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SARS-CoV-2 is the causative agent for coronavirus disease-19 (COVID-19) and belongs to
the family Coronaviridae that causes sickness varying from the common cold to more
severe illnesses such as severe acute respiratory syndrome, sudden stroke, neurological
complications (Neuro-COVID), multiple organ failure, and mortality in some patients. The
gene expression profiles of COVID-19 infection models can be used to decipher potential
therapeutics for COVID-19 and related pathologies, such as Neuro-COVID. Here, we used
the raw RNA-seq reads (Single-End) in quadruplicates derived using Illumina Next Seq 500
from SARS-CoV-infected primary human bronchial epithelium (NHBE) and mock-treated
NHBE cells obtained from the Gene Expression Omnibus (GEO) (GSE147507), and the
quality control (QC) was evaluated using the CLC Genomics Workbench 20.0 (Qiagen,
United States) before the RNA-seq analysis using BioJupies web tool and iPathwayGuide
for gene ontologies (GO), pathways, upstream regulator genes, small molecules, and
natural products. Additionally, single-cell transcriptomics data (GSE163005) of meta
clusters of immune cells from the cerebrospinal fluid (CSF), such as T-cells/natural
killer cells (NK) (TcMeta), dendritic cells (DCMeta), and monocytes/granulocyte
(monoMeta) cell types for comparison, namely, Neuro-COVID versus idiopathic
intracranial hypertension (IIH), were analyzed using iPathwayGuide. L1000 fireworks
display (L1000FWD) and L1000 characteristic direction signature search engine (L1000
CDS2) web tools were used to uncover the small molecules that could potentially reverse
the COVID-19 and Neuro-COVID-associated gene signatures. We uncovered small
molecules such as camptothecin, importazole, and withaferin A, which can potentially
reverse COVID-19 associated gene signatures. In addition, withaferin A, trichostatin A,
narciclasine, camptothecin, and JQ1 have the potential to reverse Neuro-COVID gene
signatures. Furthermore, the gene set enrichment analysis (GSEA) preranked method and
Metascape web tool were used to decipher and annotate the gene signatures that were
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potentially reversed by these small molecules. In conclusion, our study unravels a rapid
approach for applying next-generation knowledge discovery (NGKD) platforms to discover
small molecules with therapeutic potential against COVID-19 and its related disease
pathologies.

Keywords: SARS-CoV-2, COVID-19, Neuro-COVID, bronchial epithelium, cerebrospinal fluid, RNA sequencing, next-
generation knowledge discovery platforms, therapeutics

INTRODUCTION

Coronaviruses (CoVs) belong to the order Nidovirales, family
Coronaviridae, and subfamily Coronavirinae, which can further
be divided into four genera: alpha, beta, gamma, and delta CoVs.
SARS CoV2 is the causative agent of coronavirus disease-19
(COVID-19), belongs to the genus beta-CoV, and can cause
sickness varying from the common cold to more severe
illnesses such as severe acute respiratory syndrome,
gastrointestinal complications, sudden stroke, multiple organ
failure, and mortality in some cases (Cui et al., 2019). SARS-
CoV-2 infected more than 186 million people, resulting in the
death of about 4 million people globally (Johns Hopkins COVID-
19 Data Center on 10th July 2021) (Dong et al., 2020). SARS-
CoV-2 has a positive-sense RNA genome encapsulated by a
nucleocapsid. SARS-CoV-2 infects host cells through surface
receptors, angiotensin-converting enzyme 2 (hACE2), and
transmembrane protease serine-type 2 (TMPRSS2) (Hoffmann
et al., 2020). An increase in the expression of ACE2, a tissue-
protective mediator during lung damage, was found to be
associated with interferon signaling in airway epithelial cells,
and SARS-CoV-2 could exploit interferon-mediated
stimulation of ACE2 to augment infection (Ziegler et al.,
2020). The differential expression of genes that are necessary
for SARS-CoV-2 interaction and subsequent host response
determine susceptibility to COVID-19, disease progression,
and recovery (Kasela et al., 2021).

RNA sequencing is a recently developed NGS methodology
for whole transcriptome or single-cell transcriptomic
approaches (Liu and Di, 2020). Single-cell RNA sequencing
of COVID-19 infected bronchial epithelial cells and
bronchioalveolar immune cells revealed important cellular
and molecular processes implicated in COVID-19 infection
at the single-cell level and provided information about the
mechanisms of disease severity (Liu T. et al., 2020; Liao
et al., 2020; Zhou et al., 2020). Notably, IL-17-associated
signaling was significantly increased but not Th2-related
inflammation following COVID-19 infection (Kasela et al.,
2021). A recent study showed that SARS-CoV-2 infection
caused a twofold higher induction of interferon stimulation
compared to SARS-CoV in Calu-3 human epithelial cells and
subsequent induction of cytokines such as IL6 or IL-10 (Wyler
et al., 2021). The interferon-induced genes IFIT2 and OAS2
were widely stimulated compared to interferon lambda (IFNL)
and interferon-beta (IFNB). Besides, scRNA-seq data suggested
that interferon regulatory factor (IRF) activity occurs before the
induction of nuclear factor-κB (NF-κB) in SARS-CoV-2-
infected cells (Wyler et al., 2021).

COVID-19 patients, especially those with greater disease
severity, can develop neurological complications such as
neuroinflammation, headache, and cerebrovascular disease
called Neuro-COVID (Heming et al., 2021). Developing
novel drug candidates and identifying suitable existing
therapeutics for drug repurposing for COVID-19 and Neuro-
COVID are critical for controlling this ongoing pandemic and
reducing the enormous economic burden on health care systems
and socioeconomic devastation of individuals, families, small to
large businesses, and countries. Understanding COVID-19-
associated gene signatures is essential for developing robust
therapeutics for treating infected patients effectively and
reducing infection rates and mortality. To address this
important issue, the gene expression profiles of COVID-19
infection models can be used to identify potential therapeutic
targets that could be targeted by known drugs. Here, we used
RNA-seq datasets from the COVID-19 infection model of
human bronchial epithelial cells (NHBE) and the scRNA-seq
datasets of immune cells isolated from the cerebrospinal fluid
(CSF) of Neuro-COVID patients, obtained from public
repositories and analyzed using next-generation knowledge
discovery (NGKD) platforms to understand disease-specific
gene signatures and uncover drugs from synthetic and
natural sources that can reverse these gene signatures for
potential therapeutics.

MATERIALS AND METHODS

Ethical Statement
This study was exempted from Institutional Review Board (IRB)
approval since it did not involve any animal models or human
subjects and was conducted using RNA-seq datasets retrieved
from the Gene Expression Omnibus (GEO) (Barrett et al., 2013).

Data Source
In the present study, the raw RNA-seq reads (Single-End)
(FASTQ format) in quadruplicates derived using Illumina Next
Seq 500 from SARS-CoV-infected and mock-treated NHBE cells
were obtained from the GEO (Accession No: GSE147507)
(Blanco-Melo, et al., 2020). Additionally, the single-cell
transcriptomics data (Accession No: GSE163005) of immune
cells isolated from the CSF of Neuro-COVID patients
(Heming et al., 2021) were used for additional analysis using
high-throughput knowledge discovery platforms. Heming et al.
(2021) provided the entire dataset for the open-source interactive
platform cerebroApp at http://covid.mheming.de/ (Hillje et al.,
2020).
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COVID-19 RNA-seq Data: Quality
Control (QC)
Raw RNA-seq reads (Single-End) (FASTQ format) in
quadruplicates were evaluated for quality using the CLC
Genomics Workbench 20.0 (Qiagen, United States) as
described previously (Ewing and Green, 1998; Liu and Di, 2020).

BioJupies Analysis of the RNA-seq Data
BioJupies is a freely available web-based application (http://
biojupies.cloud) that has 14 RNA-seq analysis library plug-ins
and provides the user with the automatic generation, storage, and
deployment of Jupyter Notebooks containing RNA-seq data
analyses (Torre et al., 2018). In BioJupies, the RNA-seq
datasets were user-submitted, compressed in an HDF5 data
package, and uploaded to Google Cloud. Raw counts were
normalized to log10-Counts per million (log CPM) and the
differentially expressed genes (DEGs) were derived between
the control group and the experimental group using the
limma R package (Ritchie et al., 2015). The Jupyter Notebooks
created for each RNA-seq raw data analysis were permanently
available through a URL and stored in the cloud. The notebooks
consist of executable code of the whole pipeline, description of the
methods, enrichment analysis, interactive data visualizations,
differential expression, and so on (Torre et al., 2018).

