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With the development of genome sequencing for many organisms, more and more
raw sequences need to be annotated. Gene prediction by computational meth-
ods for finding the location of protein coding regions is one of the essential issues
in bioinformatics. Two classes of methods are generally adopted: similarity based
searches and ab initio prediction. Here, we review the development of gene predic-
tion methods, summarize the measures for evaluating predictor quality, highlight
open problems in this area, and discuss future research directions.
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Introduction

Since the beginning of the Human Genome Program
(HGP) in 1990, databases of human and model or-
ganism DNA sequences have been increasing quickly.
Computational gene prediction is becoming more and
more essential for the automatic analysis and anno-
tation of large uncharacterized genomic sequences.
In the past two decades, many gene prediction pro-
grams have been developed. Most of them are ref-
erenced at the website maintained by Wentian Li
(http://www.nslij-genetics.org/gene/).

Gene discovery in prokaryotic genomes is less diffi-
cult, due to the higher gene density typical of prokary-
otes and the absence of introns in their protein cod-
ing regions. DNA sequences that encode proteins
are transcribed into mRNA, and the mRNA is usu-
ally translated into proteins without significant mod-
ification. The longest ORFs (open reading frames)
running from the first available start codon on the
mRNA to the next stop codon in the same reading
frame generally provide a good, but not assured pre-
diction of the protein coding regions. Several methods
have been devised that use different types of Markov
models in order to capture the compositional differ-
ences among coding regions, “shadow” coding regions
(coding on the opposite DNA strand), and noncod-
ing DNA. Such methods, including ECOPARSE, the
widely used GENMARK, and Glimmer program, ap-
pear to be able to identify most protein coding genes
with good performance (1 ).
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In eukaryotic organisms, it is a quite different
problem from that encountered in prokaryotes. Tran-
scription of protein coding regions initiated at specific
promoter sequences is followed by removal of noncod-
ing sequences (introns) from pre-mRNA by a splicing
mechanism, leaving the protein-encoding exons. Once
the introns have been removed and certain other mod-
ifications to the mature RNA have been made, the re-
sulting mature mRNA can be translated in the 5′ to
3′ direction, usually from the first start codon to the
first stop codon. As a result of the presence of intron
sequences in the genomic DNA sequences of eukary-
otes, the ORF corresponding to an encoded gene will
be interrupted by the presence of introns that usually
generate stop codons (2 ). This review mainly focuses
on the more complex problem of gene prediction in
eukaryotic sequences.

Gene Prediction Methods

There are two basic problems in gene prediction: pre-
diction of protein coding regions and prediction of the
functional sites of genes. A large number of researches
working on this subject have accumulated, which can
be classified into four generations in summary. The
first generation of programs was designed to identify
approximate locations of coding regions in genomic
DNA. The most widely known programs were proba-
bly TestCode (3 ) and GRAIL (4 ). But they could not
accurately predict precise exon locations. The second
generation, such as SORFIND (5 ) and Xpound (6 ),
combined splice signal and coding region identifica-
tion to predict potential exons, but did not attempt
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to assemble predicted exons into complete genes. The
next generation of programs attempted the more dif-
ficult task of predicting complete gene structures. A
variety of programs have been developed, including
GeneID (7 ), GeneParser (8 , 9 ), GenLang (10 ), and
FGENEH (11 ). However, the performance of those
programs remained rather poor. Moreover, those pro-
grams were all based on the assumption that the input
sequence contains exactly one complete gene, which is
not often the case. To solve this problem and improve
accuracy and applicability further, GENSCAN (12 )
and AUGUSTUS (13 ) were developed, which could
be classified into the fourth generation.

There are mainly two classes of methods for com-
putational gene prediction. One is based on sequence
similarity searches, while the other is gene structure
and signal-based searches, which is also referred to as
ab initio gene finding.

Sequence similarity searches

Sequence similarity search is a conceptually simple ap-
proach that is based on finding similarity in gene se-
quences between ESTs (expressed sequence tags), pro-
teins, or other genomes to the input genome. This ap-
proach is based on the assumption that functional re-
gions (exons) are more conserved evolutionarily than
nonfunctional regions (intergenic or intronic regions).
Once there is similarity between a certain genomic re-
gion and an EST, DNA, or protein, the similarity in-
formation can be used to infer gene structure or func-
tion of that region. EST-based sequence similarity
usually has drawbacks in that ESTs only correspond
to small portions of the gene sequence, which means
that it is often difficult to predict the complete gene
structure of a given region.

