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Uncovering the effects of interface-induced
ordering of liquid on crystal growth using
machine learning

Rodrigo Freitas® '™ & Evan J. Reed'

The process of crystallization is often understood in terms of the fundamental microstructural
elements of the crystallite being formed, such as surface orientation or the presence of
defects. Considerably less is known about the role of the liquid structure on the kinetics of
crystal growth. Here atomistic simulations and machine learning methods are employed
together to demonstrate that the liquid adjacent to solid-liquid interfaces presents significant
structural ordering, which effectively reduces the mobility of atoms and slows down the
crystallization kinetics. Through detailed studies of silicon and copper we discover that the
extent to which liquid mobility is affected by interface-induced ordering (11O) varies greatly
with the degree of ordering and nature of the adjacent interface. Physical mechanisms behind
the 11O anisotropy are explained and it is demonstrated that incorporation of this effect on a
physically-motivated crystal growth model enables the quantitative prediction of the growth
rate temperature dependence.
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rystallization from the melt (Fig. 1) is a pervasive process
in industry, from metal casting for structural applications
to the Czochralski process for semiconductor wafer
growth for electronics. It is important to control and understand
the crystal growth process because it is at this stage that the
material’s microstructure morphology is created, which in turn
defines the material’s properties. Consequently, a great deal of
effort has been put into understanding the complex interplay
between structure, thermodynamics, and kinetics that governs the
process of crystal growth!=3. This has led to a mechanism-based
understanding of crystallization*® in terms of the micro-
structural elements of the crystallite being formed. For example,
the character of the solid surface in contact with the liquid is
known to affect the growth rate, with atomically rough surfaces
leading to faster growth rates than flat low-index surfaces and
their vicinals. Considerably less attention has been put in
understanding the effects that the liquid adjacent to the
solid-liquid interface has on the process of crystal growth.
Atomic events leading to crystal growth are thermally activated
processes taking place in the free-energy landscape illustrated in
Fig. 2a. The rate of crystallization is proportional to exp(—fAE,),
while the melting rate is proportional to exp[—S(AE, + Ay)],
where AE, is the activation energy for solidification, Ay is the
difference in chemical potential between the liquid and solid
phases, 871 = kyT, and kg is the Boltzmann constant. The balance
of these two rates results in the following equation for the overall
growth rate:

r(T) = k(T){1 — exp[-BAu(T)]}, (1)

where k(T) = k, exp(—pAE,) is known as the kinetic factor. In
this model, known as the Wilson-Frenkel”-8 (WEF) model, the
activation energy for solidification is taken as the energy barrier
for diffusion in the liquid, AE, = AEy, because crystallizing atoms
must undergo the same self-diffusion process that occurs in the
associated liquid phase. It is often found that the WF method
cannot quantitatively predict results from simulations or experi-
ments>1Y. This notorious discrepancy, while largely unsolved, has
been attributed to changes in mobility of the supercooled liquid in
the vicinity of the crystal interface that would cause AE, > AEg,
but no physical mechanism has been demonstrated to explain the
origin of this effect.

Here we employ atomistic simulations and machine learning
(ML) together to show that the solid-liquid interface induces
partial ordering of the nearby liquid during crystal growth. Our
approach is successfully applied to two different families of
materials: semiconductors and metals. We find that the interface-
induced ordering (IIO) affects the mobility of liquid atoms and
thus slows down the crystal growth kinetics. The physical
mechanism behind the IIO is explained and we demonstrate that
by accounting for this effect it is possible to derive predictive
models for crystal growth.

Results

Crystal growth simulations. We performed molecular dynamics
(MD) simulations of crystalline silicon growth from its melt
employing a simulation geometry akin to laboratory experiments
of crystal growth: a crystalline seed is introduced in the liquid and
its growth is monitored over the course of the simulation (see
Fig. 1 and Supplementary Video 1). This setup allows the different
microstructural elements of the growing crystallite to interact
naturally (see Supplementary Videos 2 and 3), as they would in a
crystal growth experiment. For this geometry Ay = AG—«kylp,
where AG is the difference in free energy between the liquid and
the crystal, and the second term is due to the Gibbs-Thomson
effect, with p, being the density of the solid, y the interfacial free
energy, and k = 2/R 4 is a geometrical factor where R is the
effective crystallite radius. All the above parameters of the WF
model were computed (Fig. 2b and c) in order to compare the
model predictions against simulation results (for calculation
details see “Methods” section and Supplementary Notes 5 and 6).
The comparison between model and simulations is shown in
Fig. 3a, where it is evident that the WF model does not predict the
growth rate for temperatures it was not fitted to.

Machine learning encoding of crystallization events. Histori-
cally, simpler simulation geometries have been favored as a way
to isolate certain microstructural elements, which are then probed
separately!9-12 Our use of the geometry shown in Fig. 1 makes
the simulation more physically relevant at the expense of greatly
diminishing the amount of information that can be inferred due
to the lack of a crystal growth model that accounts for all
microstructural elements present and their respective interac-
tions. Moreover, it also becomes challenging to decipher the
atomic events at play due to the sheer complexity of the envir-
onment that atoms are embedded in. Here these obstacles are
overcome by employing ML algorithms to systematically encode
and classify the structure surrounding liquid atoms during crys-
tallization events. Our approach builds on recently proposed ML
strategies for the construction of a structural quantity (namely
softness S) that captures the propensity for atomic rearrange-
ments to occur in disordered atomic environments, such as in
glasses!>14 and inside grain boundaries!.

