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Abstract

Both multiple sequence alignment and phylogenetic analysis are problematic in the ‘‘twilight zone’’ of sequence similarity
(#25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence
using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT, T-
COFFEE, CLUSTAL, and MUSCLE) and six commonly used programs of tree estimation (Distance-based: Neighbor-Joining;
Character-based: PhyML, RAxML, GARLI, Maximum Parsimony, and Bayesian) against a novel MSA-independent method
(PHYRN) described here. Strikingly, at ‘‘midnight zone’’ genetic distances (,7% pairwise identity and 4.0 gaps per position),
PHYRN returns high-resolution phylogenies that outperform traditional approaches. We reason this is due to PHRYN’s
capability to amplify informative positions, even at the most extreme levels of sequence divergence. We also assess the
applicability of the PHYRN algorithm for inferring deep evolutionary relationships in the divergent DANGER protein
superfamily, for which PHYRN infers a more robust tree compared to MSA-based approaches. Taken together, these results
demonstrate that PHYRN represents a powerful mechanism for mapping uncharted frontiers in highly divergent protein
sequence data sets.
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Introduction

Inferring phylogenetic history among highly divergent protein

sequences is one of the most challenging problems in modern

evolutionary biology. The ability to reliably determine the

evolutionary history of protein sequences that fall below ,25%

identity (i.e. the ‘‘twilight zone’’ and lower still, the ‘‘midnight

zone’’) would allow for better identification of homologous

proteins and shed light on key events in the deep evolutionary

past [1,2,3]. To date, most attempts to resolve deep-node

evolutionary relationships have relied upon improving methods,

models, and parameters of multiple sequence alignment (MSA)

and/or tree inference programs. However, MSA methods tend to

get progressively worse with additional sequence divergence [4,5].

This is due to the low information content of divergent sequences

and the subsequent loss of informative points (i.e. number of

common sites). No matter how robust a given tree-building

algorithm performs, this lack of informative points tends to result

in poor phylogenetic inference (i.e. noise in, noise out).

Current phylogenetic analysis often follows a two-step process:

(i) obtain a guide tree based on percentage identity of all-against-all

pairwise alignments, which designates the order of a progressive

alignment, and (ii) estimate a phylogeny based upon the resultant

MSA with distance-based or character-based tree inference

programs. Distance methods (e.g. UPGMA, Neighbor Joining)

are fast, and can handle large numbers of sequences [6]. However,

distance-based trees are often erroneous when rates of substitution

vary greatly among lineages. Thus, distance-based methods are

generally thought to be inferior to character-based methods (e.g.

Parsimony, Maximum Likelihood (ML), and Bayesian). Charac-

ter-based inference can generate trees with the minimum number

of changes needed to explain the data, or the highest likelihood of

occurring with the given data and assuming a particular model of

molecular evolution. The downside to character-based phyloge-
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netic inference is the computational cost and problems with

scalability to large data sets. Further, both distance- and character-

based methods are prone to long branch attraction in which

rapidly evolving sequences (with long branches), are placed with

other rapidly evolving sequences even if they are not sister taxa

[7].

We developed an alternative approach to MSA-based tree

inference which utilizes the Euclidean distance of sequence profiles

(a.k.a. phylogenetic profiles or NxM matrices) [8]. In this manner,

the sequence profile of a set N of query amino acid sequences is

defined as vectors where each entry quantifies the pairwise

alignment between N queries and a set M of position specific

scoring matrices (PSSMs) [3,9,10,11]. Given this matrix, we

calculate the Euclidean distance between all pairs and generate a

NXN distance matrix for tree inference. The statistical robustness

and computational cost of this initial algorithm did not make it

feasible in practice; however, it was sufficiently robust in a

benchmark data set of divergent retroelements [8]. This initial

success led us to pursue this approach further, and alterations to

the initial algorithm are discussed in detail in following sections.

The underlying theory is that through the use of PSSMs, sequence

profiling methods can amplify the signal (i.e. informative positions)

contained in each sequence, handle large data sets, and give more

refined distance measures.

In this study we address the performance of various traditional

phylogenetic approaches and our new method presented here,

PHYRN, in simulated data sets at extreme divergence levels. We

use simulated data sets as the test bed of performance because

unlike biological data sets, the true history of simulated sequence

data is known and predefined. Knowledge of the true evolutionary

history of the sequences under consideration makes it possible to

quantify the performance of phylogenetic inference algorithms

[12,13,14,15,16,17]. Simulated data sets also allow us to evaluate

our performance at multiple different divergence levels using many

replicates. In this study, we have compared PHYRN to four

leading MSA methods (MAFFT, T-COFFEE, ClustalW, and

MUSCLE), two alignment-free methods (Average Common

Substring(ACS) approach and Lempel-Ziv(LZ) Distance), and

seven established methods for tree estimation (Distance-based:

Neighbor-Joining, FastME; Character-based: PhyML, RAxML,

Garli (all three of which utilize a maximum likelihood approach),

Maximum Parsimony, and Bayesian).

While simulated data sets represent a powerful way to

benchmark accuracy of a given algorithm, they may not

incorporate all the underlying mechanisms of natural molecular

evolution (e.g. translocations, rearrangements, recombination

and/or inversions) [18,19]. Therefore, it is informative to test

PHYRN in a biologically relevant test bed. Accordingly, we also

evaluate whether PHYRN is capable of providing informative

measurements that could describe the evolutionary history of the

highly divergent developmental DANGER superfamily. Based on

the results from synthetic data sets data sets, and DANGER

superfamily, we propose that: (i) high-resolution phylogenies can

be built for protein families using PHYRN, (ii) these measurements

have robust statistical support and inform intra- and inter-group

relationships, and (iii) these measures can outperform traditional

MSA-dependent tree inference methods.

Methods

Generation and Sequence Evolution of Synthetic Data
Sets

We artificially generated protein sequences using SeqGen and

ROSE simulation packages to test the performance of phyloge-

netic methods in highly divergent sequences [18,19]. In both

simulations, sequences are created from a common ancestor to

produce a data set of known size, divergence, and history using a

variety of tree shapes (e.g. biased vs. unbiased). In this in silico

evolutionary process, an accurate phylogenetic history is recorded

since the MSA is created simultaneously, thereby allowing us to

test the reliability of different methods of tree inference at different

levels of sequence divergence. Both simulation methods use PAM

matrices [20], where increasing PAM score equates to decreasing

percentage identity and similarity, and an increasing number of

gaps. A key difference between SeqGen and ROSE is that SeqGen

does not incorporate insertion-deletion events (indels) while

generating these simulated protein families. ROSE does include

indels, providing a better approximation of molecular evolution

(see Supporting Methods S1 for more details).

