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INTRODUCTION 
 

Telomeres are specific structures that protect the ends of 

linear chromosomes from fusion and degradation. 

 

Telomere length, which is usually studied in leucocytes 

(leucocytes telomere length, LTL), has been extensively 

studied in relation to aging and longevity as it has been 

reported to be inversely associated with age and with age-

related decline. Indeed, short telomeres have been 

associated to numerous age associated diseases (such as 

cardiovascular diseases, neurodegenerative diseases, type 2 

diabetes mellitus, premature aging syndromes, and cancers 

[1–5] (and references therein).  Consistently, a study by 

Njajou et al [6] suggested LTL to be an informative 

biomarker of healthy aging. A similar result was reported 

by Kim et al [7] who observed a positive association of 

LTL with several measures of healthy aging in an age-

dependent way. LTL was also found to correlate positively 

with physical ability in Danish twins aged 70+ [8]. 

Centenarians, considered a model of successful aging, 

have demonstrated to be generally characterized by longer 

telomeres, as well as their offspring show longer LTL with 

respect to people of the same age from the general 

population [9]. Further, the paper by Terry et al [10] have 

reported that healthy centenarians had significantly longer 

telomeres than did unhealthy centenarian. 

 

Although it has often been correlated with life 

expectancy, conflicting data about LTL as a predictor of 

mortality in older adults have been reported. While 

some studies have found that LTL is a marker of 

mortality [1, 11–14], others have not found such 

association [6, 15–18], getting the relationship of LTL 

to aging and survival in humans unclear. 

 

LTL is largely defined by genetic and environmental 

factors early in life [19, 20], and is substantially 
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ABSTRACT 
 

Telomeres are subject to age related shortening which can be accelerated by oxidative stress and inflammation. 
Many studies have reported an inverse correlation between telomere length and survival, but such inverse 
correlation has not been always confirmed in different populations. We analyzed the trend of Leukocyte 
Telomere Length (LTL) as a function of age in a cohort of 516 subjects aged 65-106 years from Southern Italy. 
The trend of LTL obtained was quite similar to demographic survival curves reported with data of western 
societies. We observed a decrease of LTL after 70 years of age and then an increase after 92 years, in agreement 
with the sharp decrease of survival after 70 years of age and its increase after 90 years, due to the deceleration 
of mortality at old ages. Our data suggest that a generalized LTL attrition after 70 years of age, associated to 
organismal decline, affects most of the population. Such generalized attrition may exacerbate senescence in 
these subjects, predisposing them to high mortality risk. Conversely, the subjects with better physical 
conditions, experience a lower attrition and, consequently, a delayed senescence, contributing to the 
deceleration of mortality which has been observed among very old subjects in modern societies. 
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maintained during adulthood, although some lifestyles 

may significantly accelerate telomere shortening. 

Among the factors affecting LTL, oxidative stress and 

inflammation have been indicated. Consistently, 

smoking habits, drug abuse, obesity, sedentary life have 

been associated to shorter LTL [21–25]. As to the 

genetic factors, different estimates of the heritability for 

telomere length vary from 35 to 80% [9, 26, 27]. 

Genetic determinants of telomere length have been 

found in polymorphic variants at genes involved in 

leucocytes LTL maintenance, (like TERT and TERC), as 

well as in DNA repair mechanisms, (like PARP1, ATM, 

POT1), identified in candidate gene and genome wide 

association studies (GWAS) [28–35]. Telomere 

maintenance is strictly related to telomerase activity, a 

specialized ribonucleoprotein complex responsible for 

adding telomeric repeats to the ends of chromosomes.  

In most human somatic cells, except for stem cells and 

lymphocytes, telomerase activity gradually diminishes 

after birth. The level of telomerase activity is low in 

most adult somatic stem cells, whereas it is upregulated 

in some progenitor cell types and cancer cells [36]. 

Basically, the lack of telomerase activity is considered 

the main cause of physiological telomere shortening at 

each cell division and the leading contributor to 

replicative senescence [37–39]. 

 

In the aging subjects, attrition, and the consequent 

shortening, of telomeres undergo an acceleration. 

Berglund et al. [40] reported that the acceleration of 

telomere shortening starts at 69 years of age, with a 

significant inter-individual variation. Age related attrition 

of telomeres, and its acceleration, may be related to 

increase of oxidation and inflammation which are typical 

of old age and to the genetic background [9, 26, 27]. 

