTD root tissue 
density. Lowercase letters indicate the differences between soil layers (a–c) or between diameter classes (d–f) in 
the same N treatment. Capital letters indicate the differences between N treatments within the same soil layer 
(a–c) or diameter class (d–f). CK control, LN low N treatment, MN medium N treatment, HN high N treatment. 
The error bars represent the standard deviation. N nitrogen level, L soil layers, D diameter class. **P < 0.01 level 
of significance; *P < 0.05 level of significance; ns no significant.
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with the fine root biomass, SRL, N and N:P ratio (Fig. 7). In the HN treatment, the soil N and P were significantly 
positively correlated with the fine root N and P and negatively correlated with the NSC content (Fig. 8).

Discussion
Effects of N addition on fine root biomass and morphological characteristics. Nitrogen deposi-
tion can affect fine root biomass by changing soil nutrient availability and plant nutrient  strategies32. Our findings 
indicated that the biomass of fine roots of Schrenk’s spruce was highest under the MN treatment in the 0–20 cm 
soil layer. In N-deficient ecosystems, moderate N addition is enhancing soil N availability and promotes plant 
growth, which in turn increases fine root  biomass33. Moreover, the increased soil N is absorbed and utilized by 
plants, and the N in the soil does not have adverse effects on the root system due to excessive N  accumulation34. 

Figure 3.  Mean fine root N content (a), P content (b), N:P (c), and NSC content (d) in different soil layers. 
N nitrogen, P phosphorus, N:P nitrogen to phosphorus, NSC non-structural carbohydrates. Lowercase letters 
indicate differences between soil layers in the same treatment; capital letters indicate differences between 
treatments within the same soil layer. CK control, LN N treatment, MN medium N treatment, HN high N 
treatment. The error bars represent the standard deviation. N nitrogen level, L soil layers. **P < 0.01 level of 
significance; *P < 0.05 level of significance; ns no significant.
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Our results also revealed that the HN treatment decreased fine root biomass. First, nitrogen addition increased 
aboveground growth as a larger proportion of assimilated C can be used for aboveground growth when there is 
excess N in the soil. This leads to less C translocated belowground, reducing fine root growth and  biomass35. Sec-
ond, excessive N addition also leads to soil acidification and activation of aluminum ions in the  soil36. Aluminum 
ions can bind to the cell walls and nucleic acids of fine roots and interfere with the energy exchange between fine 
roots and soils, thereby inhibiting the growth of fine  roots37. Furthermore, the soil pH value was lower in the 
HN treatment than in the CK after a year of N addition (Fig. 1), and plant tried to avoid stress from acidifica-
tion by investing less in root biomass. These results are inconsistent with observations of Pinus koraiensis and 
Fraxinus mandshurica forests, in which N addition increased fine root  biomass38, and indicate that the response 
of fine roots to N deposition is controlled by the N addition dose, soil fertility and tree genetic characteristics. 

Figure 4.  Mean fine root N content (a), P content (b), N:P (c), and NSC content (d) for different root diameter 
classes. N nitrogen, P phosphorus, N:P nitrogen to phosphorus, NSC non-structural carbohydrates. Lowercase 
letters indicate differences between diameter classes in the same treatment; capital letters indicate differences 
between treatments within the same diameter class. CK control, LN low N treatment, MN medium N treatment, 
HN high N treatment. The error bars represent the standard deviation. N nitrogen level, D diameter class. 
**P < 0.01 level of significance; *P < 0.05 level of significance; ns no significant.
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In addition, the biomass of fine roots < 1 mm in diameter in the MN treatment increased, but the difference was 
not statistically significant. First, fine roots < 1 mm in diameter are the main organs used for nutrient absorp-
tion and are more sensitive to the external  environment22. Nitrogen addition may increase the branching of 
fine roots, which promotes the proliferation of small-diameter  roots15. Moreover, the thinning of root diameter 
caused by N addition is conducive to the absorption and utilization of  nutrients15,21. Our results showed that the 
fine root biomass was greatest in the 0–20 cm soil layer. Upper soil layers have greater available nutrients and 
better hydrothermal conditions and the soil texture in these layers is conducive to fine root growth and nutri-
ent  absorption39. However, the deeper soil layers contain leached nutrients (Fig. 1), which suppress the growth 
of fine  roots30. Furthermore, surface soil layers are affected first when N is added, the foraging response of fine 
roots then leads to a change the fine roots in surface layer, which mediates the vertical fine root  distribution40.