Principal component analysis (PCA) was performed using the
PCA function from the sklearn Python module by transforming
the log CPM using the Z-score method. An interactive heatmap
was generated using a clustergram (Fernandez et al., 2017). In the
volcano plots, the log2 fold changes of the DEGs are shown on the
x-axis and p-values were corrected using the Benjamini-
Hochberg method, transformed (–log10), and presented on the
y-axis (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001). In contrast, for the MA plot, average gene expression is
shown on the x-axis; p-values were corrected using the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001), transformed (–log10), and
presented on the y-axis.

In SilicoAnalysis of the RNA-seq Expression
Data Using iPathwayGuide
The impact analysis method (IAM) (Draghici et al., 2007; Khatri
et al., 2007; Tarca et al., 2009) was used to determine the
significantly impacted gene signatures and pathways from the
DEGs (log2FC cut-off 0.6, adjusted false discovery rate (FDR)
p-value ≤ 0.05) obtained from the COVID-19 using BioJupies and
the DEGs with log2FC (cut-off 0.3) and adjusted p-value ≤ 0.001
based on Bonferroni method in meta clusters of T-cells/natural
killer cells (NK) (TcMeta), dendritic cells (DCMeta), and
monocytes/granulocyte (monoMeta) cell types of the
comparison, namely, Neuro-COVID versus idiopathic
intracranial hypertension (IIH) for the Neuro-COVID
infection models in the iPathwayGuide (Advaita
Bioinformatics, United States). Here, the p-value calculated
based on Fisher’s method was used to compute the pathway
score method (Fisher, 1925). The p-value was further corrected

based on multiple testing corrections for FDR and Bonferroni
corrections (Bonferroni, 1935; Bonferroni, 1936). The gene
interactions and pathways based on the DEGs were generated
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa and Goto, 2000; Kanehisa et al., 2002;
Kanehisa et al., 2010; Kanehisa et al., 2012; Kanehisa et al.,
2014). For each gene ontology (GO) term (Ashburner et al.,
2000; Gene Ontology Consortium, 2001; Ashburner and Lewis,
2002; Gene Ontology Consortium, 2004), the number of DEGs
annotated to the term was compared to that expected by chance.
iPathwayGuide uses an overrepresentation approach to
compute the statistical significance of observing at least a
given number of DEGs (Draghici et al., 2003a; Draghici
et al., 2003b; Draghici 2011). The hypergeometric
distribution was used to compute the p-values in the
iPathwayGuide analysis and corrected using FDR and
Bonferroni for multiple comparisons (Draghici et al., 2003a;
Draghici et al., 2003b; Draghici 2011). The prediction of
upstream chemicals, drugs, and toxins (CDTs), either as
present (or overly abundant) or absent (or insufficient), is
based on two types of information: 1) the enrichment of
DEGs from the experiment and 2) a network of interactions
from the Advaita Knowledge Base (AKB v2012) (Draghici et al.,
2003a; Draghici 2011). The analysis uses Fisher’s standard
method to combine p-values into one test statistic (Fisher,
1925).

L1000CDS2 and L1000FWD Queries
The L1000 characteristic direction signature search engine
(L1000CDS2) analysis was performed by submitting the top
2000 DEGs to the L1000CDS2 signature search application
programming interface (API) (Duan et al., 2016). Similarly,
the L1000FWD analysis was performed by submitting the top
2000 DEGs to the L1000 Fire Works Display (L1000FWD)
signature search API (Wang et al., 2018). Similarly, the
DEGs obtained from TcMeta, DCMeta, and monoMeta cell
types were compared; namely, Neuro-COVID versus IIH were
subjected to both L1000CDS2 and L1000FWD analyses to
identify drugs that reverse the gene signatures differentially
regulated by COVID-19. An FDR (q-value) of 0.05 was
considered statistically significant.

Gene Set Enrichment Analysis (GSEA)
Preranked
GSEA against a ranked list of genes was performed using the
GSEA preranked method (Subramanian et al., 2005). The RNK-
formatted files were created to the comparison of SARS-CoV-2-
NHBE vs. Mock-NHBE, Neuro-COVID vs. IIH-TcMeta,
Neuro-COVID vs. IIH-DCMeta, and Neuro-COVID vs. IIH-
monoMeta, based on the ranking metric log2FC of the DEGs.
Gene matrix files (GMTs) were created using the gene signatures
(combined, up, and down) of withaferin A, importazole,
camptothecin, trichostatin A, narciclasine, and JQ1 from the
L1000FWD web tool (Wang et al., 2018). GSEA preranked was
run by weighting each gene’s contribution to the enrichment score
by the value of its ranking metric against GMT files using Java-based
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desktop application GSEA 4.1.0 (Broad Institute, United States) under
default settings as described previously (Subramanian et al., 2005).

Metascape Analysis of Gene Signatures
Reversed by Small Molecules
The Metascape web tool (http://metascape.org) offers an easy and
effective way to explore and understand gene lists derived from
experimental data. The gene signatures reversed by smallmolecules
identified in our study in COVID-19 and Neuro-COVID models
were first automatically converted into Human Entrez Gene ID in
Metascape. Then, all statistically enriched terms, accumulative
hypergeometric p-values, and enrichment factors were
calculated and used for filtering to obtain enrichment ontology
clusters based on GO/KEGG terms, canonical pathways, and
hallmark gene sets (Zhou et al., 2019).

RESULTS

Raw RNA-seq reads (Single-End) (FASTQ format) derived using
Illumina Next Seq 500 from SARS-CoV-infected NHBE and
mock-treated NHBE cells were obtained from the GEO and the
QC was evaluated using the CLC Genomics Workbench 20.0,
before the RNA-seq analysis using BioJupies web tool.
iPathwayGuide analysis was performed to decipher the
disease-specific signatures, pathways, and small molecules,
either synthetic or derived from natural sources, to reverse
disease-specific gene signatures. In addition, single-cell
transcriptomic data of immune cells isolated from the CSF of
Neuro-COVID-19 patients were further analyzed using
iPathwayGuide, L1000CDS2, and L1000FWD analyses.

Hierarchically clustered heatmaps were generated using the
Clustergrammer web tool to visualize and analyze high-
dimensional RNA-seq data of SARS-CoV-infected NHBE cells
and mock-treated NHBE cells (Supplementary Figure S1A).
PCA was used to uncover global patterns in RNA-seq datasets
analyzed and helped to understand the difference between
COVID-19-infected and mock-treated NHBE cells
(Supplementary Figure S1B). The volcano plot was generated
using transformed gene fold changes using log2 and is shown on
the x-axis (Supplementary Figure S1C). The MA plot was based
on the average gene expression, which was calculated using the
mean of the normalized gene expression values and shown on the
x-axis (Supplementary Figure S1D).

iPathwayGuide Analysis of DEGs From
COVID-19 and Neuro-COVID Infection
Models
In this experiment, 1,072 DEGs were identified from a total of
10,663 DEGs obtained from BioJupies analysis of the RNA-seq
reads of the SARS-CoV-infected NHBE cells and mock-treated
NHBE cells based on a p-value cut-off of 0.05 and a log2 fold
change cut-off of 0.6. In contrast, DEGs with a logFC cut-off of
0.3 and adjusted p-value based on the Bonferroni method from
clusters in TcMeta, DCMeta, and monoMeta of the comparison,
namely, Neuro-COVID versus IIH, were also subjected to
iPathwayGuide analysis separately, followed by comparative
analyses. Subsequently, the DEGs were analyzed in the context
of pathways obtained from the KEGG database (Kanehisa and
Goto, 2000; Kanehisa et al., 2002), GO from the Gene Ontology
Consortium database, a network of regulatory relationships from
BioGRID: Biological General Repository for Interaction Datasets
v4.0.189 (Szklarczyk et al., 2017), chemicals/drugs/toxicants from
the Comparative Toxicogenomics Database (Davis et al., 2021),
and diseases from the KEGG database. In summary, 22 pathways
were found to be significantly impacted in SARS-CoV-2-infected
NHBE cells compared to mock-treated NHBE cells. In addition,
503 GO terms, 18 miRNAs, 190 gene upstream regulators, 213
chemical upstream regulators, and 14 diseases were found to be
significantly enriched before correction for multiple comparisons.