Local alignment and global alignment are two
methods based on similarity searches. The most com-
mon local alignment tool is the BLAST family of pro-
grams, which detects sequence similarity to known
genes, proteins, or ESTs. Two more types of soft-
ware, PROCRUSTES (14 ) and GeneWise (15 ), use
global alignment of a homologous protein to trans-
lated ORFs in a genomic sequence for gene prediction.
A new heuristic method based on pairwise genome
comparison has been implemented in the software
called CSTfinder (16 ). The biggest limitation to this
type of approaches is that only about half of the genes
being discovered have significant homology to genes in
the databases.

Ab initio gene prediction methods

The second class of methods for the computational
identification of genes is to use gene structure as a
template to detect genes, which is also called ab ini-
tio prediction. Ab initio gene predictions rely on two
types of sequence information: signal sensors and con-
tent sensors. Signal sensors refer to short sequence
motifs, such as splice sites, branch points, polypyrim-
idine tracts, start codons and stop codons. Exon de-
tection must rely on the content sensors, which re-
fer to the patterns of codon usage that are unique to
a species, and allow coding sequences to be distin-
guished from the surrounding non-coding sequences
by statistical detection algorithms.

Many algorithms are applied for modeling gene
structure, such as Dynamic Programming, linear dis-
criminant analysis, Linguist methods, Hidden Markov
Model and Neural Network. Based on these models,
a great number of ab initio gene prediction programs
have been developed. Some of the frequently used
ones are shown in Table 1, among which the pro-
grams GeneParser, Genie and GRAIL combine simi-
larity searches.

The most successful programs so far are based
on Hidden Markov Model (HMM; ref. 17 ), which is
mainly described here. Readers interested in other al-
gorithms can learn from references. In Hidden Markov
Model, transitions between sub-models corresponding
to particular gene components are modeled as unob-
served (“hidden”) Markov processes, which determine
the probability of generating particular (observable)
nucleotides. Since exon and intron lengths appear
to be constrained by factors related to pre-mRNA
splicing, and do not exhibit geometric distributions, a
more general model is required to accurately account
for the lengths of exons and introns in real genes. So
a Generalized Hidden Markov Model (GHMM) is de-
veloped, in which subsequent states are generated ac-
cording to a Markov chain but have arbitrary (instead
of fixed unit) length distributions. Figure 1 illustrates
the state transition in eukaryotic genomic sequences.

Suppose we are given a DNA sequence S of length
L and a parse φ also of length L. The conditional
probability of the parse φ, given that the sequence
generated is S, can be computed using Bayes’ Rule
as:

P{φ |S} =
P{φ, S}∑

ψ∈φL

P{ψ, S}
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Fig. 1 State transition of HMM modeling eukaryotic genes.

Table 1 Ab initio Gene Prediction Programs (Possibly with Homology Integration)

Program Organism Algorithm* Website Homology

GeneID Vertebrates, plants DP http://www1.imim.es/geneid.html

FGENESH Human, mouse,

Drosophila, rice

HMM http://www.softberry.com/berry.phtml?topic

=fgenesh&group=programs&subgroup=gfind

GeneParser Vertebrates NN http://beagle.colorado.edu/∼eesnyder/

GeneParser.html

EST

Genie Drosophila,

human, other

GHMM http://www.fruitfly.org/seq tools/genie.html protein

GenLang Vertebrates,

Drosophila, dicots

Grammar rule http://www.cbil.upenn.edu/genlang/

genlang home.html

GENSCAN Vertebrates,

Arabidopsis, maize

GHMM http://genes.mit.edu/GENSCAN.html

GlimmerM Small eukaryotes,

Arabidopsis, rice

IMM http://www.tigr.org/tdb/glimmerm/

glmr form.html

GRAIL Human, mouse,

Arabidopsis,

Drosophila

NN, DP http://compbio.ornl.gov/Grail-bin/

EmptyGrailForm

EST,

cDNA

HMMgene Vertebrates,

C. elegans

CHMM http://www.cbs.dtu.dk/services/HMMgene/

AUGUSTUS Human,

Arabidopsis

IMM,WWAM http://augustus.gobics.de/

MZEF Human, mouse,

Arabidopsis,

Fission yeast

Quadratic

discriminant

analysis

http://rulai.cshl.org/tools/genefinder/

*DP, dynamic programming; NN, neural network; MM, Markov model; HMM, Hidden Markov model; CHMM, class

HMM; GHMM, generalized HMM; IMM, interpolated MM.