Simulated sequences were then aligned by PHYRN or a

distance estimation technique (MSA or alignment-free) and passed

to the tree estimation method. The estimated trees are scored

against the true tree for accuracy via two methods. First, we used

the CONSENSE program in the PHYLIP v3.67 package (http://

evolution.genetics.washington.edu/phylip.html) to generate con-

sensus trees between the true-history tree and the estimated trees.

Recapitulation rate and percentages were then calculated from

consensus tree newick files. Deep nodes were defined as those

which are evolutionary ancestors of last two tiers of leaf nodes. For

a second measure of topological difference we used the ‘treedist’

program in the PHYLIP v3.67 package to calculate symmetric

distances of Robinson and Foulds (RF distance) [21]. RF distance

is a well-established metric for comparing tree topologies in which

bipartitions between two trees are compared to calculate

difference in their topologies. For two trees with exactly the same

topology, this distance is 0, but for two trees of n leaves, with all

branches differently placed, symmetric distance is equal to 2(n–3).

Thus, the accuracy of a tree-building algorithm decreases with the

symmetric distance score from the true simulated tree.

To simulate sequence evolution, a single amino acid sequence

was placed at the root of the tree T and evolved down the tree

according to the parameters of the simulation programs. In this

way each leaf of T has a sequence. For the majority of experiments

we generated simulated data sets comprised of 100 sequences with

an average length of 450 amino acids. We used Seq-Gen v 1.3.2

[19] with PAM as the default substitution matrix and varied

scaling factor from 0.1 to 1 to generate multiple replicates (n = 25)

of the synthetic data sets with sequences at different divergence

ranges. The SeqGen scaling factor scales the branch lengths of the

input tree to a specified value before generating data set from the

input tree. This changes the expected number of amino acid

substitutions per site for each branch, and thus changes the overall

divergence of the simulated tree. We also used ROSE v1.3 [18]

with default settings to generate multiple replicates of true trees

(n = 25) across a range of divergence. The extent of sequence

divergence was varied across multiple replicates by changing the

average ROSE distance parameter from 100 PAM to 700 PAM.

Importantly, both ROSE and Seq-Gen employed a fixed

substitution rate across all branches, such that we assume a strict

molecular clock. All simulated data sets are available upon request

or downloadable from www.ccp.psu.edu/downloads.

Methods for Estimating MSA and Phylogenetic Trees
We utilized a variety of MSA-based methods for each simulated

data set. For a given data set, we obtained a MSA using MUSCLE

v3.6 [22], DIALIGN v2.2.1 [23], MAFFT v6.833b [24], CLUS-

TALW v 2.0.12 [25], or T-COFFEE v 8.93 [26] with default

parameters. Phylogenetic trees based on these MSAs were inferred

Phylogenetic Accuracy in Divergent Data Sets
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by both distance- and character-based programs. For the distance-

based condition, trees were inferred using the popular Neighbor-

Joining (NJ) method and/or FastME methods. Further, we also

explored more complex substitution models with character-based

methods. Specifically, we tested various Maximum Likelihood (ML)

algorithms for tree inference. PhyML v3.0 [27] was used at its default

settings (using BioNJ to obtain the initial tree, and the Le and

Gascuel (LG) amino acid replacement matrix [28]). Equilibrium

amino acid frequencies were estimated from the data set using the +F

option. RaxML v 7.0.4 parallel Pthreads version [29] is a different

ML algorithm, and was used with the Whelan and Goldman (WAG)

amino acid substitution model, and CAT approximations. CAT

approximations were used in RaxML as it decreases computational

time while retaining accuracy of tree inference. GARLI v 1.0 [30]

(www.bio.utexas.edu/faculty/antisense/garli/Garli.html) was also

used assuming the WAG amino acid substitution model and with the

substitution frequencies estimated from the data in hand (+F

settings). The gamma model of among-site rate variation was

employed with empirical estimates of the extent of rate variation. In

additional runs, we also used the recent version GARLI v2.0 [30].

To infer maximum parsimony trees we used both the PROTPARS

program in the PHYLIP v3.67 package (http://evolution.genetics.

washington.edu/phylip.html) and PAUP* (version 4) [31]. In data

sets where parsimony method outputs multiple trees, only the best

tree (based on RF distance) was used for average accuracy

calculations. Finally, we tested the Bayesian method available in

MrBayes 3.1.2 [32], incorporating its default settings with a mixed

amino acid substitution model and a gamma model of among-site

rate variation (and in additional runs using a gamma model of rate

variation with a proportion of invariable amino acid sites). Default

settings in MrBayes employ two different runs with 4 different chains

between the 2 independent runs. Besides these default settings, we

also utilized a parallel version of MrBayes with following settings: i)

16 parallel runs with the WAG amino sustitution substitution model

and gamma model of among–site rate varaition, and ii) 32 parallel

runs with the WAG amino acid substituition model. Optimal trees

were obtained from two independent runs for each data set, and runs

were stopped when runs reached stationarity (based on standard

deviation of split frequencies, and also by examining the log

likelihood values during runs). Majority-rule consensus trees after

Table 1. Performance Comparison of Phylogenetic Inference Methods.