COVID-19 infection of NHBE cells triggers key immune-
related pathways, such as cytokine-cytokine receptor interactions
and viral protein interactions with cytokine receptors (Table 1).
The top five upstream regulators, IL-17, TNF-alpha, STAT2,
IRF9, and TLR4, were predicted to be activated (Table 2). The
top identified biological processes, molecular functions, and
cellular components for each pruning type are provided in
Tables 3–5.

The bar chart (Figure 1A) shows the top small molecules
identified by the L1000CDS2 query using the DEGs identified
from SARS-CoV-2-NHBE. The left panel shows small
molecules such as geldanamycin, radicicol, AZD8330,
trametinib, NVP-AYU922, GSK2126458, and JW-7-24-1,
which mimic the observed gene expression signature; the
right panel displays small molecules such as camptothecin
(Figure 1B), importazole (Figure 1C), and withaferin A
(Figure 1D). The upstream regulator drugs and natural
products that reverse the molecular signatures based on
iPathwayGuide analysis are shown as a dendrogram
(Figure 1E). The top five upstream drugs, natural products,

TABLE 1 | Top identified pathways and their associated p-values are given in the table.

Pathway name Pathway ID p-value p-value (FDR) p-value (Bonferroni)

Cytokine-cytokine receptor interaction 04060 6.711e−8 2.0202e−5 2.020e−5
Staphylococcus aureus infection 05150 4.009e−7 6.034e−5 1.207e−4
Viral protein interaction with cytokine and cytokine receptor 04061 1.050e−7 1.053e−4 3.160e−4
Systemic lupus erythematosus 05322 3.414e−4 0.026 0.103
Herpes simplex virus 1 infection 05168 6.444e−4 0.039 0.194

The p-value corresponding to the pathway was calculated based on overrepresentation analysis.
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and chemicals predicted as absent (or insufficient) based
on iPathwayGuide analysis were coumestrol,
methylprednisolone, JinFuKang (JFK), selenium, and gold
sodium thiomalate (Figure 1F). However, withaferin A was

found to reverse the COVID-19-induced molecular signatures
in both L1000CDS2 and L1000FWD analyses, along with other
small-molecule drugs (Table 6) in the SARS-CoV-2-infected
NHBE cells.

TABLE 2 | Top identified upstream regulators activated based on Bonferroni correction were listed in the table.

Upstream regulator (u) DTA (u) DT (u) p-value p-value (FDR) p-value (Bonferroni)

IL17A 13 17 1.139e−6 0.001 0.001
TNF 23 28 1.857e−6 0.001 0.002
STAT2 9 9 5.589e−6 0.002 0.007
IRF9 8 8 2.248e−5 0.007 0.028
TLR4 8 8 8.493e−5 0.021 0.106

Table 2 indicates the number of differentially expressed (DE) targets supporting the hypothesis that each upstream regulator (u) is activated (DTA(u)), the total number of DE genes
downstream of u (DT(u)), the combined raw p-value, and the corrected p-value for multiple comparisons.

TABLE 3 | Top identified biological processes for each pruning type.

Pruning type: none Pruning type: high specificity Pruning type: smallest common
denominator

Go term p-value p-value
(FDR)

p-value
(Bonferroni)

Go term p-value Go term p-value

Keratinization 6.600e−9 4.710e−5 4.710e−5 Cornification 1.713e−4 Keratinization 4.710e−5
Cornification 2.400e−8 8.563e−5 1.713e−4 Acute-phase response 0.033 Acute-phase response 0.100
Humoral immune
response

2.900e−7 6.898e−4 0.002 Peptide cross-linking 0.209 Humoral immune response 0.167

DNA replication
initiation

9.000e−6 0.002 0.064 Double-strand break repair via break-
induced replication

0.371 Peptide cross-linking 0.371

Acute-phase
response

9.300e−6 0.012 0.066 Antimicrobial humoral immune response
mediated by antimicrobial peptide

0.371 Double-strand break repair via
break-induced replication

0.371

TABLE 4 | Top identified molecular functions for each pruning type.

Pruning type: none Pruning type: high specificity Pruning type: smallest common
denominator

Go term p-value p-value
(FDR)

p-value
(Bonferroni)

Go term p-value Go term p-value

Cytokine activity 1.200e−7 1.691e−4 1.691e−4 Cytokine activity 0.061 Cytokine activity 1.691e−4
Receptor regulator activity 6.500e−7 4.579e−4 9.158e−4 Chemokine activity 0.061 Serine hydrolase activity 0.341
Signaling receptor activator
activity

4.500e−6 0.002 0.006 DNA replication origin binding 0.341 DNA replication origin binding 0.341

Receptor-ligand activity 7.900e−6 0.003 0.011 2’-5’-Oligodenylate synthetase
activity

0.341 2’-5’-Oligodenylate synthetase
activity

0.341

Chemokine activity 6.000e−5 0.017 0.085 Structural constituent of skin
epidermis

0.341 Structural constituent of skin
epidermis

0.341

TABLE 5 | Top identified cellular components for each pruning type.

Pruning type: none Pruning type: high specificity Pruning type: smallest common
denominator

Go term p-value p-value (FDR) p-value (Bonferroni) Go term p-value Go term p-value

Cornified envelope 3.600e−5 0.024 0.033 Cornified envelope 0.033 Cornified envelope 0.024
Intermediate filament 5.200e−5 0.024 0.048 Intermediate filament 0.279 Intermediate filament 0.024
DNA packaging complex 2.700e−4 0.082 0.247 Blood microparticle 0.485 DNA packaging complex 0.082
Intermediate filament cytoskeleton 0.001 0.209 0.924 MCM complex 0.492 Blood microparticle 0.364
Extracellular matrix 0.001 0.209 1.000 Nucleosome 0.492 MCM complex 0.470
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We identified 14 genes that were commonly expressed
between Neuro-COVID and IIH (TcMeta, DCMeta, and
monoMeta), as depicted in the Venn diagram (Figure 2A).
The upregulated genes (Figure 2B), downregulated genes

(Figure 2C), and the common genes between the meta
clusters of immune cells in Neuro-COVID were presented
as rank diagrams based on log2FC values. The genes
GABARAP, GNAI2, COTL1, ATP5F1D, CD81, GNAS,

FIGURE 1 | (A) The bar chart displaying the top five small molecules identified by the L1000CDS2 query. The left panel displays the small molecules which mimic
the observed gene expression signature, while the right panel displays the small molecules which reverse it. (B–D) The two-dimensional structures of camptothecin,
importazole, and withaferin A. (E) Dendrogram show the drugs and natural products that reverse the COVID-19 associated molecular signatures and (F) bar graph
shows the drugs and natural products that potentially reverse COVID-19 associated molecular signatures based on iPathwayGuide analysis.
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TAF10, and CHCHD10 were significantly upregulated, and
genes such as XIST, SLC25A6, MTRNR2L1, C6orf48,
NAP1L1, and GPR183 were significantly downregulated in
the meta clusters of immune cells in Neuro-COVID
(Figure 2D).

GO analysis showed that 61 biological processes
(Figure 3A), 13 molecular functions (Figure 3C), and 12
cellular components (Figure 3E) were commonly enriched
in the meta clusters of immune cells in Neuro-COVID. The top
five biological processes enriched were bicarbonate transport,

TABLE 6 | Natural products and drugs with opposite molecular signatures based on L1000FWD web-based tool for querying gene expression signatures (SARS-CoV-2-
NHBE vs. Mock-NHBE) against signatures created from human cell lines treated with over 20,000 small molecules and drugs for the LINCS project.

