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ABSTRACT
Current parallel sequencing technologies generate biological sequence data explosively and enable
omics studies that analyze collective biological features. The more omics data that is accumulated,
the more they show the regulatory complexity of biological phenotypes. This high order regulatory
complexity needs systems-level approaches, including network analysis, to understand it. There are
a series of layers in the omics field that are closely connected to each other as described in ‘central
dogma.’We, therefore, have to not only interpret each single omics layer but also to integrate multi-
omics layers systematically to get a full picture of the regulatory landscape of the biological
phenotype. Especially, individual omics data has their own adequate biological network to apply
systematic analysis appropriately. A full regulatory landscape can only be obtained when multi-
omics data are incorporated within adequate networks. In this review, we discuss how to
interpret and integrate multi-omics data systematically using recent studies. We also propose an
analysis framework for systematic multi-omics interpretation by centering on the transcriptional
core regulator, which can be incorporated in all omics networks.
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Introduction

Nowadays, an enormous amount of sequencing data has
been generated by increasing levels of size exponen-
tially. Next-generation sequencing (NGS) technology is
a key breakthrough that performs parallel sequencing
with fewer specimen than traditional sequencing
methods. The old gene studies focused on a set of
genes within a couple of samples, while current studies
profile whole genome from a myriad of samples. We
call this genomics, which indicates the study of collective
features of whole genomes as described by its suffix
‘-ome,’ meaning ‘totality.’ Recent genomics studies
have unraveled mechanisms underlying complex pheno-
types or diseases such as cancer, which had not yet been
well understood. Especially, large-scale genomics have
revealed that most complex traits have polygenic loci
on human genomes in regard to complex diseases (Tor-
kamani et al. 2018). Furthermore, it has been reported
that the association landscape of genomic loci are
shown to be ‘omnigenic’ for complex traits (Boyle et al.
2017), which implies that all the loci incorporate in the
regulation of relevant phenotypes. This high order regu-
latory complexity needs systems-level understanding
that comprises network analysis.

Not only has genomics, but also other omics, evolved
along with the development of technologies related to

cellular and molecular biology, such as reverse transcrip-
tase PCR (RT-PCR), chromatin immunoprecipitation
(ChIP), and mass spectrometry (MS). These experimental
technologies have been incorporated into NGS accord-
ingly by developing transcriptomics, epigenomics, and
proteomics, although proteomics requires a particular
process (Cravatt et al. 2007). Each omics can be used to
explain only biological phenomena specific to its own
omics field. Therefore, scientists have attempted to inte-
grate individual omics layers to unravel overall mechan-
isms that are obscure in a single omics study. We called
this integrative work a multi-omics study. In this review,
we summarize recent multi-omics studies that try to con-
verge two or more omics fields at the systems-level to
address complex biological mechanisms difficult to
understand using current technology.

Results

Interpretation of genomic variants with
chromatin long-range interaction

Most transcriptional regulations have been revealed to
have a couple of regulators targeting a set of genes.
This regulatory architecture is constructed by promo-
ter-enhancer interactions. We can map where transcrip-
tion factors bind in the genome using chromatin
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immunoprecipitation sequencing (ChIP-seq) (Johnson
et al. 2007) and determining where these transcription
factors regulate a specific gene using long-range inter-
action experiments such as Hi-C (Lieberman-aiden et al.
2009) and ChIA-PET (Fullwood and Ruan 2009) technol-
ogies. Epigenetic data produced by the above technol-
ogies were integrated with the data of genomic
variations to interpret their functionality for human
genomes, and it was revealed that not only were there
variants in coding regions, but also variants in noncoding
regions that were associated with human disease devel-
opment through the perturbation of transcriptional
regulation. For example, recurrent mutations on the pro-
moter of the TERT gene generated ETS factor binding
sites and fluctuated TERT expression, factors that
encode a catalytic subunit of the enzyme telomerase
so that the risk of melanoma development increased
because cell fates were made instable (Huang et al.
2013). In another example, the ETV1 promoter is
known for its interacting enhancers that affect ETV1
expression, which influences cell viability and patient
survival for colorectal cancer (Feigin et al. 2017). Both
studies on cancer and a study on Hirschsprung disease
have shown that variants on multiple enhancers act to
increase disease risk by driving the dysfunction of the
gene regulatory network (Chatterjee et al. 2016). These
studies imply that there are complex genetic interactions
whose variations drive disease development, which are
revealed by integrative studies addressing genomic
and epigenome data.

In our previous study, we developed a prediction
model to identify candidates for cancer driver genes by
leveraging a variety of genomic and epigenome data
in the context of transcriptional regulation (Kim et al.
2016). The epigenome data for chromatin long-range
interactions was critical in improving sensitivity to ident-
ify driver mutations. The prediction model successfully
predicted and validated the functionality of TERT recur-
rent mutations for lung cancer, which has not been pre-
viously reported. Moreover, recent progressive studies
have shown that combinatorial and nonlinear modeling
of genomic and epigenomic patterns shared by risk var-
iants have successfully predicted potential causal var-
iants in major psychiatric disorders and autoimmune
diseases (Lee et al. 2019). The deep learning algorithm
convolutional neural network was used to construct a
prediction model by using over 2,000 functional features
that were mainly about genetic and epigenetic charac-
teristics such as histone modifications, chromatin acces-
sibility, transcription factor binding, and target gene
function. The predicted causal variants in this study
were enriched in active regulatory regions that con-
tained binding sites of transcription factors of the

relevant cell type. Furthermore, they resulted in the
expression alteration of genes associated with the
given disease. The two aforementioned machine learn-
ing-based approaches imply that genetic and epigenetic
features actively associated in nonlinear levels to shape
the causal regulatory interactions of complex genetic
diseases.

Transcriptional regulatory network incorporating
an epigenomic landscape

To unravel the transcriptional regulatory complexity
across a set of samples, weighted gene co-expression
network analysis (WGCNA) has been used based on pair-
wise correlations between gene expression variables
(Langfelder and Horvath 2008). This method defines
several co-expression subnetworks so that a distinct
feature for each subnetwork can be studied indepen-
dently and compared for their topologies. Furthermore,
more accurate network interactions have been inferred
by an algorithm called the reconstruction of accurate cel-
lular networks (ARACNe) (Margolin et al. 2006), which
eliminates the majority of indirect interactions con-
structed by the WGCNA method. ARACNe is used as a
data reduction technology to make co-expression net-
works suitable for integrating complementary biological
data. The integrative analyses were proposed to perform
a systems study based on co-expression networks (van
Dam et al. 2018). Pathway enrichment analysis can be
incorporated to reveal specific biological pathways rel-
evant to a co-expression subnetwork. In addition,
pathway enrichment analysis is able to determine
which samples contribute to the construction of the sub-
network by calculating eigenvector during the co-
expression network construction procedure. These
methods of analyses help to define a candidate function
for the target subnetwork or subgroup that we are inter-
ested in. For example, an integrative network study using
the above methodologies successfully identified MYC as
a major hub that controls a transcriptional regulatory
network in human B cells (Basso et al. 2005).

However, the above methodologies have not been
capable of inferring a causal relationship indicating regu-
latory direction, although previous network analyses
have been so effective in studying transcriptional regu-
lation. In a series of studies, the binding of transcription
factors has been shown to be a critical explanatory factor
in the causality of transcriptional regulation. The land-
scape of transcription binding patterns has formed a
regulatory hierarchy that governs a group for gene
expression and disease development (Wang et al.
2007). In addition, a set of transcription factors have
been shown to maintain human or mouse embryonic

2 G. T. JUNG ET AL.



stem (ES) cells in a pluripotent state by binding to the
promoter of their target genes cooperatively (Kim et al.
2008). Furthermore, the dynamics of human transcrip-
tion factor binding and regulation have been analyzed
at the systems-level comprehensively for over 400 tran-
scription factors across over 40 cell and tissue types
(Neph et al. 2012). In this study, transcription factor regu-
latory networks were revealed to be highly cell selective
and driven by subsets of transcription factors that have
roles in the control of cellular identity. These studies
have demonstrated that transcription factor machinery
binds to regulatory regions to cause the regulation of
target genes resulting in the development of cells and
diseases. Because the transcription factor machinery
determines the transcriptional regulatory direction, it
can be used to construct a framework for the full
picture of transcriptional regulation. In our previous
study, we developed a Bayesian probabilistic model by
using promoter-enhancer interactions and relevant tran-
scription factor binding data in a breast cancer cell. A
transcriptional regulatory network with causal inter-
actions was then constructed accordingly using
machine learning for gene expressions in breast cancer
patients (Kim et al. 2015). We unraveled the regulatory
complexity underlying tumor subclasses and drug
responses by using these causal relationships. This sys-
tematic modeling of epigenomic regulations coupled
with machine learning of transcriptomic variables was
critical in determining the true biological interactions
with increased overall coverage and specificity.

Multi-omics approaches center on the proteome

Genomes, epigenomes, and transcriptomes can be
sequenced by NGS technology, whereas proteomes
cannot be sequenced by NGS and can only be
sequenced by mass spectrometry (MS) directly (Cravatt
et al. 2007). It is more arduous to quantify and normalize
output sequences in MS technology than NGS. Therefore,
in recent studies, genomics approaches have been used
as a blueprint for the accurate mapping of proteomics
sequences, which is referred to as proteogenomics (Nes-
vizhskii 2014). The regulatory landscape of the proteome
is also different from the regulations that occur in
genomes, epigenomes, and transcriptomes. Transcrip-
tion factor binding to the regulatory regions of
genomes is a key factor across the regulation of
genomes, epigenomes, and transcriptomes; however, a
physical interaction between proteins is crucial in the
regulation of proteomes. We refer to this physical inter-
action as protein–protein interaction (PPI). A myriad of
PPIs perform critical roles in cell signaling, pathways,
and transcription factor co-binding. Yeast two-hybrid

screening (Y2H) is widely used to reveal this interaction
(Hurt et al. 2003), which is a molecular biology exper-
iment that tests whether two compartments of transcrip-
tion factors successfully activate a target gene. The two
compartments are the DNA-binding domain (DBD) and
activation domain (AD) so that they can activate tran-
scription of the target gene only when they functionally
interact with each other. Currently, a systematic network
of ∼14,000 human binary PPIs have been published as a
reference map for protein interactome networks, which
helps to understand the functional relationships at the
proteome level (Rolland et al. 2014). The human
protein interactome network has been updated recently;
therefore, we can integrate interactome network infor-
mation into current transcriptional regulatory networks
to expand the regulatory network.

In addition to the sequencing difficulty of proteomics,
another crucial factor making MS-based proteomics
difficult is post-translational modification (PTM). PTM is
a series of protein modification processes, such as the
addition or removal of chemical moieties of amino
acids, changes in protein properties caused by proteo-
lytic processing, and the formation of disulfide bridges
between cysteine residues (Mann and Jensen 2003;
Larsen et al. 2006). PTM contributes to a variety of bio-
logical processes including the regulation of metabolism
and cellular signaling events. Advancements in MS-
based proteomics technology, especially coupled with
high-performance liquid chromatography, have been
used in the characterization of PTMs (Jensen 2004;
Larsen et al. 2006), and a number of PTMs have been
identified in eukaryotic proteins (Csizmok and Forman-
Kay 2018). A recent study was conducted by integrating
proteome and PTM data coupled with transcriptome
profiling to reveal the molecular heterogeneity within
early-onset gastric cancers (EOGCs) (Mun et al. 2019).
The four subtypes of EOGCs that include proliferation,
immune response, metabolism, and invasion were ident-
ified by analyzing the transcriptome, global proteome,
phosphoproteome, and N-glycoproteome. These subtyp-
ing results could help to develop strategies for patient
stratification and treatment. However, there are few sys-
tematic studies for multi-omics approaches because the
characteristics between proteomes and other omics are
considerably different in network biology. A progressive
study reported multi-omics approach centered on pro-
teomics at the systems level. In the study, deep
profiling of whole proteomes, phosphoproteomes, and
transcriptomes was performed in glioma mouse
models (Wang et al. 2019). Consequently, systems analy-
sis for this multiple omics data revealed master regula-
tors, including kinases, and transcription factors to
explain glioma drivers. This study comprised a pathway
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analysis of an integrative network that was composed of
proteomic, phosphoproteomic, and transcriptomic inter-
actions. The integrated network approaches extended
beyond simple identification of pathways as they were
constructed of a single type of omics data. These
studies imply that proteomics-centered approaches can
bring new insights on the regulation of protein activities
that advance current understandings of the transcrip-
tional regulatory landscape. Furthermore, the more
layers of omics data that are added, the more easily we
will obtain a full picture of the regulatory landscape of
biological phenomena.

A proposal for integrated multi-omics analysis at
the systems level

Based on the above multi-omics studies and systems
approaches, we propose a comprehensive systems
model to integrate each multi-omics layer according to
the gene expression process (Figure 1). First, a co-
expression network is constructed to build a framework
accommodating transcriptional regulations by using
transcriptome data. This allows a myriad of genes that
are difficult to understand simultaneously to be divided

into subnetworks that are coregulated together at the
transcriptome level. It can be unraveled how the subnet-
work is involved in a specific biological mechanism when
pathway analysis is performed for the relevant subnet-
work. After that, the epigenomic regulatory landscape,
including transcription factor binding, chromatin long-
range interaction, and chromatin accessibility, is used
to infer the regulatory direction (Kim et al. 2016). We
then obtain a set of subnetworks, which are related to
specific pathways, and have concrete regulatory direc-
tions. By analyzing these subnetworks by tracing back
the regulatory directions, the core transcriptional regula-
tor existing at the top of the subnetwork topology can be
discovered. We can subsequently identify the core regu-
lator’s functionality with respect to a specific phenotype
through network analysis. As an example of this analysis,
differentially expressed genes (DEGs) between two
groups having a difference for an interesting phenotype
can be mapped to the co-expression subnetworks. There
would be one or more pathway and core regulator for
each subnetwork that is mapped by DEGs. We then
detected several candidate subnetworks comprising
pathways that explain the interesting phenotype prop-
erly. Furthermore, the connectivity between the core

Figure 1. Diagram for integrative network modeling for multi-omics data according to the gene expression process. (A) Transcription
factors bind to cis-regulatory regions, such as the promoter and enhancer of DNA, and RNA polymerase is attached to the promoter to
form an initiation complex and synthesize pre-mRNA. (B) Pre-mRNA undergoes further procedures to become mature mRNA and co-
expression networks (blue dotted ellipses) that are formed if there are significant expression correlations between transcripts. This co-
expression network can be constructed by using transcriptome data. (C) mRNA transfers from the nucleus to the cytoplasm and binds to
ribosomes to synthesize proteins. (D) Synthesized proteins form networks of protein complexes through protein–protein interactions
(black solid line). This interactome network can be analyzed based on proteome data. (E) Some transcription factors are transported into
the nucleus and then regulate their target genes by binding cis-regulatory regions. In this figure, the transcription factor colored by
orange binds all regulatory regions below target genes colored by orange, green, and purple. The orange transcription factor can regu-
late all downstream genes at the transcriptional regulatory level; we called this the transcriptional core regulator. This regulatory land-
scape composes a transcriptional regulatory network (grey arrow) that can be constructed using epigenome data.
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regulators and the candidate subnetworks can be calcu-
lated according to how many DEGs are included under
the regulation of the core regulator. This indicates that
the core regulator that is connected more to the candi-
date subnetwork can better explain about the expression
alteration for the interesting phenotype.

However, network analysis based on transcriptional
regulation cannot fully explain phenotypic alteration sys-
tematically. Many crucial alterations for phenotypic regu-
lation occur at the protein level. Therefore, when it is
hard to find significant DEGs in the context of transcrip-
tional regulation, differentially expressed proteins (DEPs)
based on proteomic analysis can offer another key regu-
latory explanation. The transcription factor, chromatin
modifier, and other epigenomic regulators are core reg-
ulators in transcriptional regulatory networks, which are
composed of proteins. This implies that variations in
these regulators at the protein level are also important
to understanding the regulatory mechanisms of regulat-
ory networks. Not only is profiling DEPs themselves
important, but analyzing PTM will give us additional
information for multi-omics systems analysis. Moreover,
PPI networks can supplement and enhance transcrip-
tional regulatory networks by attaining gene-level signa-
tures from profiling results of proteins and PTMs to
construct integrative regulatory networks. For example,
when we discovered that transcription factor A regulates
a set of genes with DEGs or DEPs, which have functional
enrichment relevant to an interesting phenotype such as
a specific disease, the alteration of transcription factor A
can be crucial in explaining the marker for the develop-
ment of the disease. However, there may be no alteration
for transcription factor A at the (epi)genomic, transcrip-
tomic, and proteomic levels in another cohort, although
it ranks highest among candidates for markers of the
disease. In this case, protein interactome analysis specifi-
cally can help to determine another factor that affects
transcription factor A in interaction regulation. This is
because alterations of other co-regulating factors that
interact with transcription factor A might influence tran-
scriptional regulation. By integrating this interactome
network information with the constructed network, we
can get a full regulatory map from transcription to trans-
lation for a specific phenotype.

Conclusion

To understand regulatory mechanisms in a complex bio-
logical system, all layers of omics that include genomics,
epigenomics, transcriptomics, and proteomics are
necessary as they play independent but related roles in
relation to one another. In addition, considerable
expressions of mRNA do not always result in protein

expressions, although large portions of mRNA pro-
duction are correlated with protein levels (Liu et al.
2016). This is because a variety of mRNA outputs are
associated with the regulation of a set of proteins
rather than a correspondence between the regulation
of mRNAs and proteins that is one-to-one. Therefore,
we should not only profile each layer of omics, but also
analyses all the layers simultaneously at the systems
level to obtain a full picture of actual gene regulation.
The term ‘Trans-Omics’ has been proposed, which is
the reconstruction of a global network across multiple
omics layers by using multi-omics measurements and
data integration (Yugi et al. 2016).

There is another omics layer to enhance the resolution
of a full regulatory picture that is metabolomics. This
layer has completely different characteristics compared
to other omics layers as explained previously. Metabolo-
mics addresses chemical processes involving metab-
olites from cellular processes so that it covers the latest
step of the whole multi-omics procedures. Metabolomics
provides a direct physiological state for an active cellular
function, although analytical technologies such as MS or
nuclear magnetic resonance (NMR) (Dettmer et al. 2007)
are more difficult to interpret than proteomics
approaches. The analysis results for metabolomics is sub-
stantially different according to the analyzed tissue and
time due to the metabolomic dynamics of a living cell,
which makes it difficult to conduct robust analyses.
Nevertheless, the technology for metabolomics is devel-
oping gradually and has recently become an essential
omics layer to study multi-omics. In addition to this sup-
plementary layer for multi-omics study, additional inter-
action information can enhance the capacity of
regulatory networks systematically. One example of a
human functional gene network called HumanNet,
which integrates a series of omics data using Bayesian
statistics, allows for more flexible incorporation of
network information into studies (Hwang et al. 2019).
This network analysis is capable of extending or validat-
ing the existent network biology. One of our recent
studies proposed that the extension of transcriptional
drivers using both of physical and functional interactome
networks successfully identified known coding drivers in
cancer (Jang et al. 2017).

Taken together, a series of omics data using the rel-
evant network construction will enhance our under-
standing of complex mechanisms that underly
biological phenotypes when the multi-omics data are
incorporated within an adequate framework. The frame-
work should be constructed based on ‘central dogma,’
which indicates information flow from transcription to
translation. Each step of making mRNAs and proteins is
composed by complex networks, and they interact
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with each other. Therefore, systems approaches that use
transcriptional regulatory network, protein interactomes,
and functional networks have to be incorporated prop-
erly to the relevant omics data. In addition, we propose
analysis that identifies a core regulator of transcriptional
regulatory networks. This transcriptional core regulator-
centered approach has the advantage in multi-omics
studies because the perturbation of the core regulator
can be affected by or affect not only transcription but
also translation. Most of the core regulators may be tran-
scription factors so that they actively participate in tran-
scriptional regulation. Furthermore, they are associated
with translation as they are composed of proteins. There-
fore, core regulators can be incorporated in both of tran-
scriptional regulatory networks and protein
interactomes. Systematic multi-omics interpretation in
the context of perturbation of transcriptional core regu-
lators will successfully give us clues to unravel mechan-
isms about complex biological phenotypes.
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