Alignment/
Alignment-free
Method

Tree Inference
Method

Settings and
Parameters ROSE Data Sets#

100 550 650 750

LZ Neighbor-Joining 14(+/248.16) 116.88(+/218.03) 126.96(+/26.98) 143.36(+/27.34)

Average Common
Substring(ACS)

Neighbor-Joining 7.36(+/235.14) 106.96(+/220.98) 116.8(+/218.80) 122(+/213.49)

MUSCLE Maximum Parsimony
(ProtPars)

0.15(+/20.54) 49.61(+/215.64) 91.69(+/213.24) 106.15(+/211.76)

MUSCLE Maximum Parsimony
(PAUP)

0(+/20) 33.2(+/212.19) 77.68(+/29.27) 99.2(+/211.05)

MUSCLE Neighbor-Joining 0(+/20) 41.44(+/213.50) 82.24(+/214.08) 94.96(+/216.04)

MUSCLE Neighbor-Joining JTT,
Gamma = 0.5

0(+/20) 13.04(+/210.31) 68.4(+/223.08) 99.36(+/222.63)

MUSCLE FastME JTT,
Gamm = 0.5

0(+/20) 12.64(+/212.72) 66(+/221.73) 92.96(+/221.31)

MUSCLE Neighbor-Joining JTT, Gamma = 1 0.24(+/20.66) 52.32(+/218.63) 114.4(+/225.81) 135.52(+/217.00)

MUSCLE FastME JTT, Gamma = 1 0.16(+/20.55) 36.96(+/222.20) 105.84(+/222.31) 132.88(+/223.38)

MUSCLE PhyML(Maximum-
Liklihood)

LG 0(+/20) 29.24(+/225.77) 70.85(+/221.73) 89.14(+/224.14)

MUSCLE PhyML(Maximum-
Liklihood)

LG(+F) 0(+/20) 38(+/224.77) 75.28(+/222.23) 96.08(+/219.33)

MUSCLE RAxML (Maximum-
Liklihood)

WAG(+G) 0(+/20) 7.76(+/27.53) 43.28(+/212.03) 63.2(+/217.98)

MUSCLE GARLI(Maximum-
Liklihood)

WAG(+F) 0(+/20) 8.8(+/27.46) 46.16(+/212.62) 65.68(+/216.19)

CLUSTAL Neighbor-Joining NA NA NA 94.95(+/210.05)

TCOFFEE Neighbor-Joining NA NA NA 149.42(+/214.17)

MAFFT-L-INS-i Neighbor-Joining NA NA NA 153.52(+/237.44)

MAFFT Neighbor-Joining NA NA NA 174.09(+/22.05)

PHYRN Neighbor-Joining 1.2(+/21.53) 1.52(+/21.66) 7.04(+/24.05) 13.6(+/24.12)

MUSCLE* GARLI WAG(+F), 10
inpendent runs

NA NA NA 61.27(+/218.24)

PHYRN* Neighbor-Joining NA NA NA 14.6(+/24.46)

#Performance described as RF distance +/2SD.
*Analysis done only on Data Sets 2 for ROSE 700.
doi:10.1371/journal.pone.0034261.t001
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discarding first 25% samples as ‘burn-in’ were used for RF distance

calculation. For each data set, consensus tree from the settings that

provided best results was used in average RF distance calculations.

For alignment-free methods, Average Common Substring(ACS)

length-based distance [33] and Lempel-Ziv(LZ) distance [34] were

calculated using ‘decaf+py’ package [35] , followed by tree inference

using ‘neighbor’ program of PHYLIP package. All the settings and

implementations used have been summarized in Table 1, and more

details on commands is provided in Supporting Methods S1.

Framework for PHYRN-Based Tree Inference
The pipeline for the PHYRN algorithm is graphically

represented in Figure 1. The input is a set N of amino acid

sequences and set M of their associated PSSMs. The output is a

tree T, leaf-labeled by the set N. In this study we tested four

different tree building algorithms from our PHYRN distance

matrix, including NJ, Weighbor [36] (weighted NJ), FastME [37]

and NINJA [38]. PHYRN is a five step procedure: (i) curate a data

set of amino acid sequences, (ii) construct a database/library of

query-based PSSMs using PSI-BLAST, (iii) collect alignment

statistics as a function of percentage identity X percentage

coverage using a custom code of rps-BLAST and populate the

real numbers into a NXM matrix, (iv) calculate Euclidean distance

of all sequence pairs and represent distance in a NXN matrix, and

(v) generate a distance-based tree estimated using Neighbor-

Joining (or a similar clustering technique).

To generate PSSM libraries for the synthetic data sets, we used

full-length sequences. Further, since there are no biological

homologs for these synthetic sequences in the NCBI non-

redundant (nr) database, full length sequences from synthetic data

sets were added to the nr database, and PSSMs were generated

from this modified non-redundant (nr) database. We used full-

length synthetic sequences to generate PSSMs using PSI-BLAST

with the aforementioned, modified nr database, at 6 iterations and

e-value = 1026. In contrast to our previous report [8], in this study

we modified the product score to omit hits, excluded sequence

embedding, and modified the PSSM library architecture to allow

for increased computational speed in simulated libraries. Instead of

organizing PSSM library as an assembly of individual single-

domain databases, we changed library organization to have one

single database comprised of all the PSSMs. In later sections on

DANGER superfamily we illustrate how homologous regions from

biological protein families can be identified and converted to

PSSM libraries. Briefly this can be accomplished using several

approaches such as (i) CDD profiles, (ii) an iterative use of

PHYRN methodology, and/or (iii) sequence embedding based

approaches [39,40,41]. All the codes and the user manual for

PHYRN can be downloaded from www.ccp.psu.edu/downloads.

PHYRN uses a custom code for rps-BLAST for recording

positive alignments between simulated sequences and their

respective PSSM library. For a given profile M, the matrix is

populated 0 for no alignment or as a positive product score for the

alignment with best PHYRN score (%identity X %coverage)

retrieved with an e-value threshold of 1010. Equation sets for

calculating % identity and % coverage were defined as in previous

studies [8]. However, unlike the composite score mentioned in

Chang et al. [8] which included hits, in this case the PHYRN

product score equals %identity X % coverage for each PSSM that

provided an alignment [10]. Percentage identity (%i) and

percentage coverage (%c) is defined as follows:

Figure 1. PHYRN concept and work flow. PHYRN begins by (i–ii) defining and extracting the domain specific region among the query sequences.
(iii) Domain specific regions are then used to create PSSM library using PSI-BLAST. (iv–v) Positive alignments are then calculated between queries and
PSSM library using rpsBLAST, and encoded as a PHYRN product score (percentage identity X percentage coverage) matrix. (vi) The product score
matrix is converted to a Euclidean distance matrix by calculating Euclidean distance between each query pair. (vii) Phylogenetic trees are then
inferred using Neighbor Joining, WEIGHBOR, Minimum Evolution, NINJA, or FastME.
doi:10.1371/journal.pone.0034261.g001
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%i = [(Number of Identical residues in alignment)/(Alignment

length including gaps)]

%c = [(Alignment length in query excluding gaps)/(Sequence

length of PSSM)]

Thus, the PHYRN product score is directly proportional to the

similarity between query sequence and PSSM, and inversely

proportional to the gaps in an alignment. Overall, PHYRN

product score provides a measurement of the length, robustness,

and strength of the alignment. Mathematical derivations show that

this PHYRN product score is equivalent to [(1-(Alignment

restricted p-distance))*(1-PHYRN gap-weight)] (Equations i–v).

