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CD19-targeted CAR T cell immunotherapy has exceptional efficacy for the

treatment of B-cell malignancies. B-cell acute lymphocytic leukemia and non-

Hodgkin’s lymphoma are two common B-cell malignancies with high

recurrence rate and are refractory to cure. Although CAR T-cell

immunotherapy overcomes the limitations of conventional treatments for

such malignancies, failure of treatment and tumor recurrence remain

common. In this study, we searched for important methylation signatures to

differentiate CAR-transduced and untransduced T cells from patients with

acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. First, we used

three feature ranking methods, namely, Monte Carlo feature selection, light

gradient boosting machine, and least absolute shrinkage and selection

operator, to rank all methylation features in order of their importance. Then,

the incremental feature selection method was adopted to construct efficient

classifiers and filter the optimal feature subsets. Some important methylated

genes, namely, SERPINB6, ANK1, PDCD5, DAPK2, and DNAJB6, were identified.

Furthermore, the classification rules for distinguishing different classes were

established, which can precisely describe the role of methylation features in the

classification. Overall, we applied advanced machine learning approaches to

the high-throughput data, investigating the mechanism of CAR T cells to

establish the theoretical foundation for modifying CAR T cells.

KEYWORDS
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Introduction

The chimeric antigen receptor (CAR) T cell immunotherapy

is a type of pericyte therapy in which T cells are genetically

modified to express chimeric antigen receptors that detect and

kill tumor cells in patients (1). In the USA, over 70,000 people

are diagnosed with non-Hodgkin’s lymphoma (NHL) annually,

with a 5-year survival rate of roughly 70% (2). Acute

lymphoblastic leukemia (ALL) is the most common pediatric

cancer, accounting for approximately 25% of all pediatric cancer

cases, and has a high recurrence rate (3). CD19-targeted CAR T-

cell immunotherapy has a high response rate in B-cell ALL and

B-cell NHL, especially in ALL, with a treatment effectiveness of

90% (4). However, CAR-T therapy is not effective for all tumor

patients, and drug-resistant relapse occurs in approximately 50%

of patients treated with CD19-targeted CAR-T (5). Some CAR T

cells become exhausted, resulting in an increase in inhibitory

receptors and a loss of effector function (6, 7). Creating a long-

lasting therapeutic response is an essential problem that

demands a better knowledge of the cellular and molecular

processes that drive CAR T cell proliferation, contraction, and

persistence in patients. Studying the specific functions of CAR-

transduced T-cells at the molecular level, such as epigenetic level,

can help in the understanding of the deeper mechanisms of

CAR-T cell immunotherapy and clinical identification of

potential targets for effective cancer treatment.

CAR consists of an antigen recognition domain, a co-

stimulatory region, and a T cell activation region (8–10).

Through multiple signaling cascades, the costimulatory region

and T cell activation region activate the CAR T cells, which

exhibit proliferative and cytotoxic properties (11). Activated

CAR T cells have different gene expression patterns compared

with regular T cells, which are influenced by epigenetic

modifications (12). DNA may be modified in various ways, the

most frequent of which is direct nucleotide methylation.

Methylation of promoters results in a decrease in gene

expression and suppression of transcription. High-expression

genes have high levels of methylation at introns but low levels of

methylation at the promoter or regulatory areas (13, 14).

Epigenetic imprinting is emerging as a unifying subject in the

study of immunological memory and the correlation of long-

lasting antitumor responses.

Modifications in DNA methylation shape the overall

immune response by altering the phenotype and function of

CAR T cells. Zebley et al. showed that alterations in DNA

methylation are linked to the proliferation and contraction of

CAR T cells and that CD19-targeted CAR T cells acquire DNA

methylation features over time. These results suggested that

these cells are developing into a progenitor subset of exhausted

T cells (15). Meanwhile, Wang et al. discovered that CAR T cells

treated with low doses of the demethylating drug decitabine had

stronger antitumor, proliferation, and cytokine release abilities.
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This result indicates the presence of methylation in CAR T cells

that inhibit their oncogenic functions (16). Among the large

number of methylation sites, traditional biological experiments

cannot meet the requirement of searching for methylation

sites that affect the proliferation, failure, and oncogenic

functions of CAR T cells. Therefore, this study was focused on

how to combine advanced computational methods, such as

machine learning, to mine CAR T cell-specific methylation

sites to find potential sites for the sustained activation of

CAR T cells.