Here, φL is the set of all parses of length L. Now,
given a particular DNA sequence S, we can find a
parse φL that maximizes the likelihood of generating.
In other words, for a particular sequence, we can find
the functional unit (for example, the promoter region)
that the sequence is most likely to represent. Thus,
the model can be used for automatic annotation of
DNA sequences.

Other methods

The major limitation with HMM method is that we
have a little knowledge of gene structures, especially
for new sequencing genomes. Furthermore, current
set of known genes is limited and certainly does not
represent all potential gene features or their organiza-
tional themes. So recently some techniques in physics
and signal processing have been applied to recognize
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genes.
It is well known that base sequences in the protein-

coding regions of DNA molecules have a period-3 com-
ponent because of the codon structure involved in the
translation of base sequences into amino acids (18 ).
Discrete Fourier Transform (DFT) is suitable for pro-
cessing periodicity. For a DNA sequence of length N ,
assume uA(n), uT (n), uC(n), and uG(n), which repre-
sent the binary indicator function for the correspond-
ing nucleotide. It takes the value 1 at index n if the
corresponding nucleotide is present at that position,
and takes the value 0 otherwise. Applying DFT to
each of these sequences produces four spectral repre-
sentations, represented as UA(k), UT (k), UC(k), and
UG(k), respectively. The total frequency spectrum of
the given DNA sequence is defined as:

S(k) = |UA(k)|2 + |UT (k)|2 + |UC(k)|2 + |UG(k)|2

In coding regions of DNA, S(k) typically has a
peak at the frequency k = N/3, whereas in noncod-
ing regions, it generally does not have any significant
peaks. By this property, gene predictor can be con-
structed. In 2003, a new measure for gene prediction
in eukaryotes was presented by Kotlar and Lavner
(19 ), which was based on DFT. The phase of the
DFT at a frequency of 1/3 was distributed with a
bell-shaped curve around a central value in coding re-
gions, whereas in noncoding regions, the distribution
was close to uniform. This regularity was used for
discriminating between coding and noncoding regions
in a given nonannotated genomic sequence (19 ).

The Z curve method (20 ) is another powerful tool
in visualizing and analyzing DNA sequences. It has
been applied to recognize coding sequences in the hu-
man genome (21 ), and to find genes in the genomes of
yeast (22 ) and Vibrio cholerae (23 ). For predicting
short coding sequence, it shows higher accuracy than
GENSCAN, which is considered as one of the best
ab initio gene prediction programs, while it is much
simpler computationally than the latter.

In addition, with many genome sequencing

projects currently under way, the comparative genome
approach is becoming more promising in the field of
gene prediction. In practice, its performance will de-
pend on the evolutionary distance between the com-
pared sequences. Initial results show that the rela-
tionship is not straightforward. Indeed, a greater evo-
lutionary distance allows some algorithms to more ac-
curately discriminate between coding and non-coding
sequence conservation. Such comparative genome
programs are often computer intensive and conse-
quently much work remains to be done.

Evaluation of Gene Prediction

Programs

The abundance of gene prediction program raises the
problem of adequate evaluation of prediction program
quality. Comparison of the accuracy and reliability
must take into account the type of algorithms, for
example, neural network, Hidden Markov Model, or
others; the number of sequences used for training and
testing; and the method used for evaluation. It is im-
possible to rank the predictors by only a single mea-
sure.

Sensitivity (Sn) and Specificity (Sp) are probably
the two most widely used measures, which are ex-
plained by Burset and Guigó (24 ) in detail. The ac-
curacy of the predictions can be measured at three
different levels: coding nucleotide sequence, exonic
structure, and protein product. The nucleotide level
accuracy that measures Sn, Sp, CC (correlation co-
efficient) and AC (approximate coefficient) gives an
overall sense of how closely the predicted and actual
coding regions are in a sequence alignment, but does
not accurately reflect the identification of precise exon
boundaries. Evaluation at the exon level mainly pro-
vides how well the sequence signals (splice sites, start
codon, and stop codon, etc.) are identified. The ac-
curacy can be measured by comparing predicted and
real exons along the test sequences (Figure 2).