Different studies demonstrated that for a given age, about 

60% of the inter-individual variation in LTL and 30% of 

its age-dependent attrition are heritable [26, 41]. Papers 

on this topic highlight the importance of long-term 

longitudinal studies and multiple measurements of LTL 

over time to have a more comprehensive picture of 

telomere length changes across the life course and its 

influence on lifespan [42–46]. But such studies are 

difficult to undertake in humans. 

 

Given the different factors affecting telomere length 

(environmental and genetic factors in the first two 

decades, lifestyle in adulthood, genetic background, 

lifestyle and health status at old age) it is not surprising 

that the meaning of LTL in old subjects is difficult to be 

fully understood. Similarly, the contrasting results 

regarding the correlation between LTL and lifespan may 

reflect the overestimation of some of the different factors. 

 

Here, to gain more insights into the relationship between 

LTL, survival and lifespan, we examined the association 

of LTL with all-cause mortality, using ten-years follow-

up survival data of 516 subjects 65+ years of age, 

including centenarians. Furthermore, taking advantage 

of a second measurement after seven years in a sub-

sample of individuals, we investigated the influence of 

telomere attrition on survival at very old age. 

 

RESULTS 
 

LTL expressed as the T/S ratio was measured in a sample 

of 516 subjects (240 males and 276 females; aged 65-106 

years; median ages 80.54+10.87). The demographic 

characteristics of the whole sample and of the sample 

divided by age groups are provided in Table 1. The mean 

LTL value at baseline was 0.99 ± 0.82 T/S (range, 0.16–

5.55, median 0.73), with no difference between males 

and females (Supplementary Figure 1; p>0.05). Figure 1 

reports LTL distribution as a function of age. 

 

A progressive decrement in LTL is evident up to an 

inflection point around the age range 83 to 92 years, 

after which LTL increase slowly. This distribution was 

statistically significant (p<0.0001), that is the line that 

best captures the trend of the relationship between T/S 

ratios and age. Consistently, results of linear regressions 

showed: a significant negative correlation between T/S 

ratios and age in the whole sample (p<0.0001; 

Supplementary Figure 2A), a weak but negative 

correlation between 65 to 82 years (p=0.08; 

Supplementary Figure 2B); no correlation between 83 

to 92 years (p=0.277; Supplementary Figure 2C), a 

significant positive correlation between 93 to 106 years 

(p= 0.003; Supplementary Figure 2D). 

 

No correlation between survival probability and LTL 

was found (p=0.673). 

 

The peculiar LTL distribution curve of the cohort shown 

in Figure 1 prompted us to investigate the survival 

probability in the age window from 83 to 92 years. As it 

can be seen in survival curves in Figure 2, individuals 

within this age range having longer telomeres (second and 

third tertiles) seem to live longer, about eleven months, 

than those having shorter ones (first tertile), although this 

difference is not significant (HR = 1.48; 95% CI = 0.96-

2.30; p = 0.075). This result may suggest that telomere 

length could affect mortality risk in this age window. 

 

Longitudinal study 
 

For 36 subjects (Table 1) we had available two LTL 

evaluations, at baseline (mean age 78.69+3.85) and after 

7-years of follow-up when their mean age was 

85.33+3.91, falling in the above age-window. This 

allowed us to address the impact of telomere attrition in 

determining the risk of mortality. 
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Table 1. Demographic characteristics of the sample. 

 

A decrease of about 13.64% in LTL between the first 

and second sampling was observed (mean ± SD LTL at 

baseline 1.00+0.41; mean ± SD LTL at follow-up 

0.88+59. p = 0.048), as it emerges from scatter plot of 

the T/S ratios at baseline and after 7 years showed in 

Figure 3. 

 

Interestingly, the LTL measured after the 7 years of 

follow-up was found to be inversely correlated to 

survival (HR= 1.48; 95% CI=1.02-2.14; p=0.041; 

Figure 4). 

 

Moreover, we calculated the difference in LTL 

between the first and second sampling (delta-T/S) and 

then we divided the sample into subjects with higher 

attrition (first tertile) and subjects with minor attrition 

(second/third tertile). As it can be seen in 

Supplementary Figure 3, although the sample was 

quite small, was found a greater telomere attrition in 

subjects with longer telomeres at baseline [mean 

(SEM) = 1.37 (0.12)] as compared with those with 

shorter telomeres [mean (SEM) = 0.84 (0.61)] (p < 

0.0001). 

 

Also, survival analysis (Figure 5), obtained with sex 

and age as covariates, showed that subjects suffering 

during the follow-up a minor telomere attrition tend to 

live longer than those having higher telomere attrition 

in the same period (HR=2.343; 95% CI=0.97-5.64; 

p=0.058). 