Herein, we devised a process to rapidly screen CAR T cells

for specific methylation sites. First, the methylation sites were

analyzed and sorted by three feature ranking methods, namely,

least absolute shrinkage and selection operator (LASSO) (17),

light gradient boosting machine (LightGBM) (18), and Monte

Carlo feature selection (MCFS) (19). Then, the incremental

feature selection (IFS) (20) method was used to estimate the

importance of feature subsets, which were constructed from

three ranked methylation site lists, by evaluating the

performance of classifiers on these subsets. One optimal

feature subset was obtained from each list generated by one

feature ranking method. The intersection of all obtained

optimal feature subsets was investigated. The methylation

sites that recurred multiple times were considered to be

highly correlated with the specific functions of the CAR T

cell, because the three feature ranking methods used different

and independent concepts. Moreover, we also used decision

trees (DTs) (21) to create quantitative classification rules that

can accurately describe the composition of features for

distinguishing each class. All in all, we identified the

methylation sites associated with specific functions of the

CAR T cells on a large scale using an efficient machine

learning based framework and provided a functional

description of highly ranked methylation sites in conjunction

with the literature.
Materials and methods

Data and preprocessing

The T-cell methylation profiles of 157 patients with B-cell

malignancies, including ALL and NHL, were downloaded from

the GEO database under the accession number GSE179414 (22).

The dataset comprised 77 ALL and 37 NHL cases, who were

treated with CART19 cells. These two groups of patients were

injected with CAR-transduced T cells and were referred to as

ALL transduced and NHL transduced samples, respectively.

Meanwhile, 13 ALL and 30 NHL cases were also included in

the dataset, but they were not given CART19 cells. These

patients were injected with CAR-untransduced T cells and

were referred to as ALL untransduced and NHL untransduced
frontiersin.org
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samples. Each group was deemed as a class in this study.

We investigated their essential differences by studying the

classification problem on these classes. Furthermore, each

sample in the dataset was represented by 865,859 methylation

sites. These sites were termed as features in this investigation.
Feature ranking methods

A large number of methylation sites were involved in the

investigated methylation profiles, which were deemed as features

in this study. Evidently, a small proportion of features were highly

related to distinguish the CAR-untransduced and -transduced T

cells. The powerful feature analysis method in machine learning

was necessary. Here, three such methods were employed,

including MCFS (19), LightGBM (18), and LASSO (17).

Monte Carlo feature selection
The MCFS algorithm is a DT-based method for determining

the relevance of features. This method was first proposed by

Micha et al. and has been widely used in tackling various

complex medical and biological problems, showing promise in

solving such problems (19, 23, 24).

The procedures of MCFS can be summarized as the

following steps: (1) s feature subsets are randomly constructed

from all features; (2) For each feature subset, t DTs are

constructed by randomly selecting training and test samples

from the original datasets; (3) After t×s DTs have been built,

each feature g is evaluated by the relative importance (RI), which

can be computed as follows:

RIg =  o
st

t=1
wAccð Þu o

ng tð Þ
IG ng tð Þ� � no : in   ng tð Þ

no : in   t

� �v

, (1)

where wAcc is the weighted accuracy; IG(ng(t)) stands for
the information gain (IG) of ng(t) (a DT node with the feature

g); no.in ng(t) stands for the number of samples in ng(t); no.in t
stands for the sample sizes in the tree root; and u and v are two

settled positive integers. According to the RI values of all

features, they are ranked in a feature list by the decreasing

order of their RI values.

In this study, we adopted the MCFS program downloaded

from http://www.ipipan.eu/staff/m.draminski/mcfs.html.

Default parameters were used to execute such program, where

u and v were set to one.
Light gradient boosting machine
LightGBM is an iterative boosting tree classifier proposed by

Microsoft and is a modified version of the gradient boosting DT

(18). LightGBM uses the total number of times (i.e., T_Split) that

each feature is involved in the trees iteratively created and the

gain (i.e., T_Gain) that a feature is utilized for splitting in all DTs
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as measurements of feature relevance for the prediction. They

are defined as

T _ Split =  o
K

t=1
Splitt , (2)
T _Gain =  o
K

t=1
Gaint , (3)

where K is the K DTs generated by K iterations. Here, we

used T_Split as a metric to measure the importance of features,

i.e., features were sorted in the decreasing order of their

T_Split values.