The structural characterization of local atomic environments is
realized by assigning to each atom i a local-structure fingerprint
x; constructed from a set of 21 radial structure functions!10
G(r), as illustrated in Fig. 4a. Furthermore, atoms are labeled into
three possible categories according to their first-neighbor’s
arrangement: liquid and crystal atoms have arrangement patterns
statistically identical to the bulk liquid and bulk crystal,
respectively. Meanwhile, crystallizing atoms have arrangement
patterns intermediary between the other two labels (see
“Methods” section and Supplementary Note 2 for more details).

t=1659 ps

t=2090 ps

Fig. 1 Crystal growth simulations. Snapshots of a crystal growth simulation of silicon using molecular dynamics. The system initially contains a small
crystalline seed (yellow atoms) surrounded by liquid (transparent blue atoms). Shown in the last frame is the dislocation network#6.62:63 formed during the
growth process (edge dislocations are colored blue while screw dislocations are shown in red). See Supplementary Video 1 for the complete video and

Supplementary Video 3 for dislocation network evolution.
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Fig. 2 Wilson-Frenkel model. a Free-energy landscape for solidification according to the Wilson-Frenkel model. The activation energy for solidification is
given by AE,, while Ay is the chemical potential difference between the liquid and solid. Atomic events contributing to crystal growth are thermally
activated processes occurring with rate re.yst for atoms moving from the liquid to the solid and rmeir for atoms moving from the solid to the liquid.

b Arrhenius plot of the liquid diffusivity as a function of temperature. The solid black line is the result of a least-squares fit to the data for T> T,,,. The
energy barrier for diffusion in the liquid AE4 is used as an input parameter in the Wilson-Frenkel model. ¢ Difference in free energy AG between the solid
and liquid phases. The thermodynamic melting temperature occurs at AG(T,,) = 0. The solid gray line is a guide to the eye to accentuate deviations from
the linear behavior.
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Fig. 3 Local-structure dependent crystal growth model. a Crystal growth rate of silicon versus interface temperature. Both models (Wilson-Frenkel and
local-structure dependent model) were parametrized using only the data from simulations at T>1388K. Notice that the growth rate is given per unit of
effective area of the total crystallite (see Supplementary Note 4) and the error bar represents the 95% confidence interval around the mean (see

“Methods” section). Data for laser-pulsed melting experiments was extracted from Galvin et al.64. b Growth rate at T~ 1233K decomposed as a function of
the local structure, as encoded by S, surrounding crystallizing atoms. Notice that the growth rate varies almost four orders of magnitude as S changes.

It is possible to observe how these three groups of atoms are
spread in the R*'-space of local-structure fingerprints x; with the
help of an algorithm known as principal component analysis
(PCA). With this method, a dimensionality reduction transfor-
mation is performed to create a R* representation of the R*'
data, as shown in Fig. 4b. Superimposed in this figure is also the
trajectory of an atom that undergoes crystallization over the
course of the simulation.

Atoms assume varied local-structure fingerprints x; depending
on both the surrounding liquid structure and the nearby interface
morphology. In order to quantify these variations in micro-
structure we proceed as follows. First, an ML algorithm known as
support vector machine!’~1? is employed to find the hyperplane
that optimally separates the crystallizing atoms from the liquid
atoms in the R*'-space of x;. Then, the distance of each atom i
from the hyperplane (S;, known as softness!3-1%) is measured:
atoms with S;>0 lie on the crystallizing side of the hyperplane,
while S;<0 atoms lie on the liquid side. This approach is found to

correctly classify liquid and crystallizing atoms with an accuracy
of 96%. It is important to realize that S is not an order parameter
because it was not designed to track the change from the liquid to
the solid phase. Instead, S measures the propensity of an atom in
the liquid phase to undergo the process of crystallization.

Shown in Fig. 4c is a simulation snapshot with atoms colored
according to their softness value (see also Supplementary Videos 4
and 5). In this figure S is seen to capture the structural signs of
dynamical heterogeneity in the supercooled liquid far from the
crystal, with clear indications of strong spatial correlations. These
fluctuating heterogeneities have recently been shown to be
preferential sites for crystal nucleation?®2!l. Thus, Fig. 4c
establishes that S is indeed capable of capturing subtle signs of
structural ordering in liquids.