Signature ID Drug or
natural product

Similarity SCORE p-value q-value Z-score Combined score

CPC006_PC3_6H:BRD-A36630025-001-02-6:0.35 SN-38 −0.0598 1.04e−11 2.02e−08 1.79 −19.61
CPC011_A549_24H:BRD-K97514127-045-02-0:10 Vinorelbine −0.0598 2.32e−11 3.82e−08 1.72 −18.26
CPC015_MCF7_24H:BRD-K52075715-001-03-4:10 Oxibendazole −0.0573 2.91e−10 3.37e−07 1.67 −15.88
CPC019_HT29_6H:BRD-K67870070-001-01-4:10 SA-247615 −0.0560 7.96e−11 1.22e−07 1.69 −17.05
ERG005_VCAP_6H:BRD-K88378636-001-02-8:20 Withaferin A −0.0547 1.28e−09 1.19e−06 1.65 −14.71
CPC012_MCF7_24H:BRD-K69496360-001-01-5:10 BRD-K69496360 −0.0522 1.03e−08 5.72e−06 1.73 −13.81
CPC015_MCF7_24H:BRD-K47869605-001-18-9:10 Podophyllotoxin −0.0509 1.78e−08 8.35e−06 1.67 −12.97
CPC001_HCC515_24H:BRD-K82823804-001-01-7:10 SA-792987 −0.0509 3.61e−08 1.44e−05 1.81 −13.45
MUC.CP003_MCF7_24H:BRD-K02407574-001-04-8:3.3333 Parbendazole −0.0496 8.46e−08 2.85e−05 1.62 −11.45
CPC002_PC3_6H:BRD-K06926592-001-01-7:10 Tretinoin −0.0496 7.24e−08 2.54e−05 1.79 −12.80

FIGURE 2 | Differentially expressed genes (DEGs) in Neuro-COVID vs. IIH comparison based on iPathwayGuide analysis. (A) Venn diagram shows the DEGs
between TcMeta, DCMeta, and monoMeta. (B) The rank diagram shows the upregulated DEGs in TcMeta, DCMeta, and monoMeta. (C) The rank diagram shows the
downregulated DEGs in TcMeta, DCMeta, and monoMeta. (D) The rank diagram shows the common DEGs between TcMeta, DCMeta, and monoMeta.
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gas transport, oxygen transport, hydrogen peroxide, and drug
transport (Figure 3B), the top five molecular functions
enriched were haptoglobin binding, oxygen binding, oxygen

carrier activity, heme binding, and tetrapyrrole binding
(Figure 3D), and the top five cellular components enriched
were endocytic vesicle, haptoglobin-hemoglobin complex,

FIGURE 3 | Enrichment of gene ontologies (GO) such as biological process (BP), molecular function (MF), and cellular component (CC) in Neuro-COVID vs. IIH comparison
based on iPathwayGuide analysis. (A) Venn and (B) rank diagrams show the BP enriched between TcMeta, DCMeta, andmonoMeta. (C) Venn and (D) rank diagrams show
the MF enriched between TcMeta, DCMeta, and monoMeta. (E) Venn and (F) rank diagrams show the CC enriched between TcMeta, DCMeta, and monoMeta.
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hemoglobin complex, cytosolic small ribosomes, and cytosolic
ribosomes (Figure 3F). The top five differentially expressed
pathways identified based on iPathwayGuide analysis of
immune cell meta clusters from Neuro-COVID patients
were malaria, African trypanosomiasis, cocaine addiction,
Parkinson’s disease, and leukocyte transendothelial
migration. The differentially regulated pathways in the meta
clusters of immune cells from patients with Neuro-COVID are
provided in Supplementary Table S1. The upstream genes
activated in TcMeta, DCMeta, and monoMeta clusters are
listed in Supplementary Table S2.

L1000FWD and L1000CDS2 Analyses
The L1000FWD analysis of DEGs of meta clusters of Tc, DC,
and Mono of Neuro-COVID compared to IIH revealed that
withaferin A was the top molecule capable of reversing the
COVID-19 induced gene signatures (Tables 7–9).
Furthermore, the rank diagram (Figure 4A) showed that
JQ1 was the top drug based on the in silico prediction of
insufficient signaling of drugs, natural products, and
chemicals in the meta clusters of Tc, DC, and Mono of
Neuro-COVID compared to IIH using iPathwayGuide
(Figure 4B). The L100CDS2 analysis of DEGs of meta

TABLE 7 | Top small molecules with opposite molecular signatures based on L1000FWD web-based tool for querying gene expression signatures (Neuro-COVID vs. IIH-Tc
Meta) against signatures created from human cell lines treated with over 20,000 small molecules and drugs for the LINCS project.

Signature ID Drug or
natural product

Similarity score p-value q-value Z-score Combined score

ERG005_VCAP_6H:BRD-K88378636-001-02-8:20 Withaferin A −0.0492 3.55e−16 1.52e−11 1.65 −25.55
CPC012_VCAP_24H:BRD-A59985574-003-01-9:10 Topotecan −0.0303 6.34e−05 4.35e−01 1.75 −7.36
CPC012_VCAP_24H:BRD-K62459624-001-08-7:10 BRD-K62459624 −0.0293 1.66e−04 8.86e−01 1.77 −6.69
CPC006_HCC515_6H:BRD-K16406336-311-01-2:10 Methylene-blue −0.0303 8.54e−04 1.00e+00 1.77 −5.43
CPC011_PC3_6H:BRD-K04548931-003-11-6:10 Pidorubicine −0.0278 1.04e−03 1.00e+00 1.77 −5.27
NMH002_NPC_24H:BRD-K32610195-001-14-9:10 Androstenedione −0.0269 1.58e−03 1.00e+00 1.63 −4.57
CPC012_VCAP_24H:BRD-K56196992-001-01-2:10 BRD-K56196992 −0.0269 9.60e−03 1.00e+00 1.72 −3.47
CPC015_NPC_24H:BRD-K14920963-304-01-9:10 Erythrosine −0.0269 1.51e−03 1.00e+00 1.75 −4.93
CPC013_SKB_24H:BRD-K16798053-001-01-0:10 ST-4029573 −0.0269 4.94e−04 1.00e+00 1.76 −5.82
CPC004_PC3_6H:BRD-A41519720-001-03-0:10 Ezetimibe −0.0264 1.21e−02 1.00e+00 1.78 −3.42

TABLE 8 | Top small molecules with opposite molecular signatures based on L1000FWDweb-based tool for querying gene expression signatures (Neuro-COVID vs. IIH-DC
Meta) against signatures created from human cell lines treated with over 20,000 small molecules and drugs for the LINCS project.

Signature ID Drug or
natural product

Similarity score p-value q-value Z-score Combined score

ERG005_VCAP_6H:BRD-K88378636-001-02-8:20 Withaferin A −0.0587 2.84e−19 1.21e−14 1.65 −30.67
CPC015_NPC_24H:BRD-K14920963-304-01-9:10 Erythrosine −0.0304 2.85e−04 7.64e−01 1.75 −6.19
CPC006_HCC515_6H:BRD-K16406336-311-01-2:10 Methylene-blue −0.0330 3.94e−04 8.88e−01 1.77 −6.02
CPC012_HCC515_6H:BRD-K56653679-001-01-2:10 MD-041 −0.0317 4.22e−04 9.03e−01 1.72 −5.81
CVD001_HUH7_6H:BRD-K81142122-001-14-1:10 STK-249718 −0.0323 3.91e−04 8.88e-01 1.62 −5.52
CPC004_HT29_6H:BRD-K77830450-001-02-4:10 Forskolin −0.0264 1.31e−03 1.00e+00 1.90 −5.47
CPC013_SKB_24H:BRD-K16798053-001-01-0:10 ST-4029573 −0.0277 9.86e−04 1.00e+00 1.76 −5.29
CPC014_HA1E_6H:BRD-U66370498-000-01-0:10 Androstanol −0.0264 1.43e−03 1.00e+00 1.77 −5.03
CPC005_A375_24H:BRD-A78360835-001-01-1:10 Cercosporin −0.0290 2.06e−03 1.00e+00 1.82 −4.90
CPC014_HCC515_6H:BRD-A80960055-001-01-7:10 Celastrol −0.0290 2.78e−03 1.00e+00 1.72 −4.40

TABLE 9 | Top small molecules with opposite molecular signatures based on L1000FWD web-based tool for querying gene expression signatures (Neuro-COVID vs.
IIH-monoMeta) against signatures created from human cell lines treated with over 20,000 small molecules and drugs for the LINCS project.