This study adopted the LightGBM program retrieved from

https://lightgbm.readthedocs.io/en/latest/. It was performed

with its default parameters.

Least absolute shrinkage and
selection operator

The LASSO algorithm is a feature selection method based on

linear regression models that selects and compresses variables to

prevent overfitting (17). This method uses the L1 paradigm to

create a penalty function that selectively removes lower-

correlation variables by imposing a bigger penalty on the

larger value of the feature variables. This process results in a

model with fewer feature variables and effectively avoiding

overfitting. If the coefficients of the input features did not

contribute positively to the training of the machine learning

model, they were scaled down. As a result, the features could be

ranked according to their coefficients.

Here, the LASSO package integrated in Scikit-learn (25) was

used and its default parameters were adopted.
Incremental feature selection

By three feature ranking methods, all features were ranked in

three lists. Evidently, top features in each list were important.

However, determining the number of top features was still a

problem. Thus, the IFS method (20, 26–28) was employed,

which can determine the suitable number of top features. The

procedures of IFS method can be divided as follows: (1) Several

feature subsets are constructed based on the ranked feature list,

which consists of some top features in the list; (2) A classifier is

constructed on samples represented by features in each subset

and its performance is evaluated by ten-fold cross-validation

(29); (3) The classifier with the best performance can be found

and the feature subset used in this classifier is picked up as the

optimal feature subset. As three ranked feature list was produced

in this study, IFS method was executed on each list. Three

optimal feature subsets were obtained. We drew Venn diagrams

for these three feature sets to display and analyze their

intersection results.
frontiersin.org

http://www.ipipan.eu/staff/m.draminski/mcfs.html
https://lightgbm.readthedocs.io/en/latest/
https://doi.org/10.3389/fonc.2022.976262
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2022.976262
Synthetic minority over
sampling technique

As described in Section Data and preprocessing, the size of

the class with the most samples (77) was about six times as large

as that of the class with the least samples (13). Given

the imbalance in sample size, when building and evaluating

the classifiers, the predicted results would be biased toward the

classes with a larger sample size, reducing the generalization

ability for the model. In view of this, synthetic minority

oversampling technique (SMOTE) algorithm was used in this

study to effectively achieve data balance by enlarging the size of

each minority class (30, 31). It generates new samples for each

minority class by the linear combination of two samples in the

same minority class, which are near enough. Finally, all classes

have the same number of samples. This study adopted the

SMOTE program obtained from https://github.com/

scikitlearn-contrib/imbalanced-learn. Likewise, its default

parameters were used.
Classification algorithm

In the IFS method, classifiers were built to evaluate the

importance of constructed feature subsets. A certain

classification algorithm was necessary to execute the IFS

method. In this study, we applied four classification

algorithms, namely, K-nearest neighbor (KNN) (32), support

vector machine (SVM) (33), random forest (RF) (34), and DT

(21). The purpose of employing these algorithms was to fully test

the importance of each constructed feature subset and select the

best one.

The KNN algorithm is one of the most classic classification

algorithms. Its principle is quite simple. However, its

performance is still acceptable in some cases. Given a test

sample, KNN finds its k nearest neighbors in the training

dataset. According to the labels of these neighbors, the label of

the test sample can be determined.

The SVM is a classification algorithm based on statistical

learning theory. It generally maps samples into a high-

dimensional space by using a kernel function and linearly

separates them by finding the maximum margin separating

hyperplane. For a test sample, it is also mapped into the same

high-dimensional space and its class is determined by the side of

hyperplane that the test sample is located.

The RF is also a classic classification algorithm, which is

quite different from SVM. In fact, it is an ensemble algorithm,

which contains several DTs. Each DT is built by randomly

selecting features and samples. For a test sample, each DT

gives its prediction. RF integrates these predictions using

majority voting.
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For the above three classification algorithms, their

classification principles are quite difficult for us to understand.

Thus, few insights can be extracted from them. DT has its merits

in this regard. It is a white-box algorithm, whose classification

procedures are completely open, giving opportunities for us to

uncover its principle learned from the given dataset, thereby

access more knowledge from the dataset. A DT is a tree structure

consisting of a series of nodes and branches that use logical

operations. Two types of nodes are contained in a DT, they are

branch and leaf nodes. The branch node is always related to one

feature. According the threshold, samples in a branch node are

classified into two groups. The leaf node stands for one class.