Local-structure dependent (LSD) crystal growth model. It is
possible now to decompose the crystal growth rate of Fig. 3a as a
function of the local structure using S. For example, in Fig. 3b it
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Fig. 4 Machine learning encoding of atomic crystallization events. a The local structure (atoms in yellow) surrounding a central atom (green) is encoded
using a set of 21 radial structure functions G(r,), each evaluated at a different radial distance r, from the central atom, withn=1, 2, 3, ..., 21. Together these
functions comprise the atom's local-structure fingerprint, denoted as x; for the ith atom. b Atomic trajectory during crystallization as encoded by the time-
evolution of x; € R?'. The R?'-space was represented in two dimensions using the first two components of the principal component analysis method.

c Cross section of a snapshot of the initial stages of silicon growth. Liquid atoms are colored according to their softness (S) value, while atoms in the

crystalline phase are colored in gray. The clusters of liquid atoms far from the crystallite with S & O are due to dynamical heterogeneities in the

supercooled liquid.

is shown that the total growth rate at T'= 1233 K varies by almost
four orders of magnitude as the local structure changes. For this
reason, we propose to address the limitations of the WF model by
taking into account the local structure surrounding the crystal-
lizing atoms through an explicit dependence on S:

r(T,S) = KT, S){1 — exp[-BAu(T, S)]}, (2)

with Au(T,S) = AG(T) — xy(S)/p,. Indeed, accounting for the
information about the local structure contained in plots such as
Fig. 3b results in a crystal growth model with predictive cap-
abilities, as shown in Fig. 3a (see Supplementary Notes 3 and 4 for
details on the model calculation). Notice how the LSD model is
capable of predicting the growth rate for a wide range of tem-
peratures (i.e. T<1388K) not included in the model para-
metrization. In particular, the experimentally measured growth
rate and its slope show much better agreement with our LSD
model, Eq. (2), than with the WF model, Eq. (1). In the Sup-
plementary Note 3 we show that the variables introduced by the
dependence on S are not independent parameters. Thus, the
improved reproduction and prediction of simulation results
cannot be attributed simply to Eq. (2) exhibiting higher capacity
or flexibility in modeling complex relationships when compared
to Eq. (1).

We now turn to investigate the ramifications of the LSD model
r(T,S) and uncover the source of its predictive capabilities. The
kinetic factor k(T, S), shown in Fig. 5a, is observed to be a strong
function of the local structure, varying by as much as three orders
of magnitude with S. For each value of S the kinetic factor shows
an Arrhenius-like temperature dependence

k(T,S) = ko(S) exp[—BAE,(S)].

This striking outcome suggests that each value of S corresponds
to a thermally activated and independent crystallization channel
with well-characterized energy scale. Such a picture is reminiscent
of our traditional understanding of crystallization in terms of the
solid-liquid interface morphology, with different values of S
encoding the influence of different microstructural elements. But
here S encodes more than just the crystal local microstructure: it
also encodes the variation in the structure of the liquid. The

variation of liquid properties with local structure is reflected in
the dependence of the activation energy barrier of these
crystallization channels with S shown in Fig. 5b, where it can
be seen that AE,(S) varies over 1eV with S. Additionally, the
activation energy decreases monotonically with S and seems to
approach the energy barrier for diffusion AE4 (Fig. 2b)
asymptotically. Hence, the mobility of liquid atoms close to the
solid-liquid interface seems to vary greatly, from a negligible
change (AE,=AE4) compared to bulk liquid to a dramatic
reduction in mobility due to the increase in AE,. This change in
the liquid structure due to the presence of the solid-liquid
interface is known as I1O, Supplementary Fig. 5b shows that the
structural change does indeed lead to local ordering.

Varying S also has a pronounced effect on the Arrhenius
prefactor k,(S), as indicated in Fig. 5¢, which decreases by three
orders of magnitude with S. Because In [k,(S)] can be interpreted
as the product of an entropic contribution!” to the free energy
barrier and a term involving the population of crystallizing atoms
with softness S, the observed decrease in the prefactor indicates
that there are less rearrangement pathways leading liquid atoms
to the activated state (i.e. to crystallization) as S increases. Hence,
Fig. 5b and c together indicate that from all observed local-
structure arrangements surrounding crystallizing atoms, only
very few lead to low-energy barriers. Additionally, Fig. 3b
indicates that these few channels with low-energy barriers are
the ones contributing the most to the overall growth rate.

Next, we examine how the free energy of the solid-liquid
interface to which atoms attach varies with S, which should give
us a glimpse of the microstructure at the crystallite surface.
Figure 6a shows that p(S) decreases monotonically with S,
starting at large values—corresponding to high-index interfaces—
and reaching interfacial free energy values characteristic of low-
index interfaces in silicon. This finding implies that the decrease
in Arrhenius prefactor k,(S) with softness (Fig. 5¢) leads to fewer
rearrangement pathways because crystallization events with large
positive values of S happen at low-index surfaces and their
vicinals, which naturally offer less crystallization sites than high-
index interfaces. Despite the scarcity of crystallization sites
offered by low-index interfaces and their vicinals, Fig. 3b shows
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Fig. 5 Parameters of the local-structure dependent crystal growth model. a Arrhenius plot of the crystallization kinetic factor for different local structures
in silicon, as encoded by softness (S). The Arrhenius dependence on temperature suggests that each value of S can be interpreted as a thermally activated
and independent channel for crystallization with a well-defined energy scale. Notice that the glass transition temperature, T,/ T, ~1.68%5, is beyond the
temperature range of the figure. b Dependence of the activation energy barrier for solidification on the local structure. The extent to which the liquid
properties are affected by interface-induced ordering seems to vary greatly, from a negligible change (AE, ~ AEy) to an impressive variation of over 1eV.
The experimental results (AEZ®P) were obtained by Stolk et al.% and assume a single activation energy, i.e. Eq. (1) with AE, as a free parameter for fitting. For
the purpose of comparison we computed the equivalent quantity in our simulations: AEzi“ge, which is shown to agree with the experimental results within
the accuracy of the error bars. ¢ Arrhenius prefactor dependence on S. The decrease of three orders of magnitude with S implies that there are less
rearrangement pathways leading liquid atoms to the activated crystallizing state as S increases. All error bars reported are the standard deviation of their
respective parameters, except for AE;™ where we report the value quoted by Stolk et al.®.