Derivation of PHYRN Product Score
PHYRN product score = %Identity 6%Coverage

%i|%c~
ids

alen
|

aqlen

plen
|104 ðiÞ

where:

ids = number of identical residues in aligned region

alen = length of the alignment

aqlen = length of the alignment without gaps

plen = length of the PSSM

%i|%c~
ids

plen
|

aqlen

alen
|104 ðiiÞ

aqlen~alen{gaps
ðiiiÞ

%i|%c~
ids

plen
|

alen{gapsð Þ
alen

� �
|104 ðivÞ

%i|%c~ 1{pARPð Þ|(1{wg)|104 ðvÞ

Alignment Restricted p-distance (pARP) is defined as the

proportion of amino acid sites different in alignment defined as

a function of PSSM length. It is calculated by dividing number of

non-identical amino acid sites by total length of the PSSM.

PHYRN Gap Weight (wg) is defined as proportion of gaps defined

as a function of alignment length. It is calculated by dividing total

number of gaps in alignment by length of alignment.

From the NXM matrix, PHYRN calculates the Euclidian

distance between each query [8] (Equation vi), which can then be

depicted as a phylogenetic tree using a variety of tree-building

algorithms.

Euclidean distance between two sequences X and Y, say D(X, Y),

is as follows:

D(X ,Y )~DX{Y D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i~1,M

(xi{yi)
2

s
ðviÞ

where X sequence is encoded as a vector of M scores (x1, x2, …, xM).

Results

Comparison of Tree Accuracy in Simulated Evolutions
Figure 2A–F depicts how the percentage identity and gap

statistics change between PAM 100 and PAM 700 of ROSE

generated data sets. We observe that for trees constructed at an

overall distance of PAM 550, average percentage identity as

calculated from true alignments provided by ROSE is as low as

10% (Fig 2A). In data sets generated at PAM 650 and PAM 700,

the average percent identity of data sets falls to 8.99% and 8.58%,

respectively. We also observe that indel substitution events (i.e. gap

openings) calculated as a function of each amino acid position, also

increase with increasing PAM distance (Fig 2B). Moreover, we

plotted the frequency distribution of all the gaps in 25 replicates at

each divergence range (Number of data sets at each range = 25,

Number of sequences in each data set = 100). We observe that

with increasing PAM distance, average gap length (AGL) and the

frequency of gaps increases (Fig 2C–F); however, the ratio of indel

rate to substitution rate (ISR) does not change significantly

between PAM 550 and PAM 700. In summary, our comparative

statistics across PAM distances demonstrate that increasing PAM

distance increases: 1) substitution rates, 2) frequency of gap events,

and 3) the average length of gaps.

Using these data sets, we first determined the most accurate

MSA method for benchmarking in our study. We tested the

performance of multiple popular MSA methods in these data sets

(MAFFT, MUSCLE, TCOFFEE, and CLUSTAL). We generated

trees for 25 different ROSE data sets at an average distance of

PAM 700. For rapid comparisons, we employed the NJ algorithm

for these analyses. Since we employed a single tree-inference

method, phylogenetic accuracy in this analysis is a function of

MSA quality. Figure 3 shows that MUSCLE and CLUSTAL have

improved performance over MAFFT and TCOFFEE that is

statistically significant (p,0.01). However, MUSCLE and CLUS-

TAL have statistically similar performance. Therefore, for the rest

of our study, we used MUSCLE as it is computationally much

more efficient than CLUSTAL. In data not shown, we tested

additional MSA methods (i.e. Dialign, and K-align); however,

these were excluded from Figure 3, as they could not generate

trees in data sets above PAM 550.

In Figure S1 we present our initial comparative analysis of

PHYRN and MUSCLE-NJ using both the SeqGen and ROSE

data sets generated at seven different ranges of divergence (40%–

7% identity, Figure S2 C–D). In total, we performed 425

simulations totaling 1655 tree comparisons. At the lower levels

of divergence, PHYRN marginally outperforms MUSCLE-NJ at

recapitulating deep nodes; however, at higher divergences,

PHYRN performs significantly better in both the SeqGen and

ROSE data sets.

To extend upon our previous comparative analysis we next

benchmarked against alignment-free, maximum parsimony,

corrected distance, and ML methods (Figure 4 and Table 1).

For this analysis, simulated data sets were generated at four

different PAM distances (PAM 100, 550, 650, and 700). For each

divergence range we generated 25 different data sets comprised of

100 sequences each with an average sequence length of 450 amino

acids. All ML analyses were conducted with the substitution

frequencies estimated from the data to ensure the best perfor-

mance of these algorithms (+F option). Substitution matrix and

other parameters used for each method are listed in Table 1.

At the lowest level of divergence (PAM 100), all methods perform

equally well (Table 1). In addition, for all data sets, we observe that

alignment-free, FastME and Maximum Parsimony (MP) perform

poorly when compared to RaxML and GARLI, while RaxML and

Phylogenetic Accuracy in Divergent Data Sets
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GARLI perform similarly. However, in our PAM 550 data set (25

replicates, , 10% identity), RaxML and GARLI have an average

RF-distance of 7.76 and 8.8, respectively, while PHYRN has an

average RF-distance of 1.52, which is significantly lower than all

methods tested (p,0.0001). Similarly, in our PAM 650 (25

replicates, ,8.9% identity), RaxML and GARLI have average

RF-distances of 43.6 and 46.16 respectively, while PHYRN remains

robust with an average RF-distance of 7.04. In the most divergent

data set we tested in this experiment, PAM 700 (25 replicates,

,8.5% identity), RaxML and GARLI have average RF-distances of

63.84 and 65.68, respectively. Once again, PHYRN remains

relatively robust with an average RF-distance of 13.6. We also

tested multiple other methods and settings (NJ, corrected vs.

uncorrected distances, Lempel-Ziv distance, PhyML, MP using

Protpars, variations in substitutions matrices, gamma rate (+G), and

empirical frequencies (+F)), the results of which are shown in Table 1.