Signature ID Drug or
natural product

Similarity score p-value q-value Z-score combined score

ERG005_VCAP_6H:BRD-K88378636-001-02-8:20 Withaferin A −0.0533 2.68e−13 1.06e−08 1.65 −20.79
CPC006_SNUC5_6H:BRD-A19633847-050-20-6:10 Perhexiline −0.0414 4.51e−08 3.85e−04 1.80 −13.23
CPC013_SKB_24H:BRD-K16798053-001-01-0:10 ST-4029573 −0.0382 2.01e−07 8.62e−04 1.76 −11.79
CPC017_SKB_24H:BRD-A20968261-001-01-3:10 WAY-213613 −0.0414 2.81e−07 1.00e−03 1.68 −11.01
CPC006_CORL23_6H:BRD-A04706586-236-01-7:10 Bucladesine −0.0358 2.08e−06 4.95e−03 1.84 −10.48
CPC007_A375_24H:BRD-K03067624-003-19-3:10 Emetine −0.0398 1.42e−06 3.80e−03 1.78 −10.42
CPC007_A375_6H:BRD-K03067624-003-19-3:10 emetine −0.0374 3.86e−06 8.48e−03 1.81 −9.79
CPC012_MCF7_6H:BRD-K41652870-001-01-9:10 BRD-K41652870 −0.0366 7.70e−06 1.32e−02 1.75 −8.97
CPC005_A375_24H:BRD-A78360835-001-01-1:10 Cercosporin −0.0358 2.49e−05 2.74e−02 1.83 −8.40
CPC006_PL21_6H:BRD-K78659596-001-01-3:10 MLN-2238 −0.0334 3.27e−05 3.33e−02 1.85 −8.28
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clusters of Tc, DC, and Mono of Neuro-COVID compared to
IIH revealed that narciclasine (Figure 4C) and trichostatin A
(Figure 4D) were some of the top molecules potentially
reversing the Neuro-COVID gene signatures (Tables
10–12).

GSEA Preranked and Metascape Analyses
To obtain the specific gene signatures potentially reversed by
camptothecin, importazole, and withaferin A, GSEA
preranked analysis was performed using ranked DEGs from
SARS-CoV-2-NHBE vs. Mock-NHBE comparison against

FIGURE 4 | (A) The rank diagram based on the in silico prediction of insufficient signaling of drugs and natural products in TcMeta, DCMeta, and monoMeta using
iPathwayGuide analysis. (B–D) The two-dimensional structures of JQ1, narciclasine, and trichostatin A.
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gene signatures differentially regulated by these small
molecules derived from the L1000FWD web tool. The gene
signature (Signature ID: CPC002_PC3_24H: BRD-
A30437061:10.0) downregulated by camptothecin was
positively enriched (normalized enrichment score (NES) � 1.32,
and q-value � 0.065) and the upregulated genes were negatively
enriched (NES � −1.12 and q-value � 0.27) in the SARS CoV2-
NHBE cells (Supplementary Figure S2A). The gene signature
(Signature ID: CPC006_A375_24H: BRD-A02481876:60.0)
downregulated by importazole was positively enriched (NES �
1.31 and q-value � 0.036) (Supplementary Figure S2B) and the
gene signature (Signature ID: CPC014_VCAP_6H: BRD-
A52193669:10.0) downregulated by withaferin A was significantly
enriched (NES � 1.21 and q-value � 0), and the upregulated genes
were negatively enriched (NES � −1.21 and q-value � 0.14) in the
SARS CoV2-NHBE cells (Supplementary Figure S2C).

Camptothecin potentially reversed 28 genes that were
positively enriched in SARS-CoV-2 in NHBE cells, and the
top 10 genes were COL6A2, CSE1L, TMEM135, PPA2,
MNAT1, BNIP3L, DLGAP5, TMEM47, ARHGAP29, and
OLA1. In contrast, 11 genes upregulated by CPT were
negatively enriched in SARS-CoV-2- NHBE cells, including
RSAD2, CD74, HSPA2, SDC3, ZDHHC11, NEU1, S100A8,
ISG15, MAFB, TSPAN7, and PEG3. Importazole potentially
reversed 66 genes that were positively enriched in SARS-CoV-
2-NHBE cells, and the top 10 genes were CDH19, CD58, TFF3,
SNX10, SMC4, TMEM135, MNAT1, PBK, and TFPI. Withaferin

A potentially reversed 134 genes that were positively enriched in
SARS-CoV-2-NHBE cells, and the top 10 genes were NUDT4,
CCNG1, ASPM, NLGN4X, USP1, SERP1, DIAPH2, PLEKHF2,
XPO1, SUB1, SMC4, and HSPA6. In contrast, 23 genes
upregulated by withaferin A were negatively enriched in
SARS-CoV-2- NHBE cells and the top 10 genes were MT1F,
CBR3, RAB20, SLC22A18, SLC37A4, EIF4EBP1, IRX5, S100A8,
COL1A1, and ABHD14A. In addition, the gene signatures
enriched in SARS-CoV-2-NHBE cells that were potentially
reversed by withaferin A, camptothecin, and importazole were
analyzed using Metascape to identify the enrichment ontology
clusters based on GO/KEGG terms, canonical pathways, and
hallmark gene sets (Figure 5). The genes enriched in GSEA
preranked analysis of SARS CoV2-NHBE vs. Mock-NHBE
against the gene signatures of camptothecin, importazole, and
withaferin A are provided in Supplementary Datasheet S1.

Similarly, the GSEA preranked analysis was performed using
ranked DEGs from Neuro-COVID vs. IIH-TcMeta, Neuro-
COVID vs. IIH-DCMeta, and Neuro-COVID vs.
IIH_monoMeta comparisons against gene signatures
differentially regulated by withaferin A, camptothecin,
trichostatin A, narciclasine, and JQ1 small molecules. The
gene signature (Signature ID: CPC014_VCAP_6H: BRD-
A52193669:10.0) upregulated by withaferin A was positively
enriched (NES � 1.62, q � 0.028) in TcMeta, DCMeta (NES �
1.23, q-value <� 0.24), and monoMeta (NES � 1.50, q-value �
0.06). However, the downregulated genes of withaferin A were
moderately enriched in TcMeta and DCMeta (Supplementary
Figure S3). The gene signature (Signature ID:
CPC002_PC3_24H: BRD-A30437061:10.0) downregulated by
camptothecin was significantly enriched (NES � 1.52, q �
0.051) in TcMeta and moderately enriched in DCMeta and
monoMeta (Supplementary Figure S4).

The gene signature (Signature ID: CPC012_A375_6H: BRD-
K68202742:10.0) downregulated by trichostatin A was
moderately enriched (NES � 1.34 and q � 0.11) in TcMeta,
DCMeta (NES � 0.92 and q-value � 0.59), and monoMeta (NES �
1.2 and q � 0.20). The upregulated genes of trichostatin A were
negatively enriched in DCMeta (NES � −1.39 and q-value �
0.085) and monoMeta (NES � −1.47 and q-value � 0.10)
(Supplementary Figure S5). The gene signature (Signature ID:
CPC006_HA1E_24H: BRD-K06792661:10.0) upregulated by

TABLE 12 | Top small molecules identified by the L1000CDS2 query that reverse
the Neuro-COVID vs. IIH-monoMeta gene signature.

Rank Overlap Perturbation Cell line Dose Time (h)

1 0.0398 Trichostatin A A375 10.0 µm 24.0
2 0.0390 Narciclasine A375 10.0 µm 24.0
3 0.0366 Parthenolide A375 20.0 µm 24.0
4 0.0350 HY-10518 VCAP 10.0 µm 24.0
5 0.0334 Vorinostat A375 11.1 µm 24.0
6 0.0326 Teniposide A375 1.25 µm 24.0
7 0.0326 BRD-K56411643 VCAP 10.0 µm 24.0
8 0.0326 BL-081 VCAP 10.0 µm 24.0
9 0.0326 Camptothecin (S,+) PC3 10.0 µm 24.0
10 0.0310 Erythrosine sodium HA1E 10.0 µm 24.0

TABLE 10 | Top small molecules identified by the L1000CDS2 query that reverse
the Neuro-COVID vs. IIH-TcMeta gene signature.