that they contribute the most to the overall growth rate, with 70%
of all atoms attaching to interfaces with S = 0.75. This observation
is confirmed by direct measurement of the distribution of crystal
surfaces to which crystallizing atoms attach: Fig. 6b reveals strong
preferential attachment to a wide variety of (111) vicinals. The
high-intensity spot around (435) corresponds to step-step
separation distances from 15 to 24 A (Fig. 6¢), indicating that
the majority of the crystallization events take place on vicinal
surfaces with well-separated steps, which is exactly what is
expected for silicon?2. Figure 6b also shows a smaller amount of
events occurring at high-index interfaces, further validating the
above observations. Notice in Supplementary Video 1 that the
crystallite also exhibits signs of rough interfaces, thus it is possible
that a small fraction of the identified high-index are actually
rough.

Applicability to a different family of materials. In order to
verify that our approach in creating LSD predictive models of
crystal growth is not particular to silicon (or semiconductors) we
apply it in the development of a crystal growth model for an

elemental metal, namely copper (see “Methods” section and
Supplementary Note 7 for simulation details). The resulting
model is shown in Fig. 7a, where it can be seen that the LSD
model of copper also correctly predicts the growth rate at tem-
peratures at which it was not parametrized on (i.e. it is a pre-
dictive model), while the WF model is not capable of reproducing
simulation results at temperatures to which it was not fitted,
similarly to what was observed for silicon in Fig. 3a. Moreover,
analysis of the parameters of the LSD model of copper (Fig. 7b)
shows that all parameters present the same trend with S as
observed for silicon, including the Arrhenius behavior for the
kinetic factor (shown in Supplementary Fig. 19¢).

The major difference observed between the LSD models of
silicon and copper is that ky(S) and AE,(S) assume much larger
values for copper. We attribute this to the predominance of rough
interfaces in metallic systems. In contrast to semiconductors,
interfaces in metallic systems typically do not advance by the
lateral motion of steps. Instead, metal interfaces often advance by
atomic attachment directly on top of them, leading to growth
normal to the interface itself. This growth mechanism is reflected
in Fig. 7a (inset), where it is seen that atomic attachments occur
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directly on (001) and (111) interfaces—leading to normal growth ~ Video 1 to Supplementary Video 7). Normal growth leads to the

—instead of vicinals of (111) as observed for silicon in Fig. 6b
(compare also Fig. 1 to Supplementary Fig. 14 and Supplementary
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Fig. 6 Interface structure effect on crystal growth. a Free energy of the
solid-liquid interface to which atoms with softness S attach. Large positive
values of S have interface free energies characteristic of low-index
interfaces in silicon, while negative values of S are found to be associated
with high-index interfaces. Interfacial free energies y¢00y, Ycon, and yam
and their respective error bars were obtained by Shou and Pan®®. The error
bar of y(S) is the standard deviation. b Distribution of interfaces to which
the crystallizing atoms attach, showing a strong preference for (111) vicinals
and a smaller amount of crystallization events on high-index interfaces.

¢ Step-step separation distances (dsp) for steps on (111) surfaces.
Interfaces for which d.p, is much larger than the interatomic distance are
vicinals (i.e. composed of (111) facets well separated by steps), while
interfaces with dgep, of the order of the interatomic distance are high-index
interfaces in which individual steps cannot be discerned anymore.

formation of atomically rough interfaces that offer a much larger
amount of atomic disorder than well-structured high-index
interfaces. Hence, rough interfaces present a larger availability
of sites for liquid atoms to attach, leading to much higher values
for ky(S) due to the numerous atomic pathways leading to
crystallization. The predominance of rough interfaces also
explains the larger values of AE,(S) observed for copper, but
this explanation will be postponed until the “Discussion” section,
where the connection will be discussed in the light of the effects of
IO on crystal growth.

Discussion

Solid-liquid interfaces in equilibrium are known to affect the
structure of the nearby liquid by imparting some amount of order
on it23-31, Here, we have established that the ITO of the liquid also
occurs during the process of crystal growth—a dynamic situation
in which the solid-liquid interface is not in equilibrium. The
observed IIO seems to decrease the mobility of liquid atoms
through changes in the activation barrier for crystallization AE,
(Fig. 5b), effectively slowing down the crystallization kinetics.

Comparison of Figs. 5b and 6a reveals that the IIO of the liquid
is anisotropic, i.e. it depends on the interface orientation and
microscopic levels of roughness. The trend (illustrated in Fig. 8) is
such that low-index surfaces and their vicinals (corresponding to
large positive S in Fig. 6a) cause weak ordering, resulting in
smaller activation energies (i.e. AE,(S) close to the energy barrier
for atomic diffusion in the liquid bulk AE4). Meanwhile, high-
index interfaces (negative S in Fig. 6a) cause strong ordering of
the liquid, which becomes rigid and results in activation energies
much larger than AE,. However, even in the case of strong IIO
the activation energy (1.75 eV) is still much smaller than the =4.6
€V32 barrier for vacancy-mediated self-diffusion in crystalline
silicon. This indicates that the structural order of the liquid
affected by IIO is nowhere as substantial as crystalline order.