Samples that reach such node are assigned the corresponding

class label. During predictions, it starts at the root node and sorts

the test samples down the tree according to the thresholds

defined at each branch node. Furthermore, a DT can be

represented by lots of if-then rules. Each rule is constructed by

a path from the root node to one leaf node. From these rules, a

clearer picture on each class can be uncovered.

Above algorithms have been applied to construct various

classifiers in dealing with biological and medical problems (35–

40). In this study, we used the corresponding Python Scikit-learn

packages (25) of above four classification algorithms to

implement them.
Performance evaluation

To evaluate the performance of all classifiers constructed in

the IFS method, several measurements were employed. First, as

multi-class classifiers, the overall accuracy (ACC) was adopted,

which is the most accepted measurements. It is defined as the

proportion of correctly predicted samples among all samples.

However, such measurement is not perfect if the sizes of classes

are quite different. Thus, we also employed the Matthew

correlation coefficients (MCC) (41), which is deemed as a

balanced measurement. As four classes were involved, the

MCC in multi-class was adopted, which is defined as

MCC =
cov X,Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov X,Xð Þcov Y ,Yð Þp , (4)

where X and Y are two binary matrices, indicating the true

and predicted class of each sample.

In addition, we computed the precision, recall and F1-score

for each class, which is defined as

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)
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F1 − score =
2� Precision� Recall
Precision + Recall

(7)

where TP stands for the number of samples in such class

which are correctly predicted, FP is the number of samples in

other classes which are classified into this class, FN is the number

of samples in such class which are wrongly predicted. According

to F1-score on each class, the macro F1 and weighted F1 are

further computed to give a whole evaluation on classifiers. For

macro F1, it is defined as the mean of all F1-score values on all

classes, whereas weighted F1 integrates all F1-score values by

further considering the class sizes, that is, it is the weighted mean

of F1-score values.

In this study, weighted F1 was picked up as the key

measurement. Other measurements were provided as reference.
Functional enrichment analysis

By analyzing the T-cell methylation profiles downloaded

from the GEO with several machine learning algorithms, the

optimal feature subsets, containing several methylation probes,

were obtained. After taking the union operation on these subsets

and mapping features in the union set onto the genes,

ClusterProfiler in R was used to calculate the enrichment of

these genes on GO terms and KEGG pathways (42). The p-value

was corrected with FDR, and 0.05 was chosen as the cutoff value.

Only the GO terms and KEGG pathways with FDR<0.05 were

considered statistically significant.
Results

We built a machine learning based framework for analyzing

CAR-transduced and untransduced T cells in different B-cell
Frontiers in Oncology 05
malignancies and further constructed efficient classifiers to

discriminate CAR-transduced and untransduced T cells. The

entire procedures are illustrated in Figure 1. The detailed results

were listed in this section.
Results of feature selecting methods

Each sample was represented by a large number of features

(methylation sites). They were deeply analyzed by three feature

ranking methods (MCFS, LightGBM, and LASSO). Each method

produced one feature list, which is provided in Table S1. It was

necessary to pointed out that only features with evaluation score

(RI for MCFS, T_Split for LightGBM and coefficient for LASSO)

larger than zero were provided in Table S1. The top-ranked

features are considered to be important because of their

participation in the classification. Their biological significance

and the reasons why they are important as core classification

features would be discussed in Section Discussion.
Results of IFS method

The three ordered feature lists created by three feature

ranking methods were fed into the IFS method one by one

and four classification algorithms (DT, KNN, RF and SVM) were

used in the IFS method. To save time, we only considered the top

1000 features in each list. For each list, 1000 possible feature

subsets were constructed, on which 1000 classifiers with one give

classification algorithm were built and evaluated by ten-fold

cross-validation. The evaluated results, including measurements

listed in Section Performance evaluation, are available in

Table S2.