Rank Overlap Perturbation Cell line Dose Time (h)

1 0.0358 T5212475 VCAP 10.0 µm 24.0
2 0.0353 BRD-K56411643 VCAP 10.0 µm 24.0
3 0.0278 F3055 A375 10.0 µm 6.0
4 0.0254 Narciclasine HA1E 10.0 µm 24.0
5 0.0249 Ro 31-8220 mesylate HCC515 10.0 µm 24.0
6 0.0244 Erythrosine sodium HA1E 10.0 µm 24.0
7 0.0244 Parthenolide A375 20.0 µm 24.0
8 0.0239 Teniposide A375 1.25 µm 24.0
9 0.0239 Daunorubicin A549 10.0 µm 6.0
10 0.0239 EI-293 PC3 10.0 µm 6.0

TABLE 11 | Top small molecules identified by the L1000CDS2 query that reverse
the Neuro-COVID vs. IIH-DCMeta gene signature.

Rank Overlap Perturbation Cell line Dose Time (h)

1 0.0337 Trichostatin A A375 10.0 µm 24.0
2 0.0304 Narciclasine HA1E 10.0 µm 24.0
3 0.0297 Camptothecin (S,+) PC3 10.0 µm 24.0
4 0.0277 Erythrosine sodium HA1E 10.0 µm 24.0
5 0.0277 Vorinostat A375 11.1 µm 24.0
6 0.0271 F3055 A375 10.0 µm 6.0
7 0.0264 Parthenolide A375 20.0 µm 24.0
8 0.0257 Curcumin MCF7 48.0 µm 24.0
9 0.0257 BRD-K56411643 VCAP 10.0 µm 24.0
10 0.0257 Celastrol HME1 10 µm 3
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narciclasine was negatively enriched in TcMeta (NES � −1.97 and
q-value � 0), DCMeta (NES � −1.65 and q-value � 0), and
monoMeta (NES � −2.77 and q-value � 0). The differentially
regulated genes of narciclasine were negatively enriched in
monoMeta (NES � −2.01 and q-value � 0). However, the
downregulated genes of narciclasine were moderately enriched
in TcMeta (NES � 1.22 and q-value � 0.19) and DCMeta (NES �
1.32 and q � 0.15) (Supplementary Figure S6). The gene
signature (Signature ID: LJP008_A549_24H: BRD-K54606188:

10) downregulated by JQ1 was negatively enriched in the
DCMeta (NES � −0.68 and q-value � 0.98) and Neuro-
COVID vs. IIH-monoMeta (NES � −1.40 and q � 0.14)
groups. The upregulated genes of JQ1 were moderately
enriched in all three meta clusters of immune cells in Neuro-
COVID (Supplementary Figure S7).

The gene signatures upregulated by withaferin A (GNLY CST7
PPIB TSPO BCL2 S100A10 GSTP1), (S100A10, TSPO, PPIB,
HLA-DQB1, BCL2, GSTP1, EDF1, and FLOT1), and (S100A9,

FIGURE 5 | GSEA preranked analysis was performed to decipher the potential gene signatures downregulated by camptothecin, importazole, and withaferin A
using the RNK file generated from DEGs of SARS CoV2-NHBE vs. Mock-NHBE comparison. The Metascape analyses to decipher the gene ontology clusters based on
the (A) enrichment of gene signature (Signature ID: CPC014_VCAP_6H: BRD-A52193669:10.0) downregulated by withaferin A (B) enrichment of gene signature
(Signature ID: CPC002_PC3_24H: BRD-A30437061:10.0) downregulated by camptothecin, and (C) enrichment of gene signature (Signature ID:
CPC006_A375_24H: BRD-A02481876:60.0) downregulated by importazole in SARS CoV2-NHBE cells.
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FIGURE 6 | GSEA preranked analysis was performed to decipher the potential gene signatures downregulated by withaferin A, trichostatin A, and narciclasine
using the RNK file generated from DEGs of Neuro-COVID vs. IIH (TcMeta) comparison. The Metascape analyses to decipher the GO clusters based on the (A)
enrichment of gene signature (Signature ID: CPC014_VCAP_6H: BRD-A52193669:10.0) downregulated by withaferin A, (B) enrichment of gene signature (Signature ID:
CPC012_A375_6H: BRD-K68202742:10.0) downregulated by trichostatin A, and (C) enrichment of gene signature (Signature ID: CPC006_HA1E_24H: BRD-
K06792661:10.0) downregulated by narciclasine in Neuro-COVID vs. IIH-TcMeta.
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S100A8, TSPO, and HOMER3) were positively enriched in
TcMeta, DCMeta, and monoMeta clusters in Neuro-COVID.
Camptothecin potentially reversed seven genes that were
positively enriched in TcMeta, including AHNAK, MBNL1,
LGALS1, HNRNPA2B1, S100A10, TGFBR2, and CAPN2.
Trichostatin A potentially reverses five genes that were
positively enriched in DCMeta, such as RGS2. IL32, ZFP36,
SRGN, and STAB1, as well as nine genes that were positively
enriched in monoMeta, such as SRGN, RGS2, IL32, ZFP36,
JUNB, SAT1, PADI2, ALOX5AP, and IL2RG. The upregulated
gene signatures of narciclasine (H3F3B, ZFP36, RGS2, and XIST)
and (XIST, CREM, ZFP36, JUNB, NR4A2, FOS, EGR1, EVI2A,
SAT1, EGR2, IER2, NR4A1, and KDM5A) were negatively
enriched in DCMeta and monoMeta, respectively. JQ1
potentially increased six genes that were negatively enriched in
DCMeta, such as H3F3B, AP2A2, PIGF, SOS1, TRIO, FHL3,
H3F3B, MBNL2, TRIO, AP2A2, PSIP1, and ARHGEF6 in
monoMeta. In addition, the gene signatures enriched in
Neuro-COVID vs. IIH (TcMeta, DCMeta, and monoMeta)
that are potentially reversed by withaferin A, camptothecin,
trichostatin A, narciclasine, and JQ1 were analyzed using
Metascape to find the enrichment ontology clusters based on
GO/KEGG terms, canonical pathways, and hallmark gene sets.
The enrichment ontology clusters derived for the gene signatures
reversed by withaferin A, trichostatin A, and narciclasine in
Neuro-COVID vs. IIH-TcMeta are shown in Figure 6. The
genes enriched in GSEA preranked analysis of Neuro-COVID
vs. IIH comparison against the gene signatures of withaferin A,
camptothecin, trichostatin A, narciclasine, and JQ1 are provided
in Supplementary Datasheet S2.

DISCUSSION

COVID-19 caused by SARS-CoV-2 infection remains an ongoing
pandemic (Huang C. et al., 2020; Liu J. et al., 2020; Novel
Coronavirus Pneumonia Emergency Response Epidemiology
Team, 2020) and patients with severe COVID-19 may also
develop neurological complications called Neuro-COVID
(Heming et al., 2021). RNA sequencing is a very recently
developed NGS methodology for the whole transcriptome or
single-cell transcriptomics approaches (Liu and Di, 2020) and is
broadly used to explore biological, cellular, and molecular
processes implicated in COVID-19 infection (Liu T. et al.,
2020; Liao et al., 2020; Zhou et al., 2020). Hence, either
developing novel drug candidates or identifying suitable
existing therapeutics for drug repurposing for COVID-19 and
Neuro-COVID is essential to decrease the infection rate and
control the COVID-19 pandemic and reduce the enormous
economic burden on healthcare systems. Because the gene
expression profiles of COVID-19 infection models can be used
to decipher potential therapeutic targets that could be targeted by
known drugs (Daamen et al., 2021), we used RNA-seq datasets
from the COVID-19 infection models of NHBE cells, and the
scRNA-seq datasets of immune cells isolated from the CSF of
Neuro-COVID patients and analyzed using NGKD platforms to
understand the disease-specific gene signatures and pathways and

further uncover small molecules from both synthetic and natural
sources that potentially reverse these diseases.