Overall, we observe that at high rates of sequence divergence,

PHYRN provides statistically more accurate inference of tree

topologies than other methods (and their implementations) tested

here. To test whether other distance-based tree-inference methods

besides NJ would improve PHYRN performance, we tried

WEIGHBOR, Ninja, and FASTME (Fig S2). Importantly, the

performance of PHYRN is consistent regardless of the tree-building

method employed. Since all methods tested here produced similar

results, we suggest that the PHYRN distances derived are robust.

As a final comparison of PHYRN performance, we compared it

with the Bayesian method MrBayes [32]. Since this Bayesian

approach is extremely computationally expensive we compared

only five data sets at PAM 700. In this analysis, PHYRN

consistently yielded a lower RF-distance, and thus more

phylogenetic accuracy, than MrBayes (Figure 5A). Specifically,

MUSCLE-MrBAYES has an average RF-distance of 46.0, while

PHYRN has an RF-distance of 8.0 for these five data sets. The

differences in performance are highlighted in Figure 5B,C. Panels

Figure 2. Characteristics of ROSE Data Sets. Multiple data sets (n = 25) were generated using ROSE at each divergence range (PAM distance
= 100–700). The true alignment provided by the ROSE simulation was used to calculate the percentage identity, and gap statistics. A) Average percent
identity calculated from each data set, decreases on increasing PAM distance (n = 25, Error Bars: +/– S.E.M.). B) Distribution of Average INDEL Events
per position at different divergence ranges (PAM100–700). Average Indel events are calculated by dividing total number of gaps by total number of
amino acid positions in all sequences represented in 25 replicates. C2F) Distribution of gap lengths in all replicates generated at PAM 100-PAM700.
(Number of replicates = 25, number of sequences in each replicate = 100. Average length of each sequence = 450 aa). AGL: Average Gap Length as
calculated from the mean of all gap lengths in all 25 replicates. ISR: Indel event Rate/Substitution Rate.
doi:10.1371/journal.pone.0034261.g002
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5B depict a consensus tree between one trial of PHYRN versus the

True ROSE tree; a branch value of 100 means that PHYRN

inferred the correct branching pattern while a value of 50 means

that PHYRN incorrectly inferred that branch. Panel 5C depicts

the analogous results from one trial of MrBayes versus the True

ROSE tree. From this we observe that PHYRN has only four

branching errors, while MrBayes contains 30.

Following these results, we examined the scalability of PHYRN

with a single data set comprised of 1000 sequences and a mean

distance of PAM550. Consensus tree between the true ROSE tree

and the PHYRN-NJ tree shows that PHYRN infers only 8

branches incorrectly out of total 1998 branches. Moreover, the

PHYRN-NJ tree shows a symmetric RF distance of 14 to the true

ROSE tree (Figure S3). In data not shown we also tested the

efficacy of PHYRN using different tree topologies at extreme

divergences. In both biased (i.e. unbalanced) and unbiased trees

(i.e. balanced), PHYRN outperforms all MSA-based methods

analyzed here. However, in highly biased trees, all methods fail to

perform due to the extreme divergence that occurs at the basal

nodes. Thus, additional experimentation is needed to resolve

highly biased evolutionary histories.

Isolating Variables Underlying Phylogenetic Accuracy
The relatively poor performance we observe for MSA-based

methods in this study could be due to either sub-optimal MSA

quality and/or inaccurate tree inference. To discriminate between

these variables we employed the true-alignments as provided by

ROSE. If phylogenetic accuracy is not substantially improved, we

can infer that the tree-inference method used is sub-optimal. In this

experiment, we used the 25 data sets generated at PAM 700 distance

from ROSE, and trees were inferred using corrected FastME, and

GARLI. Notably, trees inferred using the true alignment perform

very well, with an average RF distance of 5.12 using FastME, and

0.18 using GARLI (Figure 6). Hence, these data demonstrate that

poor phylogenetic accuracy as observed in earlier comparisons is

largely due to poor MSA quality. Indeed, Figure 6 shows that when

these same data sets are aligned by MUSCLE, both FastME and

GARLI markedly lose phylogenetic accuracy. Since PHYRN does

not use an MSA step, we could not use the true alignment with this

method, but PHYRN using its default methodology gives an average

RF distance of 14.16. In sum, these results show that phylogenetic

Figure 3. Accuracy Comparison of Different MSA methods.
Graphical representation of average Robinson-Foulds Distance from
true ROSE trees (n = 21, PAM700) generated using different MSA
methods. All trees were inferred using Neighbor-Joining. (n = 21, Error
Bars: +/2 S. E. M.). The number of sequences in each data set = 100.
Maximum possible RF distance = 194.
doi:10.1371/journal.pone.0034261.g003

Figure 4. Performance Comparison of PHYRN with other Phylogenetic Inference methods. A–C) Graphical representation of average
symmetric distance (Robinson-Foulds Distance) between the true ROSE tree and trees estimated using PHYRN, ACS-NJ (Average Common Substring,
Alignment-free method), MUSCLE-FastME (corrected distance method), MSA-PAUP (Maximum Parsimony), MSA-RAxML (Maximum Likelihood), and
MUSCLE-GARLI (Maximum Likelihood) based methods. Number of replicates tested at each divergence range = 25, Error bars = +/2 S.E.M. The
number of sequences in each data set = 100, Avg. Length of sequences = 450. Maximum possible RF Distance = 194.
doi:10.1371/journal.pone.0034261.g004
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inference in divergent data sets is stymied by the sub-optimal quality

of MSA, not by tree-inference methods.
DANGER Superfamily as a Phylogenetic Test-Bed

To determine the efficacy of PHYRN in a biologically relevant

data set, we examine sequences from the highly divergent DANGER

superfamily. This developmental superfamily is ubiquitously

Figure 5. PHYRN outperforms MrBayes in ‘midnight-zone’ synthetic data sets. A) Graphical representation of symmetric distance (from
true ROSE trees) for trees inferred using PHYRN and MrBayes. Data sets used were generated using ROSE at PAM 700 distance. Number of data sets
tested (n = 5). The number of sequences in each data set = 100. Maximum possible RF distance = 194. Error Bars: +/2S.E.M. B) Consensus tree between
true ROSE tree and PHYRN tree (PAM 700 data set 1). Red circles mark nodes that are incorrectly inferred by PHYRN. C) Consensus tree between true
ROSE tree and MrBayes tree (PAM 700 data set 1). Red circles mark nodes that are incorrectly inferred by MrBayes.
doi:10.1371/journal.pone.0034261.g005
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expressed and is linked to multiple physiological (Ca2+ signaling,

cranio-facial development, reproduction, neurite outgrowth

[42,43,44]) and pathophysiological (excitotoxicity) processes [45].