For the feature list yielded by MCFS method, we plotted

an IFS curve for each classification algorithm to illustrate
FIGURE 1

Flow chart of the entire analytical process. The 865,859 methylation probe signals on patients with B-cell malignancies were ranked according
to feature importance by using three feature ranking algorithms, namely, MCFS, LightGBM, and LASSO. Then, three ordered feature lists were
fed into the incremental feature selection (IFS) method, which incorporates four classification algorithms. Finally, based on the IFS results, the
essential genes, efficient classification models and classification rules were extracted.
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its performance on different feature subsets, which is shown

in Figure 2. It can be observed that DT, KNN, RF and SVM

can yielded the highest weighted F1 values of 0.861, 0.864,

0.912 and 0.827, respectively. These values were obtained

by using top 591, 680, 354 and 952, respectively, features in

the list, which comprised the optimal feature subsets for

these four classification algorithms. With the optimal feature

subsets, we can build the best DT, KNN, RF and SVM

classifiers. The values of macro F1, ACC and MCC of

these classifiers are listed in Table 1. Furthermore, their

performance on four classes is illustrated in Figure 3.

Evidently, the best RF classifier was superior to other three

best classifiers and the best DT classifier was only better than

the best SVM classifier.
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For the feature list generated by LightGBMmethod, four IFS

curves were also drawn, which are shown in Figure 4. When top

181, 12, 140 and 43 features in the list were adopted, four

classification algorithms produced the highest weighted F1

values of 0.956, 0.938, 0.975 and 0.950, respectively. These

features constituted the optimal feature subset for each

classification algorithm. Furthermore, the best DT/KNN/RF/

SVM classifier was built with its corresponding optimal feature

subset. The detailed performance of these best classifiers is listed

in Table 1 and shown in Figure 3. Likewise, the best RF classifier

still provided the highest performance. As for the best DT

classifier, it was a little better than the best KNN and

SVM classifiers.

For the last feature list generated by LASSO method, IFS

curves were also plotted, as shown in Figure 5. The highest

weighted F1 for DT, KNN, RF and SVM were 0.912, 0.943, 0.987

and 0.987, respectively. To reach such performance, top 9, 12, 28

and 111, respectively, features were used. These features

comprised the optimal feature subset for each classification

algorithm. Similarly, the best DT, KNN, RF and SVM

classifiers were constructed with the corresponding optimal

feature subsets. Table 1 and Figure 3 provide their detailed

performance. The best RF classifier provided equal performance

to the best SVM classifier. However, the best RF classifier

adopted much less features than the best SVM classifier. Thus,

this classifier was still deemed to be better than other three

classifiers. On the other hand, the best DT classifier gave the

lowest performance among all four best classifiers.

Based on the above arguments, the best RF classifier always

provided better performance than other three best classifiers on

each feature list. Among three RF classifiers built on three feature

lists, the RF classifier on the list generated by LASSO provided the

highest performance. Such classifier can be a useful tool to
FIGURE 2

IFS curves for displaying the performance of four classification algorithms on the feature list yielded by MCFS method. The best classifiers on
different algorithms yield the weight F1 values of 0.861, 0.864, 0.912 and 0.827, respectively, which use top 591, 680, 354 and 952, respectively,
features in the list.
TABLE 1 Performance of the best classifiers using different
classification algorithms and feature ranking methods.

Feature
ranking
method

Classification
algorithm

Weighted
F1

Macro
F1

ACC MCC

MCFS DT 0.861 0.866 0.860 0.792

KNN 0.864 0.897 0.860 0.801

RF 0.912 0.914 0.911 0.866

SVM 0.827 0.808 0.822 0.746

LightGBM DT 0.956 0.965 0.955 0.935

KNN 0.938 0.952 0.936 0.909

RF 0.975 0.981 0.975 0.963

SVM 0.950 0.953 0.949 0.927

LASSO DT 0.912 0.921 0.911 0.869

KNN 0.943 0.933 0.943 0.914

RF 0.987 0.990 0.987 0.981

SVM 0.987 0.990 0.987 0.981
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discriminate CAR-transduced and untransduced T cells. On the

other hand, the DT classifiers generally gave the low performance.

However, they can provide more clues to uncover the differences

between CAR-transduced and untransduced T cells.
Feature intersection

As mentioned above, on each feature list yielded by one feature

ranking method, the best RF classifier was always better than other

three best classifiers. Thus, its optimal feature subset was picked up

as the optimal feature subset for one feature ranking method. In
Frontiers in Oncology 07
detail, the optimal feature subsets for MCFS, LightGBM and Lasso

consisted of the top 354, 140, and 28 features in the lists generated

by MCFS, LightGBM, and LASSO, respectively.