 

 
 

Figure 1. Leukocyte Telomere Length (LTL) expressed as T/S ratio as a function of age. 

Total sample (%) 

Age range (mean ± SD) Male Female Total 

65-106 (80.54 ± 10.87) 240 (46.50) 276 (53.50) 516 (100) 

Distribution by age groups (%) 

Age range (mean ± SD) Male Female Total 

65-82 (72.47 ± 4.98) 162 (31.40) 144 (27.90) 306 (59.30) 

83-92 (89.33 ± 2.48) 44 (8.53) 82 (15.89) 126 (24.40) 

93-106 (96.76 ± 2.98) 34 (6.59) 50 (9.69) 84 (16.30) 

Longitudinal subsample (%) 

Mean age (SD)  Male Female Total 

78.69 (3.85) at baseline    

85.33 (3.91) after 7 years 9 (25) 27 (75) 36 (100) 
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Figure 2. Survival functions relative to carriers of shorter telomeres (first tertile) vs carriers of longer telomeres 
(second/third tertile) conducted on the age range 83 to 92 years. The Cox regression was adjusted for age and sex. Time is expressed 
in months, where zero is considered the time of recruitment. HR value, confidence interval, and p-value from Cox regression analysis are 
reported inside the figure. 

 

 
 

Figure 3. Scatter plot of T/S ratio values at first and second sampling of the 36 subjects analyzed. 
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Figure 4. Survival functions relative to carriers of shorter telomeres (first tertile) vs carriers of longer telomeres 
(second/third tertile) in the follow-up sample after seven years from the baseline visit. The Cox regression was adjusted for age 
and sex. Time is expressed in months, where zero is considered the time of recruitment. HR value, confidence interval, and p-value from Cox 
regression analysis are reported inside the figure. 

 

 
 

Figure 5. Survival functions relative to carriers of greater attrition (first tertile) vs carriers of minor attrition (second/third 
tertile) conducted on the follow up sample. The Cox regression was adjusted for age and sex. Time is expressed in months, where zero 
is considered the time of recruitment. HR value, confidence interval, and p-value from Cox regression analysis are reported inside the figure. 
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DISCUSSION 
 

One of the most debated questions in gerontological 

research is if telomere length can be considered a 

predictor for a long and healthy life. Problems in 

results’ interpretation for different studies come from 

the heterogeneity of factors affecting LTL (influenced 

by genetics, epigenetics, and environment), from the 

lack of proper controls and, last but not least, from the 

availability of follow-ups of both LTL and survival for 

recruited samples. 

 

This study was carried out in Calabria, a region of 

Southern Italy. It should be noted that Calabrians, as 

reported elsewhere, represent a population quite 

different with respect to other populations studied so far 

(e.g., Danes or Caucasian-Americans) on this matter [8, 

13, 14, 16]. In fact, Calabrians are a homogeneous 

population (very low levels of immigration have 

occurred in the last centuries), with a largely rural 

society where Mediterranean diet was largely 

predominant until a few decades ago, that is for most of 

the lifetime of the subjects who are now old adults. 

Indeed, previous studies comparing the aging 

population of Calabria to other Caucasian populations 

have noted specific features of this population [47–49]. 

 

The present data, observed in a sample of individuals 

aged 65-106 years followed for 10 years, provide some 

new clues on the complex relationship between LTL 

survival and lifespan. 

 