Here, we found that COVID-19 infection of NHBE cells
activated upstream genes such as IL-17, TNF-alpha, STAT2,
IRF9, and TLR-4. Biological processes such as humoral
immune response, acute-phase response, and molecular
functions such as cytokine activity, receptor regulator activity,
signaling receptor activity, receptor-ligand activity, and
chemokine activity were enriched in the COVID-infected cells.
Importantly, the cytokine and cytokine receptor interaction and
viral protein interaction with the cytokine and cytokine receptors
were activated in COVID-infected NHBE cells. Cytokines are
important for both innate and adaptive inflammatory host
responses, cell differentiation, cell death, growth, repair and
development, and cellular homeostasis (Pushparaj, 2019;
Bahlas et al., 2020; Harakeh et al., 2020; Jafri et al., 2020;
Pushparaj, 2020). Studies have shown that several circulating
cytokines and chemokines such as TNFα, CXCL-10, IL-6, and IL-
8 are differentially expressed during SARS-CoV-2 infection, and
this cytokine/chemokine storm likely contributes to the poor
prognosis of COVID-19 (Liu J. et al., 2020; Vaninov, 2020). RNA
sequencing analysis of cell and animal models of SARS-CoV-2
infection, blood, lung, and airway biopsies from COVID-19
patients showed inflammatory responses characterized by low
levels of type I and III IFNs, increased interleukin-6 (IL-6), and a
variety of chemokines (Blanco-Melo et al., 2020; Daamen et al.,
2021). The spike protein (S protein) of SARS-CoV-2 is essential
for the attachment between the coronavirus and hACE2 surface
receptor through its receptor-binding domain (RBD) (Lan et al.,
2020) and is proteolytically activated by human proteases, thus
helping the coronavirus to enter the host cells (Shang et al., 2020).
A recent study showed that hACE2 was stimulated by IFN in
human airway epithelial cells (Ziegler et al., 2020) and thus helps
in the entry of SARS-CoV-2 into host cells.

SARS-CoV-2 and other coronaviruses have developed
different mechanisms to avoid detection and subsequent
destruction by copying and repurposing cytokine and cytokine
receptor genes in the host (Heimfarth et al., 2020; Choudhary
et al., 2021). COVID-19 induced cytokines and cytokine
receptors, chemokines, and other specific cytokine receptors
and binding proteins may subvert and alter the host cytokine
networks (Choudhary et al., 2021). Here, the COVID-19-induced
cytokines, cytokine receptors, receptor-binding proteins, and
chemokines may stimulate or prevent cytokine signaling and
may significantly alter various facets of host immunity. In
addition, Daamen et al. (2021) found that COVID-19
pathogenesis was driven by highly inflammatory myeloid-
lineage cells with distinct transcriptional signatures and the
absence of cytotoxic cells in the lungs, leading to reduced viral
clearance.

Heming et al. (2021) stated that lumbar puncture to obtain
immune cells from COVID-19 patients without neurological
manifestations as controls was not ethically permitted for
scientific purposes. Since IIH is a benign disorder associated
with high pressure in the brain, the immune cells derived from the
CSF of patients with IIH were used as controls to compare Neuro-
COVID. The cluster of differentiation molecule 81 (CD81) is one
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of the commonly regulated genes in the meta clusters of immune
cells from the CSF of patients with Neuro-COVID and belongs to
the tetraspanin superfamily, which has been shown to regulate
viral entry, viral replication, infectivity, and virion exit of different
types of viruses (Benayas et al., 2020). Therefore, it is essential to
investigate the importance of CD81 in patients with COVID-19
and Neuro-COVID. One of the upstream genes activated in
TcMeta cluster, Cell cycle division 37 (CDC37), a heat shock
protein 90 (HSP90) cochaperone that could play an important
role in the pathogenesis of Neuro-COVID. COVID-19
progression to a systemic disease could be associated with
HSP-related molecular mimicry autoimmune phenomena
(Cappello et al. 2020; Kasperkiewicz, 2021). It was postulated
that Hsp90 inhibition could also be a potential treatment option
for cytokine storm-mediated acute respiratory distress syndrome
in COVID-19 patients (Kasperkiewicz, 2021). Recently, Wyler
et al. (2021) identified HSP90 as a target for COVID therapy
based on transcriptomic profiling of SARS-CoV-2 infected
human cell lines.

Interestingly, the top five differentially expressed pathways
identified based on iPathwayGuide analysis of immune cell meta
clusters from Neuro-COVID patients were malaria, African
trypanosomiasis, cocaine addiction, Parkinson’s disease, and
leukocyte transendothelial migration. Studies have shown a
potential link between the presentation of malaria and
COVID-19. The opposite relationship between COVID 19 and
malaria has been suggested to be linked with the wide use of
antimalarial drugs, including hydroxychloroquine (HCQ) and
chloroquine (CQ), in countries that are endemic to malaria
(Hussein et al., 2020).

There are many types of COVID-19 vaccines currently available
for prophylaxis, and many are under development (Mandolesi et al.,
2021). Several therapeutics are available based on WHO guidelines
to treat the complications of COVID-19 and related complications
(Lamontagne et al., 2021); however, these therapeutics are not
specifically designed for the treatment of COVID-19 and its
related complications such as Neuro-COVID, and their efficacies
substantially differ across the globe and are not very effective in
ameliorating disease severity (Surnar et al., 2020). In this study, we
utilized NGKD platforms such as iPathwayGuide, L1000FWD, and
L1000CDS2 tools to identify promising druggable molecules based
on their in silico potential to reverse gene signatures induced by
COVID-19 and Neuro-COVID. We found that camptothecin,
importazole, and withaferin A had insufficient signaling or gene
signatures (or absent) in COVID-19 infected NHBE cells. Based on
L1000CDS2 analysis, trichostatin A, a histone deacetylase inhibitor,
mildly inhibited the ACE receptors (Takahashi et al., 2021), and
narciclasine and camptothecin are some of the top small molecules
that reverse the gene signatures in Neuro-COVID vs. IIH immune
datasets. In addition, a comparative analysis of the Neuro-COVID
vs. IIH immune cell meta cluster datasets showed that JQ1 had
insufficient signaling (or absence).

The GSEA preranked analysis calculates if a priori defined sets of
genes display statistically significant enrichment at either end of the
ranking (Subramanian et al., 2005). The gene signature potentially
reversed by withaferin A in SARS-CoV-2 NHBE vs. Mock-NHBE
based on preranked GSEA involved in various biological, molecular,

and cellular processes, including viral genome replication (GO:
0019079), modulation of the process of other organisms involved
in symbiotic interactions (GO:0051817), and positive regulation of
translational initiation (GO:0045948). The gene signature potentially
reversed by importazole in SARS-CoV-2 NHBE vs. Mock-NHBE
based on preranked GSEA involved in various biological, molecular,
and cellular processes, including regulation of single-stranded viral
RNA replication via a double-stranded DNA intermediate (GO:
0045091). The gene signature potentially reversed by withaferin A
in Neuro-COVID vs. IIH-TcMeta based on preranked GSEA
involved in various biological, molecular, and cellular processes,
including regulation of type 1 interferon production (GO:0032479)
and interferon signaling (R-HSA-913531). The gene signature
potentially reversed by withaferin A in Neuro-COVID vs. IIH-
TcMeta based on preranked GSEA involved in various biological,
molecular, and cellular processes, including regulation of type 1
interferon production (GO:0032479) and interferon signaling
(R-HSA-913531). The gene signature potentially reversed by
narciclasine in Neuro-COVID vs. IIH-TcMeta based on preranked
GSEA involved in negative regulation of viral entry into host cells
(GO: 0046597), PDGFR beta signaling pathway (PID-M186), EGF/
EGFR signaling pathway (WP437), VEGFA/VEGFR2 signaling
pathway (WP3888), and positive regulation of cell migration (GO:
0030335). The gene signatures upregulated by withaferin A (GNLY
CST7 PPIB TSPO BCL2 S100A10 GSTP1), (S100A10, TSPO, PPIB,
HLA-DQB1, BCL2, GSTP1, EDF1, and FLOT1), and S100A9,
S100A8, TSPO, and HOMER3) were positively enriched in
Neuro-COVID. Granulysin (GNLY) is a member of the saposin-
like protein (SAPLIP) family, is located in the cytotoxic granules of
T-cells and NK cells, is released on antigen stimuli, and has
antimicrobial activity. The S100 genes include 13 members and
have antibacterial and antifungal properties (Crinier et al., 2018).