For each above-mentioned optimal feature subset, features

in such subset were mapped onto their related genes, which

comprised the optimal gene subset. Concretely, the optimal gene

set for MCFS, LightGBM and LASSO contained 231, 97 and 16

genes, respectively. Detailed genes in these sets are provided in

Table S3. The intersection of these three gene sets was

investigated and plotted in one Venn diagram, as shown in

Figure 6. It can be observed that no genes were contained in all

three optimal gene sets, three genes (SERPINB6, ANK1, OST4)
B C

A

FIGURE 3

Performance of the best classifiers using different classification algorithms and feature lists on four classes. (A) Feature list generated by MCFS
method; (B) Feature list generated by LightGBM method; (C) Feature list generated by LASSO method.
FIGURE 4

IFS curves for displaying the performance of four classification algorithms on the feature list yielded by LighGBM method. The best classifiers on
different algorithms yield the weight F1 values of 0.956, 0.938, 0.975 and 0.950, respectively, which use top 181, 12, 140 and 43, respectively,
features in the list.
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were in two optimal gene sets. Overlapped genes would be

discussed in Section Discussion.
Classification rules

Although the DT classifiers were generally weaker than RF

classifiers, they can provide clues hidden in the investigated
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methylation profiles, which cannot be extracted by other

classifiers. According to the IFS results on three feature lists,

the best DT classifiers used top 591, 181 and 9 features in three

lists, respectively. With these features, three DTs were learned on

all samples. Each DT induced a rule set, which contained 17, 10

and 19 rules, respectively. Detailed rules are listed in Table S4. In

each rule set, each class was assigned at least one rule, as shown

in Figure 7. Following the rules in each rule set, we can

determine the class of a test sample. Furthermore, their most

contributions were the clear descriptions on different

methylation patterns on CAR-transduced and untransduced T

cells. This would be discussed in Section Discussion.
Results of enrichment analysis

The optimal feature subsets for three feature ranking

methods were determined by the IFS method. We mapped the

methylation probes in three optimal feature subsets to genes,

yielding a total of 341 genes. Then, the functional enrichment

analysis was performed on these genes. The enrichment results

are provided in Table S5. Two GO terms were enriched by 341

genes, whereas no KEGG pathways were enriched by these genes

with FDR<0.05. GO enrichment result indicated that 12 of these

genes were involved in the splicing process, suggesting that the

transcripts of these genes may be involved in regulating CAR

T-cell processes.
Discussion

In this study, we applied several advanced machine learning

algorithms to deeply mine the T-cell methylation profiles of
FIGURE 5

IFS curves for displaying the performance of four classification algorithms on the feature list yielded by LASSO method. The best classifiers on
different algorithms yield the weight F1 values of 0.912, 0.943, 0.987 and 0.987, respectively, which use top 9, 12, 28 and 111, respectively,
features in the list.
FIGURE 6

Venn diagram to show the intersection of the optimal gene sets
for MCFS, LightGBM, and LASSO. Three genes are contained in
two optimal gene sets, indicating their importance.
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patients with B-cell malignancies. Latent important genes were

obtained and interesting classification rules were constructed.

This section gave extensive analysis on these genes and rules.
Top ranked genes in multiple algorithms

The first gene was SERPINB6 (targeted by probes

cg27001747 and cg04181408), which encoded a member of the

serpin superfamily and ovalbumin-serpin subfamily (43, 44).

SERPINB6 appeared in both LightGBM and MCFS in the subset

of optimal features. Both methylation probes were linked to the

promoter and found in the 5ʹ-UTR region of SERPINB6,

suggesting that they may affect the transcriptional regulation

of this gene. Serpinb9, a homolog of SERPINB6, has been shown

to protect T cells from Granzyme-B leaked from granules and

also participates in T cell homeostasis (45, 46). Although the

function of SERPINB6 in T cells has yet to be established, this

protein is important to other immune cells. In neutrophils and

monocytes, SERPINB6 inhibits Cathepsin G, thereby preventing

programmed necrosis (47). Thus, SERPINB6 may play a role in

the normal functioning of CAR-T cells. However, more research

is needed to confirm this concept. Furthermore, SERPINB6

methylation has been linked to the risk of CLL pathogenicity

(48). This result demonstrates the precision by which our

method can identify CAR-T cell-specific genes and differential

genes in B-cell malignancies.