The SRL and SRA reflect the ability of fine roots to obtain nutrients and their  competitiveness41. It is believed 
that changes in root morphology are related to physiological demands for N and cost–benefit  balance42. We found 
that the MN treatment significantly increased the SRL of each soil layer, in agreement with previous studies show-
ing that SRL and SRA increased by 105.4% and 24.9%, respectively, under comparable N  treatments9. This indi-
cated that the physiological activity and nutrient uptake rate of fine roots were increased by medium N addition. 
Increases in SRL may occur when the increase in soil N concentration fails to meet the physiological demands 

Figure 5.  Pair-wise scatterplots between fine root characteristics and soil physical and chemical factors in the 
control (CK) treatment (n = 9). Soil C soil carbon, pH soil pH, Soil P soil phosphorus, Soil N soil nitrogen, N:P 
nitrogen to phosphorus, Biomass fine root biomass, N fine root nitrogen, P fine root phosphorus, SRL specific 
root length, SRA specific root area, RTD root tissue density, NSC non-structural carbohydrates.

Figure 6.  Pair-wise scatterplots between fine root characteristics and soil physical and chemical factors in the 
low nitrogen (LN) treatment (n = 9). Soil C soil carbon, pH soil pH, Soil P soil phosphorus, Soil N soil nitrogen, 
N:P nitrogen to phosphorus, Biomass fine root biomass, N fine root nitrogen, P fine root phosphorus, SRL 
specific root length, SRA specific root area, RTD root tissue density, NSC non-structural carbohydrates.
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of Schrenk’s spruce, as greater SRL enhance nutrient  foraging11,15. This conclusion is consistent with the positive 
correlation between the SRL of the fine roots and the soil N content. However, our results are inconsistent with 
the meta-analysis of Li et al.17, which showed that N addition failed to change the morphological characteristics 
of roots. These differences may be attributed to the following factors. First, fine roots are sensitive to the change in 
soil N caused by N addition in N-deficient forests. Second, the range of N addition duration in the meta-analysis 
was 0.2–13.6 years, and the effects produced by N addition varied with the length of the experimental period. 
Finally, the number of studies in temperate forests included in the meta-analysis was  limited17, which may affect 
the significance of the findings of fine root responses to N  deposition43.

Effects of N addition on fine root chemical properties. Nitrogen deposition affects root metabolism 
and nutrient absorption by changing the chemical composition of fine  roots44. We observed that N addition 
increased the contents of N and P in fine roots. The reason for this finding is that N addition might increase the 
N content in the soil, fine root phosphatase activity and nitrate availability, which promote the absorption of N 
by fine roots. In addition, plants may allocate relatively little energy to absorb N after N addition but allocate 
more energy to absorb P elements in the  soil13. Fine roots can also enhance phosphatase activity to maintain P 

Figure 7.  Pair-wise scatterplots between fine root characteristics and soil physical and chemical factors in the 
medium nitrogen (MN) treatment (n = 9). Soil C soil carbon, pH soil pH, Soil P soil phosphorus, Soil N soil 
nitrogen, N:P nitrogen to phosphorus, Biomass fine root biomass, N fine root nitrogen, P fine root phosphorus, 
SRL specific root length, SRA specific root area, RTD root tissue density, NSC non-structural carbohydrates.

Figure 8.  Pair-wise scatterplots between fine root characteristics and soil physical and chemical factors in the 
high nitrogen (HN) treatment (n = 9). Soil C soil carbon, pH soil pH, Soil P soil phosphorus, Soil N soil nitrogen, 
N:P nitrogen to phosphorus, Biomass fine root biomass, N fine root nitrogen, P fine root phosphorus, SRL 
specific root length, SRA specific root area, RTD root tissue density, NSC non-structural carbohydrates.
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 uptake45. The N:P ratio of fine roots can be used to determine the status of nutrient  limitation46, and it is gener-
ally accepted that N:P ratios < 14 indicate that N is limited, while N:P ratios > 16 indicate that P is  limited47. We 
found that the range of fine root N:P ratios under different N treatment levels was between 4.21 and 5.994, which 
was far lower than the global fine root N:P ratio of 11.548. This indicates that N is still limited in Schrenk’s spruce 
forest, even under experimental N deposition. However, it is necessary to further study the threshold range of 
the fine root N:P ratio to accurately determine the status of plant nutrient limitations.