The physical cause of the IIO anisotropy is that the interaction
between the crystal surface and the liquid is mediated by the
amount of dangling bonds on the crystal surface. Thus, strong
liquid ordering (and slower mobility) is observed at high-index
interfaces because these interfaces interact more strongly with the
liquid, since they present more dangling bonds when compared
to low-index interfaces and its vicinals. This mechanism is illu-
strated in Fig. 8a and b, while its effect on the free-energy land-
scape of the system is illustrated schematically in Fig. 8c. Notice
that this mechanism also explains why copper has much larger
values of AE,(S) (Fig. 7b) while having similar energy barrier for
diffusion in the liquid AE4: rough interfaces are predominant in
copper and these interfaces have much stronger interactions with
the liquid when compared to low-index and vicinal surfaces,
which are predominant in silicon.

Dynamical heterogeneities present in the liquid (Fig. 4c) also
affect the coordination of atoms?%-33:34 For this reason, it is
reasonable to expect that they contribute to the =1 eV dispersion
in AE,(S) observed in Fig. 5b. Nonetheless, there is no evident
reason to believe that their effect is anisotropic since dynamical
heterogeneities have origin in random thermal fluctuations.

In conclusion, we have discovered that the IIO of liquids
strongly affects the process of crystal growth in metals and
semiconductors. It is found that the modified structure of the
liquid nearby solid-liquid interfaces reduces the mobility of liquid
atoms, an effect shown to be essential in order to build a pre-
dictive model of the growth rate temperature dependence. Indeed,
the construction of such predictive model was only possible by
identifying and incorporating in the model the family of all
thermally activated events— each with its own energy scale—
leading liquid atoms to the crystal phase. Our work elevates the
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Fig. 7 Local-structure dependent model of crystal growth for copper. a Crystal growth rate versus interface temperature for copper. Both models
(Wilson-Frenkel and local-structure-dependent model) were parametrized using only the data from simulations at T>1137K. The error bars represent the
95% confidence interval around the mean (see “Methods” section). b Dependence of the activation energy for solidification on softness (S). The inset
shows the interface free energy and the Arrhenius prefactor. The interface-induced ordering of the liquid affects the process of crystal growth of metals in
the same manner as it was observed for silicon. The major difference when compared to the results for silicon is that ko (S) and AE,(S) assume much larger
values due to the predominance of rough interfaces in metallic systems. Error bars are standard deviations.

liquid structure to the same level of importance as the crystal
surface morphology in understanding crystallization, a knowledge
that can enable material advances through the incorporation of
liquid-structure engineering as a novel pathway for synthesis. Our
results were only made possible by employing atomistic simula-
tions and ML together. The strength of this combined approach is
that one can perform complex simulations and yet glean physical
insight from notoriously haphazard atomic environments. This
innovative application of ML in materials science blends con-
ventional scientific methods with data science tools to produce
physically consistent predictive models and novel conceptual
knowledge.

Methods

Silicon crystal growth simulations. The MD simulations were performed using
the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS3%)
software, with the interactions between silicon atoms described by the
Stillinger-Weber® interatomic potential. The timestep was selected as ~1/56th of
the period of the highest-frequency phonon mode of this system, or At =1 fs. The
crystal growth simulations contained 500,000 atoms and were initialized with a
spherical crystalline seed of ~3000 atoms in the diamond cubic structure. The
lattice parameter for the atoms in the crystal seed was chosen taking into account
dilation due to thermal expansion, then the remainder of the simulation cell was
filled with randomly distributed atoms at the equilibrium liquid density for that
temperature at zero pressure.

The system was equilibrated by first relaxing the liquid atoms using a Conjugate
Gradient?” algorithm for 200 steps. Next, the liquid was equilibrated at finite
temperature using the Bussi-Donadio-Parrinello’® (BDP) thermostat for 3 ps with
a damping parameter of 0.1 ps. Finally, liquid atoms were equilibrated for 2 ps at
zero pressure and finite temperature using the same thermostat just described and
a chain Nosé-Hoover barostat?®-43 with damping parameter of 1 ps and a chain
length of three, allowing only for isotropic dilation/contraction of the system.
During the entirety of this equilibration process the crystalline seed atoms were
kept frozen at their equilibrium crystal structure with fixed lattice parameters (i.e.
they did not dilate/contract with the liquid atoms). After equilibration the BDP
thermostat and chain Nosé-Hoover barostat were applied to the entire system,
both with damping parameter of 1.0 ps, to maintain the system at finite
temperature and zero pressure for a total of 3 ns during which snapshots were
recorded every 1 ps. The crystal growth process can be seen in the Supplementary
Video 1. Snapshots saved from the MD simulations were subsequently relaxed
using 20 steps of the Steepest-Descent’” algorithm. The crystal growth simulations
were performed at temperatures ranging from 1125 to 1500 K in intervals of 25 K.