The next probes identified were cg09405790 and

cg02172579, which both targeted the gene body of ANK1.

ANK1 was found in the subset of optimum features in

LightGBM and MCFS. ANK1 is a modular adaptor protein

that mediates the connection of integral membrane proteins to

the spectrin cytoskeleton (49). ANK1 methylation has been

shown to regulate the expression of microRNA-486-5p, which

inhibits Interleukin-22 production by helper T cells via the

Dock1/NF-B/Snail signaling pathway. Such process results in

cancer suppression (50, 51).
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The cg18756060 and cg04001935 probes were designed to

detect the DNAmethylation status in a specific intergenic region

on chromosome 2 (chr2:27294139-27294915) according to

GRCh37. Such region has been shown to be the coding region

of gene OST4, and the protein encoded by OST4 is an important

subunit of oligosaccharyltransferase (OST). Similar to

SERPINB6 and ANK1, OST4 is an intersection feature of the

optimal feature subsets of LightGBM and MCFS. Eukaryotic

OSTs catalyze the N-glycosylation of nascent polypeptides in the

lumen of the endoplasmic reticulum, a conserved biosynthetic

process that diversifies the structure and function of proteins

(52). Kumar et al. found that N-glycosylation activity remained

elevated during the activation and expansion of human T cells,

and lymphocytes in a resting state had lower N-glycosylation

activity (53). These results suggest that OST was involved in T

cell activation in transduced CARs, and that OST activity was

influenced by methylation of OST4.

PDCD5 (also known as TFAR19), which is targeted by the

optimal features cg13563193, has been generally reported to

participate in immunoregulation. PDCD5 is at the top of the list

of feature rankings obtained with the LASSO method. PDCD5

interacted with FOXP3 to promote FOXP3 acetylation, hence

reducing effector cytokine production (54). Meanwhile, the

methylation signal of PDCD5 was primarily found in the

promoter region, which negatively regulated the PDCD5

expression and thus relaxed the immunosuppressive effect of

Treg. This activity could explain the mechanism by which the

CAR-T cells were activated and therefore appeared in our list. In

addit ion, in hepatocel lular carcinoma, the PDCD5

overexpression stimulates the promoter activity of KLF9, and

the upregulation of KLF9 inhibits cell migration and

proliferation (55). This phenomenon also suggests that the

cg13563193 methylation signature may suppress the

expression level of PDCD5. Yuan et al. have discovered that

PDCD5 inhibits the production of proinflammatory mediators

and promotes the secretion of anti-inflammatory cytokines by

modifying the T-lymphocyte homeostasis (56). The two
FIGURE 7

The number of rules extracted from the decision tree built on feature lists yielded by MCFS, LightGBM, and LASSO, respectively, on four classes.
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hallmark clinical toxicities associated with CAR-T cell therapy

are cytokine release syndrome (CRS) and neurotoxicity (57, 58).

The characteristics of CRS produce massive inflammation,

suggesting a possible involvement of PDCD5 in this process.

The probe cg07632860 was developed to detect the

methylation status of the transcription start site of the DAPK2.

DAPK2 is at the top of the list of feature rankings obtained with

LASSO. DAPK2 encodes a member of the serine/threonine

protein kinase family, which functions as a tumor suppressor

and regulates autophagic and apoptotic processes in various cell

types (59, 60). When T lymphocytes are activated, they secrete

inflammatory cytokines, such as TNF- and IL-6. During this

process, DAPK2 is activated by T cell receptor, which inhibits T-

cell activation (61, 62). We discovered that cg07632860 targeted

the regulatory region of DAPK2, implying that it may limit the

expression level of the protein. Meanwhile, DAPK2 expression

has been found to be downregulated in ALL and NHL (63). Low

levels of DAPK lead to T-cell activation, which implies the CAR-

T cell activation mode. Furthermore, the inflammatory

cytokines IL-17 and IL-32 have been demonstrated to use

DAPK2 as a signaling mediator (64). Whether the production

of cytokine storm, one of the side effects of CAR-T

immunotherapy, is linked to DAPK2 is worthy of investigation.