Nonstructural carbohydrates are related to fine root respiration and can provide energy for new root growth 
and nutrient absorption. Our results revealed that N addition reduced the NSC contents of the fine roots of 
Schrenk’s spruce because N addition increased the respiration of fine roots and accelerated the consumption 
of  NSC49. Excessive N addition causes the energy consumed by fine roots to absorb N to be greater than their 
carbon input, resulting in a decrease in NSC  content50. Fine roots have a hierarchical architecture, and there are 
some differences in the chemical and ecological characteristics of the fine roots of different diameter classes. In 
this study, the NSC content of the fine roots < 1 mm in diameter was slightly less than that of the roots in the 
other two diameter classes; however, significant differences were found in only the CK treatment. This may be 
because fine roots < 1 mm in diameter are composed mainly of low-order roots, these roots, which have a faster 
respiration rate than larger roots, are the most active part of the root system, and their nutrient absorption and 
root respiratory processes consume large amounts of  NSC20,51.

Relationship between fine root characteristics and soil environmental factors. Change in fine 
root morphological characteristics in response to changes in soil nutrients may cause shifts in root competi-
tive  strategies52. We showed that fine root biomass was positively correlated with soil C and N. Spruce allocates 
relatively more C to fine roots in the process of obtaining N, and the growth of fine roots can promote more N 
 uptake35. Furthermore, the number and turnover of roots affects the C and nutrient content of  soil53. It has also 
been shown that the availability of soil nutrients changes and that plant roots may increase their ability to absorb 
nutrients by changing their  morphology17. In this study, SRL was significantly positively correlated with soil C 
and N. This may be because the SRL of fine roots is closely related to nutrient acquisition in nutrient-limited 
 soils11. Fine root elongation and branch proliferation augment the ability of Schrenk’s spruce to access nutrients 
and  water54. Nonstructural carbohydrates not only provide C for plant growth and reproduction but also serve 
as the substrate of respiration and  metabolism55. When root and soil N increases, fine roots need to consume a 
larger amount of NSC to maintain normal growth and increase root  respiration56. We found a significant nega-
tive correlation between the RTD and SRL of fine roots, which may be because the increase in the SRL of fine 
roots is indicative of another synchronous response of fine roots, i.e., the decrease in tissue density reflects a 
survival strategy of fine roots adapting to the soil  environment22.

Conclusions
Fine roots can alter their morphology in response to the environmental changes caused by N addition. The 
response of the fine root characteristics of Schrenk’s spruce to external N addition varied with the level of N 
addition, soil layer, and diameter class. Moderate N addition increased the SRL and biomass of the fine roots in 
each soil layer, while excessive N input suppressed fine root growth. The N addition promoted the absorption 
of N and P by fine roots. These results indicated that N is a vital factor for fine root growth in Schrenk’s spruce 
forests. Overall, understanding the responses of fine root morphology and chemical properties to N addition 
facilitates improving the management of Schrenk’s spruce forests under changing global climatic conditions.

Materials and methods
Study site. This study was conducted in an area of Schrenk’s spruce (Picea schrenkiana) forest near the 
Nanshan observation station (87.18° E, 43.47° N) of the Xinjiang Observatory at an altitude of approximately 
2080 m. The region has a temperate continental arid climate with distinct cold and warm seasons. The average 
annual temperature is 0–4 ℃, and the average annual precipitation is approximately 500 mm57, mostly occurring 
from May to September. The average value of N deposition in this area is 5.33 kg ha−1 a−158. Schrenk’s spruce is 
a constructive species in the forest ecosystem on Tianshan Mountain. The stands are mostly a pure forest, with 
heights of approximately 16 m and canopy densities of 0.6–0.8. The understory plants consist of Geranium rotun-
difolium, Alchemilla tianschanica, Aegopodium podagraria, etc., and the soil is mainly taupe forest soil developed 
over calcium rock differentiation material, which is weakly acidic and has a thick humus layer.