Until recently, the MAB21-domain containing superfamily DAN-

GER escaped detection due to their extreme divergence [42].

Indeed, significant genetic correlates were required to support

monophyletic groups for this superfamily. A previous study by our

group, which relied on MSA-based approaches, defined six distinct

monophyletic groups of DANGER [42]. Although the orthologous

relationships were well defined, the paralogous relationships in this

family were ambiguous. Indeed, even upon rigorous genetic analyses

and extensive manual editing of these alignments, deep-node

statistical support was unattainable.

Implementation of PHYRN for Biological Data
In the simulated data sets reported earlier, we utilized the full-

length sequences to generate PSSMs. However, biological data sets

are often comprised of both homologous and non-homologous

regions. Previous studies have demonstrated that phylogenetic

inference in divergent data sets improves when measurements of

phylogenetic signal are limited to homologous regions [3,10].

Therefore, we sought to further refine PSSM generation by limiting

the PHYRN-based measurement of phylogenetic signal to homol-

ogous regions and to generate PSSM libraries for these areas of

interest (see Supporting Methods S1 for complete description).

Briefly, we curated protein sequences belonging to the DANGER

superfamily from the literature and sequence databases. All known

DANGER members (D1–D6 groups) share the MAB-21 domain in

common [42]. Therefore, we aligned each putative DANGER

member against PSSMs for the MAB-21 domain as defined by

NCBI Conserved Domain Database (CDD) [46]. These alignments

were utilized to define the homologous region in each protein

sequence. Together, these regions were converted to a MAB21-

specific PSSM library containing 112 PSSMs using PSI-BLAST and

compiled into an rpsBLAST compatible database.

Once an appropriate PSSM library is constructed, the next step

is to align all queries with all PSSMs and encode the alignment

statistics into an N6M matrix. In this format, N is the number of

full-length query sequences and M is the number of PSSMs in the

library. Hence, we aligned 108 full-length DANGER query

sequences against 112 Mab-21 PSSMs using rpsBLAST. A

composite score matrix (%identity6%coverage) was generated

by encoding alignment statistics for all query-PSSM alignments.

The pairwise distances among them (i.e. N6N matrix) were based

on Euclidean distance measurement in the 1086112 data matrix.

Finally, we inferred a phylogenetic tree from this matrix with the

Neighbor-Joining (NJ) method available in the MEGA package

[47] (See Supporting Methods S1 for more details.).

Comparative Analyses of Inferred Trees
To compare PHYRN-based trees with traditional methods, we

generated phylogenetic trees with the same DANGER sequences

using a variety of MSA and tree building algorithms. These

include: (i) MUSCLE-MrBayes [5,22,32], (ii) MUSCLE-PhyML

[5,22,27], (iii) CLUSTAL-NJ [25], and (iv) TCOFFEE-NJ [26]

(Figure 6). Together these five approaches are representative of

traditional character-based and distance-based methods for

phylogenetic inference and are a good subset of methods for

comparative analysis with PHRYN. Figure 7a and Figure S4a

depict the unrooted tree derived by PHYRN, from which we

observe plausible biological patterning of six monophyletic groups

(D1–D6) in accord with our previous studies. [42]. For example,

within the D6 clade, cnidaria (e.g. sea anemone) occupies a basal

position, followed by nematode (e.g. worms), urochordates (e.g. sea

squirt), arthropods (e.g. insects), and chordates (e.g. humans).

However, a single sequence from sea urchin diverges subsequent

to arthropods, and thus appears to be misplaced. Trees generated

by MUSCLE-NJ, MUSCLE-PhyML, CLUSTAL-NJ, and

TCOFFEE-NJ also place this sequence in the same, possibly

erroneous position (Figure 7b–e). By comparison, MUSCLE-

MrBayes lacks monophyly for various groups, such as members of

D2 and D3 clades and incorrectly places Nematostella (i.e. Cnidaria-

sea anemone) D3 sequences after other higher order organisms.

CLUSTAL-NJ tree splits members of D2 clade, and places some

Nematostella sequences after the mammalian specific group D1.

MUSCLE-NJ and TCOFFEE-NJ trees also misplace Nematostella

sequences. MUSCLE-PhyML provides good bootstrap support

but splits members of D3 clade. Thus, all methods with the

exception of PHYRN either fail to infer monophyly, and/or yield

a tree with an improbable evolutionary scenario.

To assess the statistical support for these various phylogenetic

trees we conducted an 80% jack-knife resampling for PHRYN and

bootstrap resampling for all approaches. By these measures

PHYRN obtains support of .83% (bootstrap) and .88% (jack-

knife) for all deep-nodes except for the placement of the D4 clade.

Conversely, none of the other traditional methods tested obtain

significant results for any deep-node other than the D5/D6 clades

which is the most conserved subgroup in the superfamily.

Figure S4 depicts the unrooted and non-collapsed phylogenetic

trees for PHYRN and MrBayes with resampling statistics at all

branch points. On leaf nodes, both methods perform equally well;

however, there are major differences between the topology and

branch statistics between methods. Overall, this suggests that

PHYRN has increased ability to measure low phylogenetic signal.

Meta-Analysis of PHYRN-Derived Data
In our previous evolutionary study of DANGER, we identified a

single sequence from choanoflagellate, which was used as the

putative outgroup [42]. Importantly, this sequence obtained no

statistical support for this position. To ascertain whether this

sequence was indeed an outgroup, we searched for additional

Figure 6. Effect of ‘True Alignment’ on Phylogenetic Inference.
Graphical representation of average symmetric distance (Robinson-
Foulds Distance) between the true ROSE tree and trees estimated using
PHYRN, corrected distance (FastME) and ML methods (GARLI). Corrected
Distance and ML trees were generated with both MUSCLE alignment,
and True Alignment (TA) provided by ROSE. (Number of replicates
tested at each divergence range = 25, Error bars = +/2 S.E.M. Number of
sequences in each data set = 100, Avg. Length of sequences = 450).
Maximum possible RF distance = 194.
doi:10.1371/journal.pone.0034261.g006
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putative DANGER sequences in multiple publically available

sequence databases including NCBI, Community Cyberinfras-

tructure for Advanced Marine Microbial Ecology Research and

Analysis (CAMERA, [48]), and Department of Energy Joint

Genome Institute (JGI) databases. Taken together, we identified

13 additional Monosiga sequences (i.e. Choanoflagellate- micro-

scopic, heterotrophic single-celled and colony-forming eukaryotes).