Wrong Exon Correct Exon Missing Exon 

Prediction

Reality

Fig. 2 Evaluation of gene prediction accuracy at the exon level.

Geno. Prot. Bioinfo. Vol. 2 No. 4 November 2004 219



Computational Gene Prediction Methods

Thus, sensitivity (Sn), specificity (Sp), miss rate
(MR) and wrong rate (WR) are expressed as follow-
ing:

Sn = CE
AE Sp = CE

PE

MR = ME
AE WR = WE

PE

(AE, actural exons; PE, predicted exons; CE, correct
exons; WE, wrong exons; ME, missing exons).

At the protein level, the accuracy is measured by
comparing the protein product encoded by the actual
gene in the test sequence with the protein product en-
coded by the predicted gene. In the gene prediction
literatures, only Fields and Soderlund (25 ) provided
an evaluation of the gm program at the final protein
product level, which indicated that it is not widely
used.

The prediction accuracy of some usual programs
has been tested on Burset and Guigó’s sequence set
(24 ), and the results at exon level are illustrated in
Table 2 (12 ). It shows that GENSCAN based on
GHMM is significantly more accurate than other pro-
grams.

Table 2 Accuracy Comparisons of Gene

Prediction Programs

Program Sn Sp MR WR

GENSCAN 0.78 0.81 0.09 0.05

FGENEH 0.61 0.64 0.15 0.12

GeneID 0.44 0.46 0.28 0.24

Genie 0.55 0.48 0.17 0.33

GenLang 0.51 0.52 0.21 0.22

GeneParser2 0.35 0.40 0.34 0.17

GRAIL2 0.36 0.43 0.25 0.11

SORFIND 0.42 0.47 0.24 0.14

Xpound 0.15 0.18 0.33 0.13

Future Directions in Gene Pre-

diction

Since the early eighties of the twentieth century, there
has been great progress in the development of com-
putational gene prediction. However, some problems
have not yet been solved. First, short exons are diffi-
cult to locate, because discriminative statistical char-
acteristics are less likely to appear in short sequences.
The more difficult cases are those where the length

of a coding exon is a multiple of three (typically 3, 6
or 9 bp), because missing such exons will not cause
a problem in the exon assembly as they do not in-
troduce any changes in the frame. Lately, Gao and
Zhang (26 ) compared the performance of various al-
gorithms for recognizing short coding sequences and
validated that the Z curve method is the best one.

Second, the problem of alternatively splicing has
not yet been solved effectively, which in particular is
an important regulatory mechanism in higher eukary-
otes. Some gene prediction programs tried to handle
this through the identification of sub-optimal exons
(GENSCAN and MZEF). Nevertheless, a more rele-
vant approach would consist of improving the identi-
fication of the intronic and exonic signals that dictate
the choice of alternatively splicing sites (27 ).

In addition, the evaluation system of gene predic-
tion programs is still in need of improvement. Some
of the measures mentioned above often give results
contradictory to each other, because many of them
emphasize only a few or even only one of the several
aspects of the prediction quality. So more reasonable
and comprehensive criterions are needed for evalua-
tion of gene prediction programs. Recently, Bajic in-
troduced averaged score measure (ASM) and used it
to assess the quality of programs for eukaryotic pro-
moter prediction (28 ).

Further more, in order to compensate the insuffi-
ciency of any individual gene prediction program, the
computational method to construct gene models by
multiple evidences is becoming more promising. For
the nonannotated genomic sequences, a diverse set
of sources can be combined for annotation, includ-
ing the locations of gene predictions from ab initio
gene finders, protein sequence alignments, ESTs and
cDNA alignments, promoter predictions, splice site
predictions, and so on. Such integrative approach has
been proved to consistently outperform even the best
individual gene finder, and in some cases, can produce
dramatic improvements in sensitivity and specificity
(29 ).

Finally, it should be emphasized that for all gene
prediction methods, the performances depend on the
current biological knowledge to a large extent, espe-
cially knowledge at the molecular level of gene expres-
sion. So it requires great efforts by both experimental
and computational biologists to make gene prediction
more accurate, which can definitely speed up gene dis-
covery and knowledge mining.
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