The damping parameter for the thermostat was selected conservatively such
that the liquid diffusivity was not affected by the presence of the thermostat, i.e. it
had the same value within the statistical uncertainty as the diffusivity computed
without a thermostat. Thus, the thermostating of the crystal growth simulation was

performed gently as to not affect the kinetics of the system. See Supplementary
Note 6 for more details on the diffusivity calculations.

Phase identification. In order to identify to which phase (liquid or crystal) each
particle belongs, we used the order parameter introduced by Rein ten Wolde et al*4.
The complete description and analysis of the construction of this order parameter
can be found in the Supplementary Note 2. Ultimately, this method provides us with
a parameter o,(t) for each atom i at the time ¢ of each MD snapshot. The physical
interpretation of this parameter is that «; is the fraction of bonds that atom i makes
that resemble bonds in a perfect crystal structure. As shown in the Supplementary
Note 2, the parameter ; correctly identifies atoms in the perfect crystal or bulk liquid
with accuracy of 100% within the statistical uncertainty. It is important to notice that
although «o; can discern between liquid and crystal atoms, it does not differentiate
between crystalline structures. We confirm that the silicon atoms are indeed crys-
tallizing in the diamond cubic structure by performing the polyhedral template-
matching?>40 analysis.

Encoding atomic dynamics (ML labeling). The dynamics of each atom was
encoded using the time evolution of the «;(¢) order parameter. A representative
plot?” of a;(t) is shown in Supplementary Fig. 4b and c. Notice that due to thermal
fluctuations the instantaneous value of a,(t) for atoms in the liquid and crystal
phases might differ from their perfect values of 0.0 and 1.0, respectively, even after
the short Steepest-Descent relaxation. Hence, we perform a moving-window
average of a;(t) with window length of 20 ps and use the window-averaged &;(t) to
label the atomic dynamics as illustrated in Supplementary Fig. 4a. Atoms with
a,;(t) = 0 for t € [ty—T, ty + T,] receive label y; = —1 at time #,. These are atoms
deep in the liquid phase that will not be transitioning to the crystal state in the near
future, neither have tried to transition in the near past. From the analysis of curves
such as in Supplementary Fig. 4c we choose 7, = 15 ps as a reasonable value. Next
we identify atoms that have just started to move out of the bulk liquid (i.e. crys-
tallizing atoms) as those within a 20 ps window from the point where ; = 0.25, i.e.
y;=1for t € [ty—1, ty + 7] where &;(t,) = 0.25 and 7= 10 ps. See Supplementary
Note 2 for more details on the labeling process.

Local-structure fingerprint (ML features). The local structure surrounding each
atom was characterized using a set of radial structure functions!316:

ni)
Gi(r) = ZeXP {*(f,‘j —1)?/20%|,
=)

where i is the atom whose local structure is being described, n(i) is the number
neighbors of i within a cutoff radius 7.y, r;; is the distance between atom i and one
of its neighbors j, 7 and ¢ are two parameters that define the radial structure
function. These smoothly varying functions of r count the number of neighbors of i
at a distance r. In this interpretation, parameter r represents the radial distance
from i at which we are counting the number of neighbors, while o adjusts how
smoothly the function varies as atoms move in and out of the distance r vicinity.
We have used a grid-search*® algorithm to perform the hyperparameters tuning
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Fig. 8 Interface-induced ordering mechanism. a lllustration of how
interface-induced ordering of the liquid alters the local structure around
crystallizing atoms and affects the activation energy for solidification. The
crystallizing atom (green) has its local structure (illustrated here only by its
first neighbors) affected by the nearby solid-liquid interface. This effect is
anisotropic: high-index or rough interfaces interact strongly with the liquid
and cause significant ordering of the liquid, which becomes rigid, resulting
in large activation energies AE, when compared to the barrier for diffusion
in the liquid AEy4. b Low-index interfaces interact weakly with the liquid and
cause very small ordering, resulting in low AE,. ¢ Schematic illustration of
the effect of interface-induced ordering of the liquid on the free-energy
landscape of crystallization. Note how the liquid free-energy basin moves to
the left with increasing ordering, causing AE, to become progressively and
continuously larger.

(see Supplementary Note 1 for more details), resulting in 0= 0.5 A, row =108 4,
and r, = (2.0 4+ 0.4n) A, with n =0, 1, 2, ..., 20. With this set of 21 radial structure
functions—one for each value of r—the local-structure fingerprint of each atom i
was built as a vector:

x; = [Gi(r1), Gi(r2), - s Gi(ray)]-

Softness calculation. The data was assembled by pairing the dynamic labels y;
with their corresponding structural fingerprint x;. Then, 10,000 (y;,x;) pairs were

randomly selected and equally divided between the y=—1 and y =1 classes to
train a support vector machine!”-1° (SVM) classifier. The SVM algorithm finds the
hyperplane of the form w - x — b = 0 that optimally separates the two classes,
where w and b are the parameters that define this hyperplane. Before training the
SVM classifier the elements of the fingerprints were standardized*3 to have zero
mean and standard deviation of one. The optimal hyperplane found, denoted by
the parameters w™ and b”, correctly separates the two classes with an accuracy of
96%. See Supplementary Note 1 for more details about how these parameters are
found and an in-depth analysis of the quality of the classifier computed. All results
shown here were obtained using data from the crystal growth simulation at T=
1500 K to train the SVM classifier. However, the results can be reproduced within
the statistical uncertainty when training at any other temperature, as shown in the
Supplementary Note 3.