When we incorporate these sequences into our analyses, PHYRN

infers a monophyletic topology; however, the choanoflagellate

sequences form a distinct clade, with D3 as the nearest neighbor

(Figure S5a). Moreover, their inclusion drastically reduces the

statistical support across the entire tree (compare Figure 7a and

Figure S5a). Based upon this observation, the homology of these

Monosiga sequences with the DANGER superfamily is highly

questionable and is likely in error.

From the matrix data generated by PHYRN, we can obtain

additional quantitative measurements such as group-wise distri-

bution of composite scores of sequence to PSSM comparisons, as

well as their information content. These measures can be utilized

to interrogate placement of the Monosiga group in the DANGER

phylogeny. Figure S5b demonstrates that in all cases, these

choanoflagellate PSSMs have the fewest alignments across all

clades, and their sequences have the lowest information content

(average product score, 6S.E.M). Moreover, the positions of the

choanoflagellate sequences relative to the vertebrate specific D1

clade within the tree are suspect. In this scenario, multiple clades

that contain ancient species (e.g. cnidarians, nematodes, and

arthropods) would have evolved after D1. Thus, in order for this

scenario to make sense, D1 proteins would have to be lost from all

species prior to chordates, which is not parsimonious. Final

evidence that these choanoflagellate sequences are not homolo-

gous to DANGER and thus do not belong in the phylogeny come

from exhaustive searches of sequence databases. We could not

identify any DANGER sequences in species before choanoflagel-

late or between choanoflagellate and cnidaria.

Thus, the question arises: which DANGER clade is the oldest? In

our quantitative statistics, we observe that PSSMs from the D6 clade

have the highest group-wise distribution and D6 sequences have the

highest information content (Figure S5b). Further, in the unrooted

tree D6 clade has the longest branch-length. Taken together, D6 is

Figure 7. Comparison of Topology and Resampling Statistics for Various Tree Construction Methods. Collapsed unrooted phylogenetic
trees for DANGER superfamily generated using (A) PHYRN-NJ, (B) MUSCLE-MrBayes, (C) MUSCLE-PhyML, (D) MUSCLE-NJ, (E) CLUSTAL-NJ and (F)
TCOFFEE-NJ. For PHYRN trees the statistics are represented by two numbers with Bootstrap listed first followed by Jacknife statistics. Statistics for
panel A were calculated from resampling results from 3000 replicates. Bootstrap statistics for panels B-F were calculated from resampling results from
1000 replicates.
doi:10.1371/journal.pone.0034261.g007
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the most logical outgroup of the superfamily based on (i) statistical

support, (ii) information content, and (iii) speciation. Taken

together, our results suggest the following evolutionary scenario

(Figure 8). The first DANGER sequences emerged in cnidarians

(.580 million years ago), which are some of the first organisms

known to have a developed neural net, radial axis of symmetry,

muscle cells, and stem cells [49,50]. Accordingly, members of the

DANGER superfamily have been shown by functional studies to be

involved in neurite length extension [42], calcium mobilization [43],

and developmental patterning [44,51,52]. If we root our phyloge-

netic tree with D6 (Figure 8), we see a ‘‘simple to complex’’

evolutionary pattern for the DANGER superfamily, with the

mammalian-specific D1 clade attaining the most distant position.

Similarly, we see the appearance of simpler organisms before more

complex organisms within individual monophyletic groups. For

example, in D6 clade, cnidarians are the first ones to show

DANGER followed by nematodes, arthropods and then chordates.

Importantly, we could not identify cnidarian sequences in D4 and

D5 clades. This is relevant because relatively newer clades D3 and

D2 do have cnidarian members, and suggests that D4 and D5 were

lost from cnidaria.

Discussion

Within divergent biological data sets it is impossible to know the

true evolutionary history of sequences under consideration. Due to

the lack of knowledge about true evolutionary history, there is no

way to accurately evaluate the performance of algorithms on

biological data sets. Therefore, in the present study we utilized

simulations as test beds of phylogenetic inference. Only in this way

can one measure a true evolutionary history, and hence accurately

quantify the performance of various algorithms by comparing

‘inferred history’ to ‘true history’. Indeed, synthetic data sets have

frequently been used for benchmarking algorithm performance

[12,13,14,15,16]. Our comparative analysis within synthetic protein

and biological sequence data indicate that PHYRN can provide a

more accurate and statistically robust representation of evolutionary

history within the ‘‘twilight zone/midnight zone’’ of sequence

similarity as compared to multiple popular MSA-approaches. Our

interpretation is supported by several key findings, including; 1)

PHYRN outperforms all distance and ML methods tested given a

MUSCLE alignment, 2) PHYRN outperforms a Bayesian method

(MrBayes), given a MUSCLE alignment, and 3) both, distance-

based and character-based methods require the true alignment in

order to outperform PHYRN.

While simulations do not entirely reflect all of the underlying

mechanisms of natural molecular evolution, they still represent

powerful approximations of the evolutionary process (for example,

including substitution matrices derived from biological databases,

inclusion of insertions-deletions) and we have tested our method on

two of the most-utilized simulation methods (SeqGen and ROSE).

While more research is needed to develop improved models of

evolution that more accurately reflect biological mechanisms, this

does not detract from their utility for benchmarking studies, and

PHYRN also appeared to perform well on a real biological data set

comprising a highly divergent superfamily of developmental

proteins (the DANGER superfamily).