The next predicted gene, DNAJB6, targeted by cg18753341,

encodes a member of the DNAJ protein family, which is one of

two key groups of molecular chaperones involved in biological

activities, such as protein folding and oligomeric protein

complex assembly. Strict control of the cell cycle process is

essential for the proper functioning of T lymphocytes. Slfn1 has

been shown to play an important role in the establishment and

maintenance of T lymphocyte quiescence (65). Overexpression

of DnaJB6 increases Slfn1 nuclear accumulation and causes cell-

cycle arrest, whereas Slfn1 is mostly sequestered in the

cytoplasm, and no cell-cycle arrest has been detected in

DnaJB6 knock-down cells (66). Furthermore, transgenic

expression of DNAJB6 in T cells blocks Slfn1 degradation,

enhances its nuclear import, and results in T cell proliferation

suppression when T cell receptors are activated (66). In addition,

DNAJB6 is neurotoxic when overexpressed in primary neurons,

suggesting that it may be a potential locus for CAR-T treatment

to eliminate side effects (67).
Analysis of classification rules

In addition to the functional analysis of the top-ranked

features, we also mined the specific rules used to distinguish

each class based on the classification tree structure of the DTs.

The rules of each class consisted of methylation probes and their

signal intensities, and each methylation probe was linked to a

gene to describe its function in greater depth.

The first rule was aimed to distinguish T cells derived from

patients with ALL that have been transduced with CAR.MYCN,
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which is targeted by cg13799853, was an important site with low

methylation, according to the classification rule based on LASSO

results. In our classification rules, MYCN exhibited lower

methylation levels. MYCN has been demonstrated to have

lower methylation levels in relapsed children with B-cell acute

lymphoblastic leukemia (B-ALL), which was consistent with the

usage of MYCN in this study as a key feature to differentiate B-

ALL (68). MYCN also downregulates DKK3 expression and

activates the Wnt/b-catenin signaling pathway at the

transcriptional level, boosting the development of B-ALL (69).

Meanwhile, MYCN apparently decreases the interferon

signaling, promoting a non-inflamed and T-cell infiltration-

poor (“cool”) tumor microenvironment (70). In the

classification rule based on the MCFS results, HDGF targeted

by cg18593717 was an important locus, which exhibited a lower

methylation level. HDGF has been demonstrated to cause Foxp3

+ Treg differentiation and that Tregs decrease CD8+ cytotoxic T

cell activity (71). This phenomenon suggests that HDGFmay act

as a potential gene driving the activation of CAR-T cell.

The second rule was used to distinguish the T cells derived

from patients with ALL without transduced CARs. After

constructing the DT by using the optimal subset obtained after

MCFS, the classification rules were established. Among them,

hypomethylation of the ZBTB7A, also known as LRF, was an

important quantitative rule. Many studies have shown that

ZBTB7A is closely associated with B and T cell differentiation

and plays an important role in their fate decisions (72, 73).

Meanwhile, dysregulation in B-cell maturation can lead to the

development of autoimmune syndromes and B-cell

malignancies (73). ZBTB7 was described in the rules in our

study, because it plays an important role in both immune

processes and cancer development.

The next two rules were used to distinguish between CAR-

transduced and untransduced T cells derived from patients with

NHL. TP73 targeted by cg10654015 appeared in our rules and

exhibited a higher methylation status. TP73 has been

demonstrated to be frequently methylated in NHLs (74). This

result is consistent with the highly methylated results of TP73

found in our study, indicating the accuracy of our method.

Furthermore, TP73 deletion has been shown to impact

lymphoma formation by several mechanisms, such as altered

gene expression patterns, defective early T-cell growth, impaired

apoptosis, and chromosomal abnormality accumulation (75).

This phenomenon suggests that TP73 may be a potential target

for the modification of CAR-T cells.
Conclusion

We applied a powerful computational strategy based on

DNA methylation probe data to uncover the features of CAR T

cells across diverse B-cell malignancies. The outcomes can be

summarized in the three key components. First, a series of
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methylation signatures and genes were extracted, which can be

used to distinguish cells from four different origins. The findings

provided a theoretical foundation to precisely modify CAR T

cells and treat B-cell malignancies. Second, efficient multi-class

classifiers were built to aid in a more accurate delineation of T

cells prior to treatment. The delineation of T cells facilitated the

screening for T cells that could efficiently suppress cancer in vivo

and further improve those that were not successfully transduced.

Finally, some classification rules were built to specifically

distinguish a particular class of cells. These rules aided to

better understand the specific functions of CAR T cells by

describing the degree of gene methylation.
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