Once the SVM classifier has been trained it was applied to the entire data set,
composed of 27.5 million data points (excluding the data used for training,
hyperparameter tuning, and cross validation). The value of softness'4 for each data
point (or atom) is the signed distance from the hyperplane, or S; = w* - x; — b" for
each atom i.

Parameter estimation and temperature extrapolation. In order to test how
predictive the LSD and WF models are we performed the model parameterization
of both models using only the data collected for low undercooling (i.e. T'> 1388 K)
and observed how well the model predicts the temperature dependence for higher
undercoolings (i.e. temperatures as low as 1128 K). As shown in Fig. 3a the LSD
model is capable of predicting the growth rate at temperatures it was not para-
metrized on, while the WF model only reproduces the simulation results at tem-
peratures it was fitted to. We attribute this to the fact that the LSD model accounts
for the Arrhenius family of thermally activated atomic events leading to crystal
growth, as labeled by S. This is fundamental physical information that is not
incorporated in the WF model.

For Figs. 5 and 6a only, the S dependence of the parameters of the LSD model
(i.e. AE,, ko, and y) was measured after reparametrizing this model using the data
from all simulations with T'> 1206 K. The reparametrization was necessary only in
order to reduce the statistical uncertainty of the parameters measured. This range
of temperatures was chosen because below T= 1206 K the kinetic factor k(T, S)
showed signs of non-Arrhenius behavior for some values of S due to the
approaching glass transition temperature. Notice that below T = 1206 K the bulk
liquid diffusivity also shows signs of departure from the Arrhenius behavior. Thus,
there are no reasons to expect the Arrhenius behavior for k(T, S) to hold below T
= 1206 K because the mobility of liquid atoms close to the crystal surface is smaller
than in the bulk due to IIO effects.

Principal component analysis. Figure 4b was obtained by applying the PCA*3 to
a data set containing equal amounts of crystallizing, liquid, and crystal, for a total
of 60,00 data points. Crystal atoms were defined as those for which a;(t) = 1.0
(bulk crystal atoms) or &;(t) = 0.75 (stacking fault atoms) for t € [ty—Ty, to + Tal
with 7, = 15 ps. From the PCA we obtained the components of each data point
along the two eigenvectors with largest eigenvalues, which are used to plot Fig. 4b.
The atom trajectory was obtained by applying the same PCA transformation along
a single 3 ns trajectory of an atom in a simulation at 1500 K.

Growth rate determination. The number of atoms in the crystallite N(t) at any
given time ¢ was determined as the number of atoms with &;(¢)>0.25. From this
information the effective crystallite radius R4 (¢) (shown in Supplementary
Fig. 10a) was computed assuming a spherical shape (which results in x = 2/R g,
where « is the geometrical factor in the Gibbs-Thomson term). The growth rate for
each temperature, shown in Fig. 3a, was determined by a linear fit of N(¢) over the
time interval for which R € [80A, 100A]. This interval is such that the crystallite
is small enough to not be affected by finite-size effects, but large enough to give the
system time to equilibrate into a steady-state growth condition. See Supplementary
Note 4 for a more detailed analysis.

Error bars in Fig. 3a represent the 95% confidence interval as computed using
the bootstrap method with 1000 samples of the same size as the original
distribution.

Interface temperature. When studying crystal growth, it is important to differ-
entiate between the temperature of the supercooled liquid surrounding the crystal
(but far from the interface) from the solid-liquid interface temperature. Under
steady-growth conditions these two temperatures will differ because of the latent
heat released at the interface and the finite rate of heat transport. Here, the
interface temperature was computed by considering only the kinetic energy of
atoms with @; € (0.15,0.75). This interval of & was selected because it includes
both, interfacial liquid and interfacial crystal atoms. Supplementary Fig. 10b shows
the interface temperature under steady-state growth as a function of the sur-
rounding liquid bath temperature. See Supplementary Note 4 for more details.

Crystal surface analysis. Figure 6b was obtained by constructing a polyhedral
surface mesh around the crystallite (i.e. atoms with &;(t) >0.25) using the algo-
rithms by Stukowski#’ (as implemented in Ovito®) with a probe-sphere radius of
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3.0 A and a smoothing level of 10. From this mesh the surface directions were
inferred and averaged over the time interval for which the crystal growth occurs in
a steady state. The data for constructing Fig. 6b was obtained by finding the
orientation of the closest surface to each crystallizing atom.

The only atomically smooth surfaces in silicon are {111} surfaces®?,
consequently steps can only exist in these surfaces. Hence, the step-step separation
distance shown in Fig. 6¢ was computed assuming that (111) faceting occurs at all
surface orientations.