Our L1000FWD analyses showed that withaferin A was the top
natural product that reverses the signature of Neuro-COVID in all
the meta clusters of immune cells from the CSF of Neuro-COVID
patients. Withaferin A is a component of Withania somnifera
(ashwagandha or Indian ginseng) (Srivastava et al., 2020). W.
somnifera has been used in traditional medicine as an
antioxidant, antianxiety, anti-inflammatory, antibacterial,
aphrodisiac, and herbal tonic for general health (Sood et al.,
2018). The active ingredients include withanolides, saponins,
alkaloids, and steroidal lactones. In vitro studies have shown that
ashwagandha has neuroprotective, cardioprotective,
immunomodulating, and anticancer properties (Singh et al., 2021).

Adjunctive treatment with ashwagandha improved symptoms
and stress in patients with schizophrenia, offering beneficial effects
on cognitive function in patients with bipolar disorder and improves
balance in patients with progressive degenerative cerebral ataxias
(Sood et al., 2018; Singh et al., 2021). It was recently shown that
withanolides present in ashwagandha possess anti-COVID-19
properties, and these compounds exhibit good absorption and
transport kinetics with no related mutagenic or adverse effects
(Srivastava et al., 2020). Withaferin A was predicted to bind and
stably interact with the binding site of TMPRSS2, similar to its
known inhibitor, camostat mesylate (Kumar et al., 2020). Camostat
was found to reduce SARS-CoV-2 infection in TMPRSS2 expressing
Vero cells (Hoffmann et al., 2020). David et al., 2021 in their
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MedRixv preprint showed that a common variant of TMPRSS2
protects against COVID-19. In silico screening of several
phytochemicals identified that Withanone, one of the constituents
of ashwagandha, showed a potential inhibition of ACE2 (Balkrishna
et al., 2021). Additionally, Ghosh et al. (2021) used molecular
dynamic simulations and pharmacophore modeling approaches
to predict the highly potent small-molecule derivative of
withaferin A that potentially inhibits SARS-CoV-2 protease
(Mpro), a favorable future therapeutic against COVID-19.

Recent studies have demonstrated the antiviral properties of
narciclasine, an alkaloid found in various Amaryllidaceae species,
and camptothecin, a topoisomerase inhibitor first isolated from the
stem of Camptotheca acuminata (used in Chinese traditional
medicine) against SARS-CoV-2 (Huang C.-T. et al., 2020;
Mamkulathil Devasia et al., 2021). However, importazole, an
inhibitor of importin-β transport receptors, and other small
molecules identified to reverse COVID-19-induced gene signatures
need to be further explored because developing effective therapeutics is
essential to control the COVID-19 pandemic (Surnar et al., 2020).

In conclusion, the present study unravels a rapid approach
to using high-throughput RNA sequencing technologies
coupled with NGKD platforms to decipher specific drugs
and small molecules derived either synthetically or from
natural sources for the amelioration of COVID-19 related
disease pathologies such as Neuro-COVID. Further studies
are warranted to validate the small molecules identified in our
study using in vitro and in vivo model systems of COVID-19
and Neuro-COVID to determine their mechanism(s) of action
followed by suitable clinical trials to confirm the efficacy and
safety for possible therapeutic intervention for COVID-19-
related disease pathologies.
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Supplementary Table S1 | The differentially regulated pathways in the meta
clusters of immune cells from patients with Neuro-COVID are provided in
Supplementary Table S1.

Supplementary Table S2 | The upstream genes activated in TcMeta, DCMeta, and
monoMeta clusters are listed in Supplementary Table S2.

Supplementary Datasheet S1 | The genes enriched in GSEA preranked analysis
of SARS CoV2-NHBE vs. Mock-NHBE against the gene signatures of
camptothecin, importazole, and withaferin A are provided in Supplementary
Datasheet S1.

Supplementary Datasheet S2 | The genes enriched in GSEA preranked analysis
of Neuro-COVID vs. IIH comparison against the gene signatures of withaferin A,
camptothecin, trichostatin A, narciclasine, and JQ1 are provided in Supplementary
Datasheet S2.

Supplementary Figure S1 | (A) Hierarchically clustered interactive heatmaps were
generated using the Clustergrammer web tool for visualizing and analyzing high-
dimensional RNASeq data (NHBE-SARS CoV2 vs NHBE-Mock). (B) Principal
Component Analysis (PCA) was applied to identify global patterns in high-
dimensional RNASeq datasets (C) Volcano plot was generated using
transformed gene fold changes using log2 and displayed on the x-axis (D) MA
plot was based on average gene expression which was calculated using the mean of
the normalized gene expression values and displayed on the x-axis.

Supplementary Figure S2 | GSEA Preranked analysis was performed to decipher
the potential gene signatures differentially regulated (Combined, Downregulated,
and Upregulated) by camptothecin, importazole, and withaferin A using the RNK file
generated from DEGs of SARS CoV-NHBE vs Mock-NHBE comparison. (A) The
enrichment of gene signature (Signature_ID: CPC002_PC3_24H: BRD-A30437061:
10.0) differentially regulated by camptothecin, (B) the enrichment of gene signature
(Signature ID: CPC006_A375_24H: BRD-A02481876:60.0) differentially regulated
by importazole and (C) the enrichment of gene signature (Signature ID:
CPC014_VCAP_6H: BRD-A52193669:10.0) differentially regulated by withaferin
A in SARS CoV2-NHBE cells.

Supplementary Figure S3 | GSEA Preranked analysis was performed to decipher
the potential gene signatures differentially regulated (Combined, Downregulated,
and Upregulated) by withaferin A using the RNK file generated from DEGs of Neuro-
COVID vs IIH (TcMeta, DCMeta, and monoMeta) comparisons. The enrichment of
gene signature (Signature ID: CPC014_VCAP_6H: BRD-A52193669:10.0)
differentially regulated by withaferin A in (A) Neuro-COVID vs IIH-TcMeta (B)
Neuro-COVID vs IIH-DCMeta, and (C) Neuro-COVID vs IIH-monoMeta.

Supplementary Figure S4 | GSEA Preranked analysis was performed to decipher
the potential gene signatures differentially regulated (Combined, Downregulated,
and Upregulated) by camptothecin using the RNK file generated from DEGs of
Neuro-COVID vs IIH (TcMeta, DCMeta, and monoMeta) comparisons. The
enrichment of gene signature (Signature ID: CPC002_PC3_24H: BRD-
A30437061:10.0) differentially regulated by camptothecin in (A) Neuro-COVID vs
IIH-TcMeta (B) Neuro-COVID vs IIH-DCMeta, and (C) Neuro-COVID vs IIH-
monoMeta.

Supplementary Figure S5 | GSEA Preranked analysis was performed to decipher
the potential gene signatures differentially regulated (Combined, Downregulated,
and Upregulated) by trichostatin A using the RNK file generated from DEGs of
Neuro-COVID vs IIH (TcMeta, DCMeta, and monoMeta) comparisons. The
enrichment of gene signature (Signature ID: CPC012_A375_6H: BRD-
K68202742:10.0) differentially regulated by trichostatin A in (A) Neuro-COVID vs
IIH-TcMeta (B) Neuro-COVID vs IIH-DCMeta, and (C) Neuro-COVID vs IIH-
monoMeta.

Supplementary Figure S6 | GSEA Preranked analysis was performed to decipher
the potential gene signatures differentially regulated (Combined,
Downregulated, and Upregulated) by narciclasine using the RNK file
generated from DEGs of Neuro-COVID vs IIH (TcMeta, DCMeta, and
monoMeta) comparisons. The enrichment of gene signature (Signature ID:
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CPC006_HA1E_24H: BRD-K06792661:10.0) differentially regulated by
narciclasine in (A) Neuro-COVID vs IIH-TcMeta (B) Neuro-COVID vs IIH-
DCMeta, and (C) Neuro-COVID vs IIH-monoMeta.

Supplementary Figure S7 | GSEA Preranked analysis was performed to
decipher the potential gene signatures differentially regulated (Combined,

Downregulated, and Upregulated) by JQ1 using the RNK file generated from
DEGs of Neuro-COVID vs IIH (TcMeta, DCMeta, and monoMeta)
comparisons. The enrichment of gene signature (Signature ID:
LJP008_A549_24H: BRD-K54606188:10) differentially regulated by JQ1 in (A)
Neuro-COVID vs IIH-TcMeta (B) Neuro-COVID vs IIH-DCMeta, and (C) Neuro-
COVID vs IIH-monoMeta.
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