Considering the whole sample, we did not find 

association of LTL with mortality. However, by 

analyzing LTL distribution as a function of age we 

found a curve which progressively decrements up to an 

inflection point around the age range 83 to 92 years, 

after which LTL increases slowly and levels off 

thereafter. This distribution turned out to be statistically 

highly significant (p<0.0001) and has many points in 

common with survival curves defining the Gompertz 

law, which describes the lifetime long pattern of 

acceleration and deceleration of mortality [50, 51]. The 

most recent analysis of Gompertz curves with data on 

modern populations have shown that survival curves of 

Western human populations show relatively little 

mortality during the first period of life, while the 

number of survivors declines approximately 

exponentially thereafter, usually after 70 years of age 

[52, 53]. Then, after a deep slope of the survival curve, 

corresponding to a dramatic increase of mortality 

chance, mortality attenuates and eventually levels off 

[52, 54, 55]. This trend of the survival curve has been 

mainly ascribed to the impact of selective survival in 

heterogeneous populations [55]. That is, most of the 

subjects within a population go through a biological 

decline which leads to death between 70 and 85/90 

years of age. Those who are equipped to survive (due to 

genetic, biological or environmental factors) go through 

this age window and then after 90 years of age we have 

a selected population well equipped to live longer, and 

this explains mortality deceleration [54, 55]. The trend 

of LTL as a function of age in our sample population 

parallels the survival function reported for western 

societies and may have similar explanation. Indeed, we 

can hypothesize in subjects below 70 years of age a 

great heterogeneity of LTL due to genetic and lifestyle 

factors. As mentioned above, after this age an important 

increase of attrition has been noted [40]. This might be 

related to the general decline of the homeostasis which 

leads to the decline of most of the cellular and 

organismal functions predisposing to frailty and to the 

increase of oxidative stress and inflammation, which are 

among the main factors favoring telomere attrition. As 

reported above, we identified a temporal window, the 

interval of 83–92 years, in which subjects with shorter 

LTL had an increased mortality risk during follow-up 

than those with longer LTL. It is likely that within this 

age window we have subjects who have undergone 

significant telomere attrition and have then exposed the 

parts of the telomere predisposing to senescence [56]. 

On the other hand, within this age window we have also 

subjects who did not lose their homeostasis capacity and 

did not undergo such attrition. Thus, the inverse 

correlation between LTL and survival in this age 

window does reflect the heterogeneity due to subjects 

who underwent a significant attrition and those who did 

not yet. After this age window, we find mainly selected 

subjects and the older is the age the highest will be the 

selection and then the lowest the attrition undergone. 

We may summarize the whole process by stating that 

we see, at the population level, two phenomena going 

on after 70 years of age: accelerated frailty correlated 

with attrition and selection. In support of this 

hypothesis, we have the data from subjects observed 

after seven years from the first recruitment. We observe 

no correlation between LTL and mortality at the 

baseline, but an inverse correlation when we consider 

the observations taken after seven years of follow-up. 

This might be due to a significant attrition in some 

subjects, who eventually die soon after, while no 

attrition, or a limited attrition is experienced by the 

others, who survive longer. Consistently, we find a 

direct correlation between attrition occurred in the 

seven years between the first and the second 

observation and mortality. Also, it is very interesting 

that individuals with the longest telomeres at baseline 

experienced the greatest amount of shortening over 

time, a result which is in accordance with other studies 

[57, 58]. This telomere length-dependent attrition rate 

could reflect selection effects whereby cells with short 

telomeres and high attrition rate are less likely to 
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survive than cells with longer telomeres. Similarly, it is 

possible that subjects with shorter telomeres 

experiencing stronger attrition have a higher mortality 

rate and then the phenomenon we observe may be due 

to such demographic selection. On the other hand, this 

phenomenon could reflect that telomerase, as reported 

in model organisms, seems to preferentially act, in stem 

cells, on the shortest telomeres [59, 60]. In this case, we 

can hypothesize the action of telomerase within the cells 

progenitors of white blood cells. 

 

We are aware that our study suffers from some 

limitations mainly represented by the relatively small 

sample size, regarding the number of subjects both in the 

83-92 age class and in the sub-sample of individuals 

with the second LTL measurement. On the other hand, it 

should be considered the peculiarities of the samples, 

collected within a homogenous population, and followed 

up for a long period. Thus, although additional studies in 

a larger sample will be needed to strengthen the findings 

of our study, we are confident that our observations, 

based on a sound sampling strategy, are revealing a 

phenomenon that will deserve to be deeply analyzed. 

 

In conclusion, the present study, by analyzing the trend 

of LTL as a function of age in a population sample 

ranging between 65 and 106 years of age, suggests a 

parallel between demographic mortality curves and 

LTL, hypothesizing that a generalized LTL attrition 

after 70 years of age is due to the organismal decline 

affecting the majority of the population. Such 

generalized attrition may lead, on turn, to exacerbate 

senescence in these subjects and predisposing them to 

high mortality risk. On the other hand, the subjects with 

better physical conditions, experience a lower attrition 

(or postpone it) and a delayed senescence, contributing 

to the deceleration of mortality curve which has been 

observed in modern societies. Should this hypothesis be 

true, telomere length may be predictive at the 

population level for survival in heterogeneous 

populations, such as the population within 83 and 92 

years of age, but not in either unselected population, 

such as the population under 70 years of age, or selected 

populations, such as the population over 92 years of 

age. 

 

MATERIALS AND METHODS 
 

Subjects 
 

The sample analyzed included 516 unrelated subjects 

(240 men and 276 women, aged 65-106 years; median 

ages 80.54+10.87). All the subjects were born in 

Calabria (Southern Italy) and recruited in the entire 

region through several campaigns, as previously 

reported [47]. Vital status was traced after a mean 

follow-up time of approximately 10 years through the 

population registers of the municipalities where the 

respondents lived. A sub-sample of 36 subjects was re-

recruited after 7 years and the vital status was verified 

after about 10 years from the last visit. At baseline, all 

subjects were free of the major age-related pathologies. 

 

Ethics statement 
 

Investigation has been conducted in accordance with the 

ethical standards established in the Declaration of 

Helsinki and has been approved by the authors' 

institutional review board. Each subject, before the visit, 

signed an informed consent, for the permission to 

collect blood samples and usage of register-based 

information for research purposes. 

 

Leukocyte telomere length (LTL) 

 

The average length of telomeres was measured by Real-

Time PCR quantitative analysis (qPCR), by using the 

MiniOpticon Monitor Real Time PCR System (Bio-Rad, 

48-wells format). This method allows to measure the 

number of copies of telomeric repeats (T) compared to a 

single copy gene (S), used as a quantitative control [61]. 

We used the modified protocol described by Testa and 

colleagues [62]. For the PCR reaction, 5 µl of DNA with 

a concentration of 3 ng/µl (15 ng in total) and 15µl of 

mix (containing the specific primers for telomeres (T) 

and control gene (S), the PCR reagents and the SYBR 

green dye for the detection of the fluorescence) was 

added in each well. Concentrations for telomere and 

36B4 PCR primers sequences and the thermal cycling 

profile were as reported by Testa and coworkers [62]. In 

addition, two standard curves (one for 36B4 and one for 

telomere reactions) were prepared for each plate by using 

a reference DNA sample (Roche, Milano, Italy) diluted in 

series by 1.68-fold per dilution in order to produce 6 

concentrations of DNA ranging from 30 to 2 ng in 5µl. 

The telomere and single-copy gene (36B4) were analyzed 

on the same plate to reduce inter-assay variability. R
2
 and 

amplification efficiencies varied between 0.982 and 

0.998, and 95.2 to 101%, respectively. More than 20% of 

samples were blindly replicated on different plates to 

assess T/S measurement reproducibility. The inter assay 

coefficient of variation was <8%. A calibrator sample 

(Roche, Milano, Italy) (3ng/ul in 5 µl) was included in 

each plate. Measurements were performed in triplicate 

and reported as T⁄S ratio relative to the calibrator sample 

to allow comparison across runs. 

 

Statistical analyses 
 

The regression line with a cubic slope was calculated 

using the least squares method and a constant. The 

associations between T/S ratio and survival were 
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investigated using Cox regression analysis. T/S ratio 

was analyzed as a categorical variable. The categorical 

variable was derived as the tertiles of T/S ratio; the 

group with the shortest T/S was used as the reference 

category. To estimate the effect of the telomere length 

on survival, we evaluated survival after 10 years from 

the baseline visit. Subjects alive after the follow-up time 

were considered as censored, and this time was used as 

the censoring date in the survival analyses. Hazard 

ratios (HR) and 95% confidence intervals (95% CI) 

were estimated by using Cox proportional hazard 

models considering age and sex as confounders 

variables. For a sub-sample of 36 subjects, we 

calculated the telomere attrition by difference of T/S 

ratio between the first visit and the second, after about 7 

years. Also, in this case the categorical variable was 

obtained as the tertiles of delta T/S; the group with the 

major attrition (first tertile) was used as the reference 

category. A P value < 0.05 was considered statistically 

significant. All statistical analyses have been performed 

using R system (version 3.6.2). 
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Supplementary Figure 1. Scatterplot showing the relative Leukocyte Telomere Length (LTL) expressed as T/S ratio in males 
and females. 
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Supplementary Figure 2. Scatter plots showing the relative Leukocyte Telomere Length (LTL) expressed as T/S ratio in the whole sample 
(A) and in the sample divided in age ranges: from 65 to 82 years (B), from 83 to 92 years (C) and from 93 to 106 years (D). The linear 
regression line fitting the data, the R2 and p-value are shown in each panel. 
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Supplementary Figure 3. T/S values at baseline of the subjects within the first tertile (greater telomere attrition) and 
second/third tertile (minor telomere attrition) of the delta T/S values. The data are reported as mean ± standard error of the mean 
(SEM) and p-value computed by t-test. 