Solid and liquid free energies. The accurate calculation of the solid and liquid free
energies is crucial in crystal growth studies. As shown in the Supplementary Note 5,
employing approximations such as the quasi-harmonic approximation results in
the underestimation of the predicted growth rates by as much as 36%. For this
reason, we performed the solid and liquid free energies calculations using state-of-
the-art nonequilibrium thermodynamic integration methods that make no
approximating assumptions on the physical characteristics of the system. The
crystal free energy was determined using the nonequilibrium Frenkel-Ladd>0-52
(FL) and the reversible scaling®>%3 (RS) methods, following closely the approach
described by Freitas®2. For both methods a system of 21,952 silicon atoms in the
diamond cubic structure was employed. The thermodynamic switching was per-
formed in 200 ps for each direction, before which the system was equilibrated for
20 ps. The FL switching was realized for temperatures ranging from 100 to 2000 K
in intervals of 100 K. For each temperature the switching was repeated in five
independent simulations to estimate the statistical uncertainty. Similarly, the RS
switching was also repeated five times. The S-shaped function was employed in the
FL switching, while the RS switching was performed with T; =100 K and Ty=
2000 K under the constant dT/dt constraint. The system’s center-of-mass was kept
fixed for the FL and RS simulations, while a Langevin®>> thermostat with
damping parameter of 0.1 ps was applied. For the RS method a chain Nosé-Hoover
barostat with damping parameter of 1 ps and chain length of three was used to
keep zero pressure. The absolute free energies and a comparison with the harmonic
and quasi-harmonic approximations®® can be seen in Supplementary Fig. 11.

Liquid free energies were computed using the Uhlenbeck-Ford®7-* (UF) and
R$>>%8 methods, following closely the approach described by Leite®8. The liquid
free energy calculations had the same number of atoms, switching time,
equilibration time, and thermostat as the crystal free-energy calculations. The
liquid density was the equilibrium density at zero pressure, with the thermal
expansion dilation taken into account. For the UF method we used p =50, 0=
1.5 A, and a cutoff radius of 7. = 50. The UF switching was performed linearly with
time, while the RS switching had the same time dependence as the crystal with
T;=2000K and T;=1100K (the lower final temperature T was chosen to avoid
the liquid vitrification at low temperatures). For both methods—UF and RS—the
switchings were repeated in five independent simulations to estimate the statistical
uncertainty.

Copper. All results for copper were obtained from simulations that followed the
exact same specifications as the simulations described above for silicon. The only
modifications performed are described in this section.

The interaction between copper atoms was described using the embedded-atom
method>® interatomic potential of Foiles et al.®0. The timestep was selected as
approximately 1/66th of the period of the highest-frequency phonon mode of this
system, or At =2fs. The crystal growth simulations contained 1,000,000 atoms
(notice that this is twice the size of the simulations for silicon) and were initialized
with a spherical crystalline seed of ~24,000 atoms (eight times larger than for
silicon) in the face-centered cubic structure. The difference in system size allowed
us to explore much lower undercoolings for the crystal growth simulations, which
ran for a total of 2 ns per temperature. In contrast to the simulations for silicon, the
snapshots saved from MD simulations were not subsequently relaxed before
computing structural parameters because it has been shown that energy
minimizations lead to significant crystallization in metallic systems®!. The crystal
growth simulations were carried out at temperatures ranging from 900 to 1200 K in
intervals of 25 K. The growth rate for each temperature, shown in Fig. 7a, was
determined by a linear fit of N(t) over the time interval for which
R € [L00A, 120A], as detailed in Supplementary Note 4.

The local-structure fingerprint x; for the copper atoms was composed of a set of
37 radial structure functions defined by the following parameters: 6= 0.3 A, ry =
20.6 A, and r, = (2.0 + 0.51) A, with n=0, 1, 2, ..., 37. These parameters were
obtained through the same hyperparameter optimization process applied to silicon,
as described in the Supplementary Note 1. The SVM classifier trained with the data
collected for copper had accuracy of 97%. The results presented here were obtained
using data from the simulation at = 1200 K to train the SVM classifier. The total
size of the data set for copper was 77.9 million data points.

All results for the LSD model for copper (including Fig. 7 and Supplementary
Fig. 19¢) were obtained using data from simulations at T'> 1136 K. Below this
temperature the kinetic factor showed signs of non-Arrhenius behavior for some
values of S due to the approaching glass transition temperature, similarly to what
was observed for silicon. Notice that below T=1136 K the bulk liquid diffusivity
also shows signs of departure from the Arrhenius behavior. Thus, there are no
reasons to expect the Arrhenius behavior for k(T,S) to hold below T=1136 K

because the mobility of liquid atoms close to the crystal surface is smaller than in
the bulk due to IIO effects.

The solid and liquid free energies were computed for systems containing 19,652
copper atoms. The FL and RS methods were applied with a switching time of 400
ps for each direction, preceded by an equilibration time of 40 ps. The FL switching
was realized for temperatures ranging from 100 to 1300 K in intervals of 100 K. The
RS switching for the solid was performed with T; =100 K and T;= 1300 K, while
for the liquid we used T; = 2000 K and Ty= 900 K. For the UF free-energy
calculations we used p =75, 0=1.3 A, and a cutoff radius of . = 5.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability

The code and scripts used to generate the results in this paper can be downloaded from the
following repository: https://github.com/freitas-rodrigo/CrystallizationMechanismsFromML.
Any custom code that is not currently available in the repository can be subsequently added
to the repository upon request to the corresponding author.
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