Experimental design. To investigate the effect of N addition on the morphological and chemical proper-
ties of Schrenk’s spruce fine roots, we established a field experiment with a randomized block design. Three 
20 × 20 m representative plots with similar altitudes (1942 m), slopes (24–26°), aspects (1°), and tree ages (78 a) 
were established in a Schrenk’s spruce forest, with at least 10 m spacing between each plot. Each plot was divided 
into four 3 × 3 m subplots with a 1 m buffer between each subplot. Iron plates were inserted at a depth of 50 cm 
between the subplots to prevent the transfer of soil nutrients. Four N addition treatments (control (0 kg ha−1 a−1), 
low N (5 kg ha−1 a−1), moderate N (10 kg ha−1 a−1) and high N (20 kg ha−1 a−1), were applied randomly in the 
four subplots of each plot. Schrenk’s spruce mainly takes up ammonium N from the soil. Research has shown 
that urea  (CH4N2O) is converted into ammonium N by  urease59, therefore, N was applied in the form of urea. 
Nitrogen additions began in October 2017 and continued once every two months until August 2018. The urea 
required for each treatment level was dissolved in 500 mL of deionized water (equivalent to the annual rainfall), 
and the solution was sprayed evenly in the sample area with a portable sprayer.
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Root and soil sampling. Fine root samples were collected in October 2018. In each subplot, three points 
were randomly selected within 1–1.5 m from the trunk. Fine roots were collected with a soil drill with an inter-
nal diameter of 10 cm from three depths (0–20 cm, 20–40 cm and 40–60 cm). The fine roots collected from the 
three points (within the same N addition group and soil layer) were thoroughly mixed and placed in a numbered 
sample bag. All the samples (n = 36) were placed in a cold storage box (2–4 ℃) and immediately transported to 
a laboratory. The soil particles and residual debris on the surface of the fine roots were washed away with deion-
ized water, and live roots were selected according to color and activity. The live roots were more resilient than the 
dead roots when bent. Using Vernier calipers, the roots were classified (0–1 mm, 1–1.5 mm and 1–2 mm) and 
then put into labeled plastic bags. All the fine root samples were divided into two parts: one part for the determi-
nation of fine root morphology and the other for the analysis of chemical properties. All the samples were stored 
in a refrigerator at 2–4 ℃ for subsequent analysis. The soil was sampled similarly: a soil drill was used to col-
lect samples at three depths (0–20 cm, 20–40 cm and 40–60 cm), nonsoil material (e.g., plant roots and human 
debris) was removed, and the soil was brought back to the laboratory in plastic bags. The samples were air-dried 
and then screened for preservation to determine the soil physical and chemical properties.

Root morphology measurements. All the fine root samples were scanned using an Epson digital scan-
ner, and a WinRHIZO professional root analysis system (WinRHIZO Pro STD 1600+, Regent Inc., Canada) 
was used to measure root length, surface area, and volume. These measurements were then used to calculate 
SRL = root length/dry weight (m/g), SRA = surface area/dry weight  (cm2/g), and RTD = dry weight/volume (g/
cm3).

Determination of fine root chemical properties. The fine root samples were oven-dried at 65 ℃ for 
48–72 h to a constant weight and then pulverized with a ball mill. The fine root N content was measured using 
the Kjeldahl  method60. To analyze the P content, the fine roots were digested with  H2SO4–H2O2 and the molyb-
denum antimony colorimetric method was  applied61. The fine root NSC were measured using the phenol–sul-
furic acid  method62.

Data analysis. Statistical analyses were performed using SPSS 17.0 (SPSS, IBM, USA). Multivariate analysis 
of variance was used to analyze the effects of different N treatment levels, diameter classes and soil layers on the 
fine roots, and least significant difference (LSD) test was used to analyze the differences in data in each group. 
Pearson correlation analyses were applied to identify the relationships between the soil properties and fine root 
characteristics. Origin 9.0 (Origin Lab, Massachusetts, USA) was used to draw  graphics63.

Data availability
The fundamental data supporting the conclusions of this article are available as additional files in the “Supple-
mentary information S1”.
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