Figure 8. Model for the Evolution of the DANGER Superfamily. Graphical representation of the Neighbor-Joining (NJ) tree for 108 DANGER
sequences generated PHYRN. In this model, DANGER appeared first in cnidarian organisms (Nematostella) and then evolved into 6 different clades.
The chordate specific group, D1 attains the furthest position from the putative root (D6).
doi:10.1371/journal.pone.0034261.g008
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In both synthetic and biological data sets we reason that the

improved performance of PHYRN is due to the increased

information content contained in PSSM libraries and an effective

alignment search and scoring method. Conversely, the inability of

MSA methods to obtain accurate alignments at high divergence

leads to low accuracy of trees across all tree-building methods. At the

lower end of this performance spectrum Neighbor-Joining per-

formed well in conserved data sets, but poorly at higher levels of

divergence. Some ML methods (RAxML and GARLI) perform

better than NJ, but their performance is also greatly limited by the

quality of input MSA methods. Bayesian methods, which are

computationally very slow (because a whole posterior distribution of

trees are produced), show a similar performance to RAxML and

GARLI. We also considered other approaches such as PROB-

CONS and other consistency based models, but these have been

shown to be slower, and thus are not easily scalable. Moreover,

PROBCONS has been previously benchmarked in the twilight-

zone [53], and which showed that PROBCONS performs no better

than ClustalX, Align-m, T-Coffee, SAGA, ProbCons, MAFFT,

MUSCLE and DIALIGN. More generally, our results on tree

inference using true ROSE alignments show that better alignments

may be the key to estimating accurate phylogenies in highly

divergent data sets (figure 6).

For those MSA-based methods tested, we have tried to give these

algorithms the best opportunity to perform well. In addition to

comparisons with the default settings, we also explored: (i)

equilibrium frequencies estimated from the empirical data, and (ii)

a variety of among-site rate variation models in the Bayesian

method. Importantly, most of these settings did not improve

performance to any great extent. An ideal MSA method at extreme

divergence involves ‘‘cleaning’’ for badly aligned regions followed by

tree-inference. To accomplish this goal, we filtered our MSAs using

Gblocks [12]; strikingly, however, our simulated data sets are so

divergent that Gblocks fails to recognize any conserved sequence

blocks. Thus, in these simulated data sets it is impossible to simply

filter out badly aligned regions. Nevertheless, we acknowledge that

there are still settings that could be fine-tuned to improve alignment

estimation and tree inference in a data set dependent manner. In

particular, although we have tried to benchmark against many

popular MSA methods, further experimentation is needed to

benchmark PHYRN against other MSA algorithms such as Prank

[54] and SATe [55]. In addition, we also need to explore PHYRN’s

performance in data sets where substitution rates deviate substan-

tially from a molecular clock, and where evolutionary models are

permitted to change across a phylogeny.

In conclusion, we propose that our increased performance on

synthetic and biological data sets demonstrates that PHYRN is an

accurate and scalable approach. We suggest that PHYRN’s ability to

handle large numbers of highly divergent sequences makes it an ideal

framework to study a number of unanswered questions relating to

some of the earliest events in the history of life. Future work will focus

on exploring: (i) the utility of PHRYN-based ‘guide trees’ for

improving MSA-based algorithms, (ii) the integration of PHYRN-

based distance estimates with other statistical methods such as

Maximum Likelihood, and (iii) the refinement of PHYRN-based

PSSM libraries with Markovian statistics (i.e. HMM profiles) [56].

Supporting Information

Figure S1 PHYRN outperforms MSA in synthetic pro-
tein families. Consensus tree between true ROSE tree and tree

generated using a) PHYRN and b) MUSCLE with NJ. Simulated

protein family generated using ROSE, with an average distance of

550 (p distance ,0.83). Red circles mark the branch points (nodes)

that are recapitulated incorrectly. (# of query sequences = 67). c)

Graphical representation of %deep node recapitulation versus

SeqGen scaling factor. Number of replicates for each bar = 25,

Error bars = +/2 S.E.M. *p-value,0.01. Number of sequences

in each data set = 100, Length of sequences = 450. d) Graphical

representation of %deep node recapitulation versus average Rose

distance. Number of replicates for each bar = 25, Error bars = +/

2 S.E.M. *p-value , 0.01. Number of sequences in each data

set = 100, Avg. Length of sequences = 450.

(PDF)

Figure S2 Effect of Tree Inference Method on PHYRN
Performance. Graphical representation of symmetric distance

for trees inferred from PHYRN distance matrix and different tree

inference methods. Number of replicates tested at each divergence

range = 25, Error bars = +/2 S.E.M. Number of sequences in

each data set = 100, Avg. Length of sequences = 450. (Maximum

possible RF distance for each data set = 194).

(PDF)

Figure S3 Deep node recapitulation of ‘true evolutionary
history’ in mega-phylogenies. Consensus phylogenetic tree

between true ROSE tree and tree generated using PHYRN. The

simulated protein family was generated using ROSE, with an

average PAM distance of 550. (Red colored branches mark the

branches that are recapitulated incorrectly in the consensus trees.

(number of query sequences = 1000). PHYRN recapitulates 1990

branches correctly out of total 1998 branches in the consensus

tree. PHYRN shows a RF distance of 14 from the true ROSE tree

(Maximum possible RF distance for this data set = 1994).

(PDF)

Figure S4 Comparison of PHYRN and MrBayes gener-
ated Trees for DANGER Superfamily. Unrooted Phyloge-

netic trees for 108 DANGER sequences generated using (A)

PHYRN or (B) MUSCLE-MrBayes. Statistical support for

PHYRN calculated using Bootstrap and Jackknife analysis, while

for MUSCLE-MrBayes only bootstrap was used. The blank

marked ‘‘_/_’’ in the statistical support indicates that the clustering

of the branching connection cannot be measured in a standardized

fashion by the given resampling method.

(PDF)

Figure S5 Identification of most basal DANGER clade
using PHYRN quantitative measures. (A) DANGER tree

generated by PHYRN-NJ including 13 Monosiga sequences. The

tree is drawn to scale, with branch lengths in the same units as

those of the Euclidean distances. Statistical support was calculated

using Bootstrap and Jackknife analysis from 3,000 replicates and

are reported as percentages with bootstrap values labeled first. (B)

This bar graph depicts addition quantitative measures derived by

PHYRN for group-wise distribution of composite score (i.e.

percentage identity X percentage coverage). Errors bars = +/

2S.E.M. In all cases, choanoflagellate sequences have the lowest

information content (average PHYRN product score, 6 S.E.M).

(PDF)

Supporting Methods S1 Supplemental methods describ-
ing PHYRN PSSM generation and simulation parame-
ters.
(